广东大鹏 LNG 接收站运行节能措施

柳 山 魏光华 中海石油广东大鹏液化天然气有限公司

柳山等.广东大鹏 LNG 接收站运行节能措施.天然气工业,2010,30(12):77-80.

摘 要 作为中国第一家 LNG 接收站,中海石油广东大鹏 LNG 接收站正式商业运营 3 a 9 来,在强调安全稳定生产的同时,还不断摸索 LNG 接收站安全经济运行的措施和办法。结合广东大鹏 LNG 接收站工艺和设备的特点,通过优化运行方式和生产线起停时间、增加电容补偿装置提高功率因数等措施,使气化吨气耗电指标降低了 $3.57~kW \cdot h/t$,2009 年节约电能 $1.600 \times 10^4~kW \cdot h$,运行成本控制达到国际先进水平。在总结广东大鹏 LNG 接收站节能措施的基础上,进一步展望了继续适量增大生产线的气化能力、恢复码头冷循环设计运行方式等节能前景,对其他 LNG 接收站的安全经济运行具有参考价值。

关键词 LNG 接收站 节能措施 生产运行 运行流量 保冷循环量 生产线起停时间 DOI:10.3787/j.issn.1000-0976.2010.12.019

液化天然气(LNG)接收站将 LNG 船运来的 LNG 卸载、储存后,通过增压泵将 LNG 输送到气化装置,再经过管道将天然气输送到城市燃气和电厂等终端用户^[1]。除了设备的折旧、维修费用,接收站的运行成本主要是 LNG 再气化和蒸发气(BOG)处理设备的电能消耗费用。中海石油广东大鹏 LNG 接收站的耗电设施主要包括低压泵、高压泵、开架式气化(ORV)的海水泵和 BOG 压缩机^[2]。通常 LNG 接收站的耗能以气化单位吨气所消耗的电量为指标,单位是 kW·h/t。自 2009 年以来,在保证安全稳定生产的前提下,广东大鹏 LNG 接收站运行人员不断摸索有效节能方法,通过优化设备运行方式和设备起停时间等措施,使气化单位吨气耗电量指标下降了 17.3%,运行成本控制达到国际先进水平^[3]。

1 LNG 接收站工艺和主要耗能设备

1.1 LNG接收站工艺流程

图 1 为 LNG 接收站工艺流程简图,主要包括卸料单元、储存单元、增压气化单元、蒸发气处理单元和天然气输出单元。耗能设备包括增压气化和 BOG 处理单元^[4]。

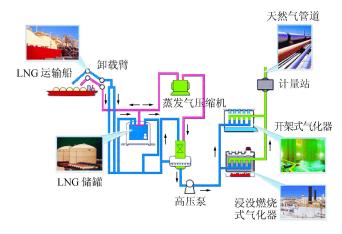


图 1 LNG接收站工艺流程简图

1.2 LNG 接收站耗能设备

大鵬 LNG 接收站一期增压气化和 BOG 处理设备包括低压泵、高压泵、海水泵和 BOG 压缩机(表1)。

2 大鹏 LNG接收站节能措施及效果分析

2.1 节能措施

- 2.1.1 优化运行方式
- 2.1.1.1 适量增大单台气化生产线的运行流量 大鹏LNG接收站气化生产线的低压泵、高压泵

作者简介:柳山,1973 年生,工程师,工程硕士;主要从事电厂运行和液化天然气储运生产运营工作。地址:(518048)广东省深 圳市深南大道 4001 号时代金融中心 10 楼。电话:13672779478 。E-mail:liu.shar@ gdlng.com

表 1 大鹏 LNG 接收站主要耗能设备统计表

设备名称	数量/台	额定功率/kW
低压泵	9	280
高压泵	6	1 800
海水泵	6	815
BOG 压缩机	2	550

和 ORV 的设计额定流量都是 419 m³/h,增大单套设备的气化能力必须考虑生产线各设备流量增加量的匹配。

根据 NIKKISO 高低压泵出厂性能测试数据结果可知,低压泵在额定流量至 125% 额定流量区间运行时,泵效率维持在 74.6% 以上,电机功率均未超过额定值 280 kW,500 m³/h 流量点的效率最高;高压泵在额定流量至最大流量区间运行时,泵效率维持在75.1%以上,但输入功率在额定流量的 115% 以上时,超过额定功率 1800 kW。但实际运行中,流量在 200 t/h,未发现功率和电流超额定值现象。

实际运行中,ORV 液化天然气流量为 190 t/h,海水流量超过 6 000 t/h,出口天然气温度基本接近海水出口温度,远远超过设计的最低温度 2 $^{\circ}$,海水进出口温差小于 5 $^{\circ}$,满足环保要求。

考虑系统保冷循环量,2009年 LNG 接收站气化设备低压泵、高压泵和 ORV 的流量基本分别运行在 440 m^3/h 、419 m^3/h 、408 m^3/h (密度按 0.465 t/m^3 计),既保证了设备在最佳泵效率区间运行,又能满足设备性能指标,防止了设备因非正常过载而加速老化和损坏。

