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ABSTRACT

Machine learning-based methods have emerged as a promising solution to accurate battery capacity esti-
mation for battery management systems. However, they are generally developed in a supervised manner
which requires a considerable number of input features and corresponding capacities, leading to pro-
hibitive costs and efforts for data collection. In response to this issue, this study proposes a convolutional
neural network (CNN) based method to perform end-to-end capacity estimation by taking only raw
impedance spectra as input. More importantly, an input reconstruction module is devised to effectively
exploit impedance spectra without corresponding capacities in the training process, thereby significantly
alleviating the cost of collecting training data. Two large battery degradation datasets encompassing over
4700 impedance spectra are developed to validate the proposed method. The results show that accurate
capacity estimation can be achieved when substantial training samples with measured capacities are
given. However, the estimation performance of supervised machine learning algorithms sharply deteri-
orates when fewer samples with measured capacities are available. In this case, the proposed method
outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%. A fur-
ther validation under different current rates and states of charge confirms the effectiveness of the pro-
posed method. Our method provides a flexible approach to take advantage of unlabelled samples for
developing data-driven models and is promising to be generalised to other battery management tasks.
© 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published

by ELSEVIER B.V. and Science Press. All rights reserved.

1. Introduction

Model-based methods incorporate battery capacity into voltage
models, and then the capacity can be estimated by minimising

1.1. Motivations and literature review

Lithium ion batteries as electrochemical energy storage devices
have become a key driver to decarbonise the energy sector [1].
Owing to internal side reactions, lithium ion batteries undergo
gradual capacity degradation and power fade [2,3]. Therefore,
monitoring the state of health (SOH) of the batteries is a critical
task for battery management systems [4].

Battery SOH is generally defined as the ratio of the present
capacity to the initial capacity. As capacity measurements are
rarely applicable in real-world applications, capacity estimation
at unknown ageing levels has attracted wide attention [5,6]. In
general, capacity estimation methods can be divided into two
groups, namely model-based methods and data-driven methods.
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the errors between simulated and measured voltages [7]. However,
the parameterisation of battery models requires cumbersome
characterisation tests and modelling errors negatively affect capac-
ity estimation accuracy.

Recently, machine learning-based methods have been explored
for capacity estimation. These methods first determine features
highly correlated with capacity degradation and then develop the
mapping between features and battery capacity. For example, eight
features were derived from the relaxation voltage curves obtained
after the batteries are fully charged [8]. Three features were
selected to evaluate battery capacity estimation using a set of
machine learning algorithms. In [9], current pulses were imposed
on batteries at a specific state of charge (SOC) and the correspond-
ing voltage response was recorded to compute the sample entropy
as a feature. A sparse Bayesian predictive modelling algorithm was
trained to establish the mapping between the sample entropy and
battery capacity. This method was then refined in [10] by combin-
ing multiple pulse-derived features and Gaussian process regres-
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sion (GPR). Other methods resort to the constant-current charging
process to identify features, such as the height [11], position [12]
and area [13] of incremental capacity (IC) curves. As the IC trans-
form amplifies the sampling noise, researchers attempted to adopt
partial charging data for capacity estimation, as demonstrated by
[14-16].

The above methods generally rely on the time-domain battery
voltage and current data to conduct battery degradation estima-
tion. On the other hand, electrochemical impedance spectroscopy
(EIS) is a versatile tool that can reflect fruitful kinetic information
of a battery [17,18]. Compared with the above-discussed methods,
EIS is a reliable electrochemical technique that has various advan-
tages. First, EIS adopts a small-amplitude alternating current (AC)
to stimulate the tested battery and collect the voltage response.
The testing procedure does not require charging/discharging bat-
teries, thereby saving energy and testing efforts [19]. Recent stud-
ies have demonstrated the quick acquisition of impedance spectra
using easily available hardware [20], paving the way to utilise EIS
for battery management purposes. Besides, EIS allows us to probe
battery characteristics in a non-invasive approach [21]. For exam-
ple, EIS is effective to characterise power fade [19], decouple elec-
trochemical processes [22] and diagnose lithium plating [23]. It is
also a promising candidate for capacity estimation. Messing et al.
[24] fitted impedance spectra to a fractional order model to obtain
resistances reflecting solid electrolyte interphase (SEI) and charge
transfer for capacity estimation. Carthy et al. [25] found a linear
relationship between the real part of the impedance at 1 kHz with
capacity fade. Recently, the combination of EIS and machine learn-
ing has gained increasing attention. Fu et al. [26] extracted six fea-
tures from impedance spectra and fed them into an extreme
learning machine for capacity estimation. Zhang et al. [27] pro-
posed to directly feed impedance spectra into GPR to estimate bat-
tery capacity and predict remaining useful life. Their results show
that EIS based estimation methods outperform methods based on
discharge profiles. However, Kim et al. [28] revealed that GPR
has limited feature learning capability, and a generative adversarial
network was proposed to extract ageing-related features from
impedance spectra before feeding features into GPR for capacity
estimation.

1.2. Gap analysis and article contributions

Despite the advances in the field of battery capacity estimation,
existing capacity estimation studies generally rely on supervised
training, which requires a considerable number of features and
corresponding capacities to train machine learning models.
Although ageing-related features are available relatively easily,
collecting their corresponding capacities through measurements
is a costly task because it requires fully charging and discharging
batteries at various ageing levels. In reality, we can easily obtain
a considerable number of features at different ageing levels but
many of them do not have corresponding capacity measurements.
For instance, field data provide a large spectrum of battery operat-
ing data, but rarely have corresponding capacity measurements as
batteries in service are seldom fully charged or discharged [29].
Accordingly, it is desirable to develop machine learning-based
capacity estimation methods that can effectively make use of not
only labelled data but also unlabelled data to achieve competitive
estimation results.

To this end, we propose a semi-supervised capacity estimation
method that can take advantage of labelled and unlabelled data to
estimate battery capacity. Considering the potential of EIS in
reflecting battery degradation, we take EIS as an example to
demonstrate accurate capacity estimation. This study makes the
following contributions.
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(1) An end-to-end capacity estimation method is proposed to
circumvent feature extraction. By resorting to advanced
deep convolutional neural networks (CNNs) to integrate fea-
ture extraction and capacity estimation, we show that bat-
tery capacity can be accurately estimated using raw
impedance spectra as input, leading to flexible and general
capacity estimation.

(2) A semi-supervised training approach is proposed to take
advantage of unlabelled impedance spectra to improve the
performance of battery capacity estimation. Thanks to the
proposed model architecture and training strategy, the pro-
posed model significantly improves estimation accuracy
when the scarce labelled training data are augmented by
unlabelled impedance spectra.

(3) Two large battery degradation datasets comprising over
4700 impedance spectra collected from 16 batteries are
developed to systematically validate the proposed method
under various conditions.

1.3. Article organisation

The rest of the article is organised as follows. “Method” section
delineates the proposed method and “Battery degradation tests”
section introduces battery degradation tests. Validations and dis-
cussions of the proposed method are provided in “Results and dis-
cussions” section. “Conclusions” section concludes the present
study.

2. Method
2.1. Semi-supervised capacity estimation problem

Data-driven battery capacity estimation seeks to develop a
model using the easily available data as input to estimate battery
capacity at unknown ageing levels, which can be expressed as.

y=f®x) (1)

where y denotes the actual battery capacity, and y denotes the cor-
responding estimation result. x represents the input data, such as
the impedance spectrum adopted in this work. f() denotes the non-
linear mapping which can be described by a machine learning algo-
rithm. In the context of data-driven capacity estimation, it is
determined based on a labelled dataset consisting of both input
and corresponding capacity measurements.

o {(xo o)
=W\ Y )

where x and y!"’ are the input and the measured capacity of the ith
sample in the labelled dataset, respectively. n denotes the total
number of samples. In general, the model training requires a large
DV, where a substantial amount of labelled samples are available.
However, although D" can be developed offline, capacity measure-
ment requires fully charging and discharging batteries, leading to
high costs in terms of energy and effort. In contrast, we can easily
acquire a considerable amount of input data x, resulting in an unla-
beled dataset.

N
o},
i=

2)

3)

where DY denotes the unlabeled dataset which consists of n
input samples x” without corresponding capacity measurements.

In this regard, D'Y’ cannot be exploited by conventional supervised
capacity estimation algorithms [30]. Given this, we expect to
improve capacity estimation performance by making full use of
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not only D but also D). This is fulfilled by developing a joint-loss
CNN (JL-CNN) described in “Structure of the Joint-loss CNN” section.

2.2. Structure of the Joint-loss CNN

As shown in Fig. 1, the proposed JL-CNN can carry out an end-
to-end capacity estimation by taking raw impedance spectra as
input. A key step of capacity estimation is to extract meaningful
features from raw data. While conventional machine learning
methods rely on manual feature extraction, the proposed method
takes advantage of CNN architecture [31] to enable automatic fea-
ture extraction. Besides, both labelled and unlabelled impedance
spectra can participate in the model training. The JL-CNN is
designed with three modules, namely feature extraction, capacity
estimation and input reconstruction. The feature extraction mod-
ule is responsible for automatically encoding the input impedance
spectra into meaningful features, which can be either labelled or
unlabeled. The extracted features are then fed into the capacity
estimation module to generate the capacity estimation results. In
this case, only features extracted from the impedance spectra in

the DU are adopted to train this module. On the other hand, the
input reconstruction module is developed to use the extracted fea-
tures to reconstruct the original input impedance spectra. It is
expected to help the feature extraction module to learn meaningful
features from impedance spectra. This module does not require its
input to be labelled, thereby unlabeled samples can be efficiently
exploited. The working principles of the three modules are intro-
duced below.