2.1.1.2 适量降低系统保冷循环量

LNG 接收站设计保冷循环主要包括码头无卸料时管线循环(30 t/h)、未运行低压泵和高压泵时的保冷循环(每台 3 t/h)、槽车站管线循环(15 t/h)和零输出管线循环(15 t/h)。其中未运行高压泵和零输出管线循环基本通过相同管线回罐。

从 C304、C316 材料特性分析,当管线温度维持在 $-135\sim-140$ $^{\circ}$ C时,遇到紧急情况管线可以立即投入 运行,对材料刚度和强度无影响 $^{[5]}$ 。实际运行中,码头管线和零输出管线循环量分别降到 20.5 t/h,管线上下壁温差不大,管线温度在 $^{\circ}$ C以下。

2.1.1.3 利用输出管线管容调配生产

大鹏 LNG 接收站一期共 3 条输出管线,管容为 237 219 m^3 ,将运行压力控制范围从 2008 年的 84~88 $\mathrm{kg/cm}^2$ 调整到 2009 年的 82~89 $\mathrm{kg/cm}^2$,管容存量 多增加 438 t 天然气,可以用于白天高负荷时的调峰。随着主输气管线的扩建,管容能力进一步加强。但由

于3条输气管线的管容因工艺原因不能相互利用,使得管容的利用能力减弱。

2.1.1.4 合理调整海水使用量

大鹏 LNG 接收站属于调峰站,有时候夜间只有1条生产线运行,按照以前的惯例,需要运行2台海水泵以满足ORV的备用和运行需要。通过合理调整,降低了ORV海水消耗,只用1台海水泵就可以满足ORV的一用一备。

2.1.2 优化生产线起停时间

大鹏 LNG 接收站的终端用户分为城市燃气和调峰电厂,用气高峰在白天,夜间 24:00~6:00 时用气量很低。而晚上非用电高峰区间电价低,若能充分利用低电价,并调整好各阶段的管网压力,对节能工作至关重要。优化起停时间主要要考虑如下因素:①夜间将管网压力升高至 89 kg/cm² 左右,利用了低价谷电对管网升压,提高了白天管容的调峰能力;②DCS 操作员根据管网压力曲线上升和下降的趋势和速率,结合小时预提气量,将压力运行在规定范围内,使晚上停生产线的时间点既能保证压力不低于 82 kg/cm²,又确保剩余的生产线在最高效率运行将管网升压。

2.1.3 增加电容补偿装置,提高功率因数

大鹏 LNG 接收站自投产以来,功率因数偏低,通过对接收站供电系统全面分析,对主变压器进行有载调压,增加电容补偿装置,改善供电品质,使全厂的功率因数由 0.85 升高到 0.95。

2.2 节能效果分析

根据 2008 年的运行经验,多数情况下客户用气量比运行生产线的最大外输量超过不到 100 t/h,但往往为了这 100 t/h 的差值就需要多启动 1 条生产线,2009 年通过适量提高生产线的气化能力,优化起停时间等措施,按每天平均少启动 1 条生产线 6 h 估算,耗能至少节约 1.4 kW \cdot h/t。2008 年 LNG 接收站天然气销售量为 3 040 709 t,平均单位吨气耗电 20.59 kW \cdot h/t。通过采取系列节能措施,2009 年的平均吨气耗电下降到 17.02 kW \cdot h/t,与 2008 年相比,节约电能 1600×10^4 kW \cdot h。

图 2 为 2008 年和 2009 年 LNG 接收站月吨气耗电对比图,2009 年的月平均吨气耗电指标相应下降,但年度用气高峰阶段 $5\sim11$ 月份的下降幅度低于 $12\sim4$ 月份年度用气低谷阶段。

由于气化生产线启动后要求在额定负荷点以上的 区间运行,优化起停时间的把握需要经验的积累,同时 需要对小时用气预提量、压力趋势、压力变化速率和用 户日预提剩余量进行分析和判断,才能准确确定设备

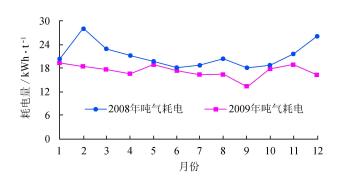


图 2 月吨气耗电对比曲线图

最佳起停时间。生产线设备高负荷运行,还需要密切观察设备运行状况,监视 ORV 进出口海水温差,以满足环保要求。

管线长期运行压力范围增大会造成金属管壁受力 的周期性波动加剧,产生疲劳应力,对管线寿命的影响 需要持续关注。

3 节能前景展望

3.1 LNG 接收站节能减排措施

1)继续适量增大生产线的气化能力。表 2 为日生

产数据统计表,由表 2 可知,单台气化装置的平均输出流量基本在 180 t/h 左右,如果 ORV 的海水进出口温差小于 5 \mathbb{C} ,增加高压泵的流量可继续增加气化生产线的气化能力。表 3 为高压泵运行性能参数统计表。由表 3 可知,在流量为 $500 \text{ m}^3 \text{ /h}$ 时,高压泵的功率在额定功率 1800 kW 以内。如果将气化设备低压泵、高压泵和 ORV 的流量分别运行在 500、450、 $430 \text{ m}^3 \text{ /h}$ 左右,设备仍运行在最佳效率区间且运行参数正常。