(1) Feature extraction module: As shown in Fig. 1, the feature
extraction module begins with three convolutional blocks,
each of which is composed of a convolutional layer and a
max-pooling layer in order. Two dense layers are concate-
nated after the convolutional blocks. Instead of manual fea-
ture extraction, the convolutional layers utilise a set of
kernels to convolve with input data to automatically extract

@ Feature extraction

EIS

Labelled Convolutional layer

dataset %3 K

Capacity Max-pooling
v ¥

Dense layer
v v
Unlabeled - |

dataset bt

l Feature y Feature

@ Capacity estimation @) Input reconstruction

Dense layer Dense layer

Dense layer Dense layer

papgcity Total Reconstruction
estimation loss loss loss

Fig. 1. The structure and training strategy of the proposed joint-loss convolutional
neural network for semi-supervised capacity estimation. Arrows of different colours
represent the flow of samples from different datasets.
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local features. Meaningful representations can be effectively
extracted by stacking multiple convolutional blocks. As one
of the most important structures of deep neural networks,
the convolutional layers have been proven to be successful
in various fields [31]. The details of different layers are pro-
vided in the Appendix. As the impedance spectra are com-
posed of impedance measured at a series of frequencies,
we adopt 1D convolutional layers to extract features and
form a feature vector

e ~fe([27 27]")

where f; represents the nonlinear transform performed by the fea-
ture extraction module. hg is the Ng x 1 feature vector. Z/ and Zr are
the sequences of the real and imaginary impedance, respectively.
They are defined as a function of frequency

z -z, o)

Z 2 2
7=z, z,|
where Zr;, and Zi;, (1 <i < N) denote the real and imaginary parts
of the impedance measured at the frequency f;, respectively. A total

of N frequencies is covered in the impedance spectra. The rectified
linear unit (ReLU) activation is applied to increase the nonlinearity.

(4)

4
fa

, ()
Z 2

(2) Capacity estimation module: The extracted feature vector
he serves as the input of the capacity estimation and input
reconstruction modules for different purposes. Specifically,
the capacity estimation module is concatenated after the
feature extraction module to output the capacity estimation
results. This can be written as.

¥ =fc(he) (6)

where f represents the function of the capacity estimation mod-
ule. It is implemented by stacking two dense layers. It should be
noted that the combination of feature extraction and capacity esti-
mation results in typical supervised CNNs, whose performance has
been widely demonstrated by existing studies [15,16,32].

(3) Input reconstruction module: The input reconstruction
module distinguishes the JL-CNN from existing supervised
CNNs by taking advantage of unlabeled samples for training.
This module also accepts the feature vector hg as input, aim-
ing to reversely reconstruct the input impedance sequences
using two dense layers. The reconstructed real and imagi-
nary parts of an impedance spectrum are computed as.

Z' 7| ="fr(he) (7)
z ]

where f; represents the function of the input reconstruction mod-

ule. Z' and Z” represent the reconstruction results of the real and
imaginary impedance sequences, respectively.

The input reconstruction module can lead to two benefits. First,
as the reconstruction is conducted in an unsupervised manner,
both the samples from the labelled and unlabeled datasets are
involved. Hence, it can force the feature extraction module to learn
meaningful representations from more impedance spectra. Second,
the reconstruction also helps alleviate overfitting, as it drives the
feature extraction module to preserve meaningful information
regarding impedance spectra when learning the capacity estima-
tion task. To preclude the possibility that the feature extractor
directly copies the input impedance spectra, we set the dimension
of the feature vector hg smaller than the length of the input impe-
dance sequence, i.e., Ng <N.



R. Xiong, J. Tian, W. Shen et al.

The detailed structure and hyperparameters of the JL-CNN
developed in this study are listed in Table 1. Here, Conv (a, b, c)
represents a 1D convolutional layer that has a kernel size of q,
the number of filters of b and a stride of c. ReLU represents the
ReLU activation. Max-pooling (a) represents a max-pooling layer
with a window size of a. Dense (a) represents a dense layer with
a neurons. Working principles of these kinds of layers can be found
in Appendix.

2.3. Model training

The developed JL-CNN is parameterised through data-driven
training. First, the real and imaginary parts of impedance spectra
are standardised to accelerate training, which is expressed as.

{Z/ (WETAAST
Z// (n) 1 (Z// 7 ,Ll”)

e
where Z™ and Z"™ represent the standardised real and imaginary
parts, respectively. 4 and ¢ are the mean and standard deviation
computed from the impedance data in the training dataset, respec-
tively. Afterwards, two optimisation objectives are designed:

(8)

(1) To fulfil the capacity estimation task, the feature extraction
and capacity estimation modules should be trained to out-
put battery capacity with a given impedance spectrum.
Therefore, the developed JL-CNN should minimise the capac-
ity estimation loss on the labelled dataset, which is defined
as.

-t

where m is a batch size of labelled samples.

=

Jae = 9)

1
m <
i

[
—_

(2) The feature extraction and input reconstruction modules are
trained by minimising the EIS reconstruction loss on both
labelled and unlabeled datasets, which are defined as.

=t 8 (2o 2] [z00 z00])’

+1 i ([Z’MU) 2//(n_U)] _ [ /(n.U) () ])2 (10)
=i z z

where n is the batch size of unlabeled samples. Let 0, Ocg and O
represent the parameter sets of the feature extraction, capacity esti-
mation and input reconstruction modules, the overall training loss
can be expressed as the weighted sum of J; and Jjz.

J =Jee(Ore, Oce) + 2 ir (Ore, O1r) (11)
Table 1
Structure and hyperparameters of the JL-CNN model.
Module Layer Input Output
Feature extraction [Conv (3,64,1) Impedance  Feature vector
ReLU spectrum he
Max-pooling (2)]x3 T o] T
Dense (128) {Z 2 ]
ReLU
Dense (16)
Capacity estimation  Dense (16) Feature Capacity
ReLU vector hg estimate y
Dense (1)
Input reconstruction Dense (16) Feature Reconstructed
ReLU vector hg impedance
Dense (102) spectrum
[2.2]
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where / is a weight balancing the contributions of capacity estima-
tion and input reconstruction tasks to the overall loss. The model
parameterisation problem can be written as.

[0fg, Oce, Oir] = arg minJ (12)

After defining the training loss, we propose the overall model
training procedure in Table 2. In general, a grid search algorithm
is adopted to determine the weight 1. Then, the other parameters
are determined through gradient descent. It is assumed that A

belongs to D, = [0,10’5,10’4,-~~,1O3]. Given a specific 4, the

training loss is computed based on Eq. (11), and the Adam algo-
rithm [33] is adopted to minimise the training loss. In addition, a
few labelled training samples in the training dataset are left out
as the validation set, which does not participate in the loss compu-
tation but is used to monitor capacity estimation performance at
each epoch. Different A values are adopted for training, and the
model with the lowest validation loss is selected as the eventual
one. In the Adam algorithm, we set the maximum number of train-
ing epochs and the batch size to be 1000 and 32, respectively. All
CNNs are developed and evaluated based on the PyTorch package
(version 1.8.1) in Python 3.8.10. A desktop equipped with an NVI-
DIA GeForce GTX 1660 SUPER graphical processing unit is used as
the training hardware.

3. Battery degradation tests
3.1. Collection of battery impedance spectra over battery life

We develop two battery capacity degradation datasets incorpo-
rating cyclic degradation and regular EIS measurements to validate
the proposed method. Sixteen 2.4 Ah cylindrical batteries are
adopted and their upper and lower voltage limits are 4.2 and
3V, respectively. The anode and cathode materials are graphite
and a mix of lithium cobalt oxide and lithium nickel manganese
cobalt oxide, respectively. These batteries are cycled using Gamry
Interface 5000P electrochemical workstations at 25 °C in a thermal
chamber. The two datasets are named 1-C and 2-C datasets accord-
ing to the applied current rates and their testing procedures are
briefly introduced below.

1-C dataset: Eight batteries are cycled at 1C (2.4 A for the stud-
ied batteries) in a constant-current (CC) mode. As shown in Fig. 2
(a), a complete cycle includes 6 steps, i.e., (I) CC charge to the upper
voltage limit, (II) 15-minute rest, (III) EIS measurement at the fully-
charged state, (IV) CC discharge to the lower voltage limit, (V) 15-
min rest and (VI) EIS measurement at the fully-discharged state.
The EIS tests in steps (III) and (VI) are performed in a galvanostatic
mode over the frequency range of 0.1 Hz to 10 kHz with 10 points
per decade. Each impedance spectrum comprises impedance
sequences at 51 frequency points, covering most electrochemical
processes of interest to battery degradation studies [32]. A current
amplitude of 1/24C is chosen to ensure a stable battery state. This
group of batteries have been cycled 200 times. Some cycles are
removed owing to the incomplete charging process caused by
the power outage and eventually 3136 impedance spectra are
obtained.