2)恢复码头冷循环设计运行方式。当前码头冷循环量全部回到储罐,如果码头循环 10 t/h 回罐以保持3个储罐卸料母管冷态,其余 10 t/h 直接输送到高压泵人口母管,一方面可以利用低压泵做功的 10 t/h 流量,同时可以将码头管线的大部分热量带入外输系统,从而降低蒸发气压缩机的做功,节约电能。

3)不断总结经验,继续优化生产线的起停时间。 2009年基本做到了启动2条、3条、4条、5条生产线能分别满足8000t、12000t、16000t和20000t的日用气要求,2010年以来,尽早启用生产线,可以用3条生产线满足14000t的日用气量,将继续摸索4条、

秋 2 日工/ 旧处水件数加光件状									
日期	日实际提 气量/t	7 点压力/ kPa	当日最低 压力时间	当日最低压力/ kPa	满负荷运行 时间 /h	平均流量 / t• h ⁻¹			
2008-31	15 527	8 841 .2	23 : 51	8 233 .0	85.0	182			
2009-04	14 646	8 872 .6	23:59	8 433 .6	79.0	185			
2009-07	13 017	8 727 .2	23:28	8 319 .6	73.5	177			
2009-08	12 582	8 865 .5	23:00	8 222 .6	69.5	181			
2009-09	12 314	8 868 .3	22 : 59	8 179 .9	67.5	182			
2009-14	14 380	8 835 .5	11:25	8 215 .0	79.0	182			
2009-15	13 838	8 881 .1	14:18	8 182 .7	73.0	189			
2009-16	13 741	8 883 .9	13 : 36	8 189 .9	74.0	185			

表 2 日生产情况采样数据统计表

表 3 高压泵运行性能参数统计表1)

时间	输出扬程/ m	人口扬程/ m	流量 / m³•h ⁻¹	马力/kW	输入功率/ kW	效率
13 : 55	2 499 .9	190.2	174.7	1 039 .6	1.24	48.1%
13 : 56	2 465 .7	180.1	223.7	1 074 .9	1.28	59.7%
13 : 58	2 381 .8	182.8	294.7	1 199 .0	1.42	67.9%
14:00	2 291 .9	181.9	345.2	1 306 .4	1.54	70.0%
14:03	2 192.1	184.6	407.8	1 396 .7	1.64	73.6%
14:04	2 096 .0	183.2	453.6	1 469 .3	1.72	74.1%
14:06	2 010 .0	181.6	498.6	1 533 .3	1.79	74.6%

注:1)时间为2010-02-16,泵代码为P1105A。

5条生产线能分别满足 18 000 t 和 22 000 t 日用气的设备起停方式。

3.2 其他节能措施

- 1)ORV 进、出口温度差是否可以扩大范围。韩国和日本的 ORV 进出口温度差是 $7 \, ^{\circ} \, ^{\circ}$,假若我们的环保指标从现在的 $5 \, ^{\circ} \, ^{\circ} \, ^{\circ} \, ^{\circ} \, ^{\circ} \, ^{\circ}$,LNG 接收站的节能将具有很大的空间。
- 2)提高管网压力运行区间。如果日压力运行范围 扩大到 70~89 kg/cm²,不但管容对负荷高峰的调节 能力更强,而且可以更多地利用低价电能。
- 3)由于香港用户管线的管容存量较小,可以考虑加装输出干线止回阀旁路阀,就可以让香港用户充分利用输出干线的管容。
- 4)海水泵电机采用变频控制,根据 ORV 进出口 海水温差调整海水量,降低海水泵电能消耗。
- 5)改造高压泵和 ORV 等 PSV 进口管线,加装阀门,PSV 年审时可以不放空设备内的 LNG 或 NG,减少火炬排放量。
 - 6)加强设备管理,保证 ORV 的换热性能。

4 结论

1)提高气化设备输出能力,使设备运行在最佳效

- 率区间,改变输出和用气流量,平衡控制为压力控制,在用气高、低峰谷时对节能的作用非常明显。
- 2)通过优化生产线的启停时间,可以最大限度利用用电谷底低电价,在相同用电量时达到降低运行成本的目标。
- 3)优化工艺流程、调整运行参数、改造设备和加强 设备管理等手段都是 LNG 接收站的有效节能方法。 但任何方式不能以损害设备、损害环境为代价。

参考文献

- [1] 徐博.世界LNG发展现状与趋势[J].石油管理干部学院学报,2004,11(2):2-5.
- [2] 赵德廷.广东大鹏 LNG 接收站终端总体设计及主要工艺优化[J].中国海上油气,2007,19(3):208-213.
- [3] NOMACK M .Energy profile of Japan [R/OL]. (2009-12-01)[2010-03-16]http://www.eoearth.org/article/Energy_profile_of_Japan.
- [4] 顾安忠.液化天然气技术[M].北京:机械工业出版社, 2003.
- [5] 戴起勋.金属材料学[M].北京:化学工业出版社,2005.

(修改回稿日期 2010-10-04 编辑 何 明)