2-C dataset: The other eight batteries are tested using the same
testing procedures but a 2C current rate is adopted to explore bat-
tery capacity degradation under fast charging conditions. In this
case, a total of 1584 impedance spectra are collected over 100
degradation cycles.

In total, the two datasets incorporate 4720 impedance spectra
at different degradation levels, and their capacity degradation tra-
jectories are visualised in Fig. 2(b), indicating that the batteries
experience a severe capacity drop. The capacities of batteries in
1-C and 2-C datasets degrade to 0.86 and 0.25 Ah, respectively,
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Table 2
Training procedures of the joint-loss convolutional neural network.

Input: Labelled training dataset DY and unlabelled training dataset D)
Standardise all impedance spectra according to Eq. (8).
For Zin D;:

Randomly divide D® into training set D®Y and validation set D®Y).

Initialise the parameter sets [Opg, Ocg, O1r]-

Initialise the validation loss J,=+o0.

while epoch < threshold:

Divide DY and DM into N, batches, respectively.

while j < My:

Estimate capacity J using the feature extraction and capacity estimation modules (Egs.
(4) and (6)).

Reconstruct the input impedance sequence using feature extraction and input
reconstruction modules (Egs. (4) and (7)).

Compute the training loss of the jth batch (Eq. (9) to Eq. (11)).

Update [0pg, Ocg, O1r] using the Adam algorithm.

Jj=t+l
Compute J, of this epoch on DV (Eq. (9)).

if J, decreases:
Update J,
Save [Opg, Ocg, Oir] and its corresponding J.

Save [Opg, Ocp, O1r] and its corresponding J..

epoch=epoch+1
Output: [Ogg, Ocg, O1r] with the lowest J,.

such that battery degradation levels can cover most applications.
Experimental results show that the capacity fade is accompanied
by an increase in impedance spectra, as demonstrated in Fig. 2(c
and d). Interestingly, further comparison between the impedance
spectra in Fig. 2(c and d) reveals different impedance increase pat-
terns. Although impedance spectra in both datasets move to the
right owing to the increase in ohmic resistance, the 2-C ones show
an evident increase in the middle-frequency arcs, which can be
ascribed to sluggish charge transfer reactions and SEI growth
[34]. Such inconsistent degradation patterns imply that manually
extracted features to represent degradation may vary for batteries
that undergo different degradation tests, thereby further posing
challenges to the following capacity estimation. In contrast, the
proposed method adopts an end-to-end deep learning framework
that allows automatic feature extraction and capacity estimation,
and can better adapt to different degradation conditions.

3.2. Division of training and testing samples

Given a battery degradation dataset (1-C or 2-C datasets), we
randomly select 20% of impedance spectra and their corresponding
capacities to form a test dataset to examine the proposed method.
The remaining impedance spectra and capacities are used as the
training samples, and they are further divided into the labelled

408

training dataset, unlabelled training dataset and validation set.
First, 10% of all training samples are randomly picked up as the val-
idation set, and then a label rate (LR) is defined to simulate the
conditions where different numbers of labelled samples are
available.

n®
LR = ) x 100%

(13)
where n® denotes the number of all training samples, and n®
denotes the number of samples in the labelled training dataset.
Therefore, an LR of 90% means all training samples are labelled. In
this case, the JL-CNN degrades to a supervised CNN. On the other
hand, a smaller LR indicates that both labelled and unlabelled data-
sets exist. This poses challenges to supervised CNNs as fewer train-
ing samples are available, and we expect the JL-CNN can exploit
both types of samples to improve battery capacity estimation
performance.

4. Results and discussion
4.1. Capacity estimation results

Without loss of generality, this section first adopts fully-
charged impedance spectra collected in the 1-C dataset for
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Fig. 2. (a) An illustration of one cycle and the six testing steps. (b) Capacity degradation trajectories of the 1-C and 2-C datasets. Examples showing the evolution of fully-
charged impedance spectra in (c) 1-C and (d) 2-C datasets during battery degradation. In (c) and (d), the colour changes from black to red as the battery degrades.

validation. Note that in this study, we intentionally use unpro-
cessed impedance spectra as the input for capacity estimation
and let the deep learning models automatically extract features
and conduct regression. As an alternative, prior knowledge may
be utilised to pre-process the impedance spectra. For example,
impedance data with positive imaginary parts can be removed
as they do not provide information regarding battery characteris-
tics [35]. We examine two capacity estimation cases with ample
and scarce training samples, respectively, to intuitively
demonstrate the impact of unlabelled samples on capacity
estimation:

Case 1.

Samples in the training dataset are all labelled (LR = 90%), which
is an ideal case to develop capacity estimation models. A CNN is
trained in a supervised manner. In this case, the CNN only performs
capacity estimation using feature extraction and capacity estima-
tion modules.

Case 2.

A low LR of 10% is chosen to simulate the condition where only
scarce labelled samples are available. In this case, a supervised
CNN is developed based on labelled training samples while the
proposed JL-CNN is developed to take advantage of both labelled
and unlabelled samples.

In each case, the CNN adopts the same hyperparameter settings
except that the JL-CNN has an additional input reconstruction
module. A root mean square error (RMSE) is computed to quantify
the overall estimation errors. It is defined as.

(14)

where n™ is the total number of samples in the test dataset.

Fig. 3(a) shows the capacity estimation results in case 1. In this
figure, the estimation result is compared with its ground truth,
thereby the capacity estimation results are not continuous. It can
be observed that the CNN can efficiently estimate battery capacity
over the range of 0.86 to 1.98 Ah with the RMSE of 7.03 mA h. Such
high fidelity confirms the end-to-end capacity estimation ability of
CNN-based methods. However, deteriorated performance is
observed when it comes to case 2. Owing to the lack of labelled
training samples, the CNN experiences increased capacity estima-
tion error with the RMSE surging to 36.45 mA h, as demonstrated
in Fig. 3(b and c). By making use of unlabelled training samples, the
JL-CNN witnesses an improved performance, as substantiated by
the narrower error distribution with fewer outliers. The RMSE
reduces by 26.06% to 26.95 mA h.

As the JL-CNN and supervised CNN shares identical structures of
the feature extraction and capacity estimation modules, the auxil-
iary input reconstruction module plays a critical role. To in-depth
check the contributions of the input reconstruction module, an
EIS reconstruction RMSE is defined to evaluate the EIS reconstruc-
tion performance, and it is computed as.

RMSE; = %EN; {(z}i _ A/f,,)z + (Z}’ —Zﬁ)z} (15)
i=

The results for case 2 are plotted in Fig. 4(a), where both the
input impedance spectra and reconstruction results are standard-
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Fig. 3. Capacity estimation results using fully-charged impedance spectra of the 1-C dataset. (a) Estimation results in case 1. (b) Estimation results in case 2. (c) Absolute

capacity estimation errors of cases 1 and 2.

ised according to Eq. (8) and the RMSEs are less than 0.047. In addi-
tion, two examples with the highest and lowest capacities are plot-
ted in Fig. 4(b), where high-fidelity reconstructions can be
intuitively observed. As mentioned early, the extracted features
are 16 x 1 vectors, which have a much smaller size than the input
impedance spectra (51 x 2 matrices). This design forces the feature
extraction module to extract meaningful features that can con-
cisely represent the input impedance spectra while excluding
unnecessary information. The reconstruction results on the test
dataset imply that the input reconstruction module takes effect,
namely the input reconstruction module can not only guide the
feature extraction module to learn capacity-relevant features from
impedance spectra but also prevent it from overfitting to few
labelled training samples.

4.2. Capacity estimation with different numbers of labelled samples

We further examine the performance of the proposed method
in the presence of different labelled and unlabelled training sam-
ples. This is implemented by varying the LR from 10% to 90%. The
distribution of capacity estimation errors of supervised CNN and
JL-CNN are shown in Fig. 5 as a function of LR. In general, both
methods show high accuracy when a large number of labelled
training samples are available, e.g., the capacity estimation errors
can maintain lower than 60 mA h for the label rate larger than
60%. An increasing RMSE trend is observed as LR decreases. On
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the other hand, the comparison between the results of CNN and
JL-CNN reveals that the JL-CNN has generally narrower error distri-
butions and fewer outliers.

Table 3 compares the performance of CNN, JL-CNN and a GPR-
based method by computing their estimation RMSEs. The GPR-
based capacity estimation method is developed in a supervised
manner as a general benchmark. It was first proposed in [27] for
capacity estimation by receiving raw impedance spectrum as input
and was demonstrated to outperform the methods based on time-
domain signals [36]. The comparison among the three methods
reveals that the GPR has the highest error. As a traditional machine
learning algorithm, it does not have intrinsic feature extraction
ability as discussed in [28]. In contrast, CNNs stack advanced con-
volutional layers, max-pooling layers and dense layers to form
deep architecture for feature extraction and regression, thereby
showing superior performance. The RMSEs of the JL-CNN are
within the range of [5.71, 26.95] mA h while those of the CNN
are within [7.03,36.45] mA h. To quantify the improvement of JL-
CNN over the supervised CNN, a relative error reduction (RER)
[37] is defined as.

RMSE),_cn

RMSEenn (16)

RER = (1 - ) x 100%

The corresponding results are listed in Table 3. It can be seen
that the JL-CNN reduces RMSE by over 14.00% in the case of differ-

27 Capacity=1.97 Ah
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B -1 - Capacity=0.86 Ah
£
£ ~2-
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Fig. 4. (a) RMSEs of EIS reconstruction (b) EIS reconstruction examples with maximum and minimum measured capacities.
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Fig. 5. Capacity estimation performance of the CNN and JL-CNN with different label ratios.

Table 3

Estimation RMSEs for the maximum and remaining capacities with different loss weights.
Label rate (%) 10 20 30 40 50 60 70 80 90
RMSE of GPR (mA h) 123.77 49.17 33.97 24.88 24.41 23.77 23.42 9.50 8.91
RMSE of CNN (mA h) 36.45 21.26 13.92 10.56 10.10 11.02 9.85 6.64 7.03
RMSE of JL-CNN (mA h) 26.95 16.64 9.98 8.24 8.09 8.41 5.22 5.71 -
RER (%) 26.05 21.70 28.26 21.93 19.91 23.73 46.98 14.00 -

ent label rates after adopting unlabelled training samples for
model development.

4.3. Capacity estimation under different conditions

As a data-driven approach, the proposed method can be gener-
alised to other battery degradation conditions. Particularly, high
current rates can give rise to Li plating on the anode, resulting in
different battery degradation patterns [38]|. The 2-C dataset is
adopted to explore the influence of current rates on capacity esti-
mation. Besides, as EIS is reported to be sensitive to SOC variation,
we investigate capacity estimation with fully-charged and fully-
discharged impedance spectra, respectively.

The estimation results of case 2 are reported in Fig. 6 to illus-
trate the performance of JL-CNN with few training samples. In
general, the results with different SOCs and current rates are con-
sistent with the results reported above and the estimation errors
can be reduced when the unlabelled samples are effectively
employed for training. We further report the estimation RMSEs
as a function of LR in Tables 4-6. Accurate estimation results
can be obtained when sufficient labelled samples are given, and
the RMSE is less than 18.82 mA h at the LR of 90% in various cases.
The RMSEs increase as LR decreases because fewer labelled sam-
ples are available for training. In all cases, the JL-CNN can signifi-
cantly improve the performance of the supervised CNN and the
RER is in the range of [4.11%, 50.66%]. The results imply that the
CNN is an effective measure to realise end-to-end capacity estima-
tion using only raw impedance spectra as input and it can adapt to
different battery operating conditions without manual feature
extraction. Furthermore, the proposed JL-CNN can effectively uti-
lise unlabelled impedance spectra to improve the estimation per-
formance, which can relax the requirement of a large labelled
training dataset.

4.4. Outlook and discussion

The validation results in this section demonstrate that the pro-
posed CNN-based methods enable accurate battery capacity esti-
mation under various conditions. By incorporating a
reconstruction module, the proposed JL-CNN can further improve
capacity estimation performance by exploiting unlabelled impe-
dance spectra for training. As a result, the cost and efforts to collect
battery capacity data can be significantly alleviated. For instance,
in a lab-based scenario, researchers can adopt batteries that
undergo various tests for a short-term EIS measurement. On the
other hand, in industrial applications, EIS measurement has been
reported to be feasible with various hardware [20]. Consequently,
a considerable number of EIS samples can be gathered by resorting
to cloud battery management systems [39].

The proposed method can be further improved in the future.
First, advanced impedance analysis methods can be incorporated
with the proposed deep learning based method. In particular, Lu
et al. [21] systematically analysed the impedance spectra from
the perspective of time scales through the distribution of relax-
ation times (DRT). Their results reveal that the DRT is promising
to be used to augment the input of DNNs to reduce the effort to
find meaningful features and help inform the DNNs with prior
knowledge regarding battery degradation. In addition, thanks to
the flexibility of deep learning models, our method can be gener-
alised to other battery management tasks where unlabelled train-
ing data are easily available, such as life prediction [36] and SOC
estimation [40]. Furthermore, as CNNs highlight the capability of
feature extraction, it is an interesting research opportunity to
investigate the correlation between extracted features and kinetic
information hidden in impedance spectra [41], especially in the
presence of different degradation patterns. Besides, the proposed
method can be extended to real-world applications where low-
quality samples are employed. This motivates further research on
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Fig. 6. Capacity estimation results using different inputs. (a, b) Capacity estimation results using fully-discharged impedance spectra of the 1-C dataset. (c, d) Capacity
estimation results using fully-charged impedance spectra of the 2-C dataset. (e, f) Capacity estimation results using fully-discharged impedance spectra of the 2-C dataset.

Table 4

Capacity estimation errors using fully-discharged EIS of the 1-C dataset.
Label rate (%) 10 20 30 40 50 60 70 80 90
RMSE of CNN (mA h) 34.53 17.36 10.65 9.81 8.56 7.17 6.61 6.65 6.72
RMSE of JL-CNN (mA h) 30.95 15.81 10.21 6.80 6.20 6.17 5.91 5.03 -
RER (%) 10.35 8.89 4.11 30.73 27.60 14.01 10.60 24.32 -

Table 5

Capacity estimation errors using fully-charged EIS of the 2-C dataset.
Label rate (%) 10 20 30 40 50 60 70 80 90
RMSE of CNN (mA h) 33.57 17.35 15.74 14.16 13.32 14.00 13.78 12.07 11.91
RMSE of JL-CNN (mA h) 26.69 15.09 14.28 13.25 8.39 8.03 9.58 9.57 -
RER (%) 20.51 13.05 9.23 6.37 37.00 42.62 30.43 20.70 -

Table 6

Capacity estimation errors using fully-discharged EIS of the 2-C dataset.
Label rate (%) 10 20 30 40 50 60 70 80 90
RMSE of CNN (mA h) 69.43 48.57 39.33 24.97 17.77 20.53 15.57 16.85 18.82
RMSE of JL-CNN (mA h) 55.74 34.06 19.41 18.39 16.23 16.03 14.64 14.78 -
RER (%) 19.72 29.86 50.66 26.34 8.68 21.93 5.95 12.30 -

robust training strategies to accommodate data of different quali-
ties, such as the Bayesian approach [42] to generate estimation
confidence intervals.

5. Conclusions

Battery capacity estimation is an indispensable task for battery
management systems. Although plenty of machine learning-based
methods have been adopted to address this issue, they generally
require a large number of samples that consist of both features
and corresponding capacities for training.
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In this study, we propose a convolutional neural network (CNN)
based method for capacity estimation. Raw impedance spectra can
be directly fed into the CNN for feature extraction and then capac-
ity estimation, resulting in a flexible end-to-end estimation frame-
work. Besides, an input reconstruction module is designed to
augment the supervised CNN to a joint-loss CNN (JL-CNN) that
can effectively employ impedance spectra without corresponding
capacities to facilitate feature extraction.

Two large battery degradation datasets encompassing over
4700 impedance spectra collected from 16 batteries are developed
for method validation. We show that the supervised CNNs can
accurately estimate battery capacities using raw impedance spec-
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tra and the estimation RMSEs are within 7.03 mA h. However,
deteriorated performance is observed when fewer labelled training
samples are available and the errors can surge up to 36.45 mA h.
Thanks to the proposed input reconstruction module, the JL-CNN
can significantly reduce the RMSEs. Validations using impedance
spectra collected from batteries working under different conditions
further substantiate the effectiveness of the proposed method.

Our study offers an efficient way to utilise easily available unla-
belled data to improve capacity estimation performance. It is also
promising to be generalised to other battery management tasks
where data-driven methods play a critical role.
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Appendix A. Layers in convolutional neural networks

1D convolutional layer: Given an input sequence
X1.L = [X1,X2,---,X;], the 1D convolutional layer utilises n filters to
convolve with the input sequence respectively, which can be
expressed as.

x(k) — w(k) * X1, + ﬁ(k) (17)

where o® and g% denote the weight matrix and bias of the kth
filter, respectively. The symbol * represents convolution. The out-
put of the 1D convolutional layer is obtained by stacking the
results from individual kernels.

YO = [xVTx@AT_ xm1]T (18)
Max-pooling layer: The max-pooling layer is designed to con-

dense its input by down-sampling through outputting the maxi-

mum in a given window. This process can be expressed as.

)

Yi

max X;
(i-1)I<j<il

= (19)
where x denotes the input and [ denotes the pooling size.
Dense layer: The dense layer is also known as the fully-

connected layer. In this layer, a set of neurons are used to yield

the dot between weights and layer input. Given an input sequence

X1.L = [X1,X2,---,X.], the output is calculated as.

D
V=D i+ by (20)
J
where y!” represents the output of the ith unit in the dense
layer. w;, and f;, are the weight and bias between the kth neuron
and jth element in the input sequence.
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ReLU activation: The ReLU activation function is designed to
enhance model nonlinearity by outputting its positive argument.
Given its input x, its output is.

y®W — max (0, x) (21)
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