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Feature extraction is often performed to reduce spectral di mension of hyperspectral images before im-
age classification. The maximum noise fraction (MNF) transf orm is one of the most commonly used
spectral feature extraction methods. The spectral feature s in several bands of hyperspectral images
are submerged by the noise. The MNF transform is advantageou s over the principle component (PC)
transform because it takes the noise information in the spat ial domain into consideration. However, the
experiments described in this paper demonstrate that class ification accuracy is greatly influenced by
the MNF transform when the ground objects are mixed together . The underlying mechanism of it is re-
vealed and analyzed by mathematical theory. In order to impr ove the performance of classification after
feature extraction when ground objects are mixed in hypersp ectral images, a new MNF transform, with
an improved method of estimating hyperspectral image noise covariance matrix (NCM), is presented.
This improved MNF transform is applied to both the simulated data and real data. The results show that
compared with the classical MNF transform, this new method e nhanced the ability of feature extraction
and increased classification accuracy.

principal component transform, maximum noise fraction transform, hyperspectral image, noise estimation

1 Introduction

Natural objects such as vegetation, soil and rock

are often mixed with each other, and rarely in one

homogenous block. Before classifying these ob-

jects from hyperspectral images, spectral feature

extraction must be performed[1]. The spectral-

dimension transformation methods, such as the

principal component (PC) transform and maxi-

mum noise fraction (MNF) transform, can be used

to automatically extract the spectral features of a

ground object. Many studies have applied the PC

and MNF methods in hyperspectral image clas-

sification and spectral unmixing[2−5]. However,

the problem of applying these two transformation

methods is rarely considered, especially the impact

of the spatial distribution of pixels. Obviously, the

spatial distribution characteristics of ground ob-
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jects vary on different hyperspectral images at dif-

ferent regions. For example, the crop fields are

usually big and homogenous in North China and

can be easily classified on images. On the con-

trary, the crop fields in South China are com-

monly mixed with different crops. This kind of

mixing makes it difficult of carry out noise esti-

mation from hyperspectral images and classifica-

tion on them when there are no sensor noise statis-

tics available. Therefore, it is necessary to study

how to use spectral dimension transforms to ex-

tract features from hyperspectral images when dif-

ferent ground objects are mixed together.

In 1988, Green et al.[6] first presented the MNF

transform method. The MNF transform generates

new components ordered by image quality and pro-

vides better spectral features in major components

than the PC transform method, no matter how

the spectral noise is distributed. Using the the-

ory of MNF, James et al.[7] presented the noise-

adjusted principal component (NAPC) transform

aiming at the noise characteristics of GER hyper-

spectral scanner.

The most important work in MNF transform is

to accurately estimate the noise covariance matrix

(NCM). There are many research papers on the de-

velopments of the NCM estimation methods and

improvements of the MNF transform method[8,9].

Conradsen[10] used the SAR-model (simultaneous

auto-regressive) method to estimate the NCM of

images. Olsen[11] introduced five NCM estimation

methods in his paper. However, all these meth-

ods only make use of the spatial characteristics

of an image to estimate the NCM. Roger[12] pro-

posed a new PC transform, called residual-scaled

PC (RPC) transform, with a simple and auto-

matic noise adjustment. The NCM in RPC is sim-

ply estimated from the image data itself through

inversion of its covariance matrix. Roger indi-

cated that RPC has near the same ability as MNF

and can work rapidly like PC transform. How-

ever, unlike PC transform, the RPC method does

not use the spatial characteristics of the image,

and may lose useful information in the spatial do-

main when performing NCM estimation. Later,

Roger and Arnold[13] designed a spectral and spa-

tial de-correlation (SSDC) method to estimate the

noise of AVIRIS hyperspectral images. The sub-

sequent experiments showed that this method led

to noise estimation results close to those measured

by sensors. Recently Gao[14] presented a method

named homogeneous regions division and spectral

de-correlation (HRDSDC) and successfully applied

it to estimating noise for pushbroom hyperspectral

imager (PHI) data. This method uses the edge de-

tection algorithm to search the homogenous regions

and combines information in the spectral dimen-

sion to estimate the noise. The result showed that

it could work well for hyperspectral images cov-

ering areas with different land-cover types. How-

ever, for images with various ground objects, the

homogenous regions are often too small to find.

Furthermore, the main purpose of feature extrac-

tion is to classify ground objects, and the informa-

tion on homogenous regions is often unknown in

advance.

This paper will address the influence of the spa-

tial distribution of samples on the results of the

MNF transform. An improved MNF method is

presented, in which the noise covariance matrix is

estimated automatically in both the spatial and

spectral domains. The new method is rarely in-

fluenced by spatial distribution of samples. The

remainder of this paper is organized as follows:

Section 2 introduces the basic theory of the new

improved MNF transformation method. Section 3

analyzes the classification results using MNF and

the new MNF method through experiments. Sec-

tion 4 gives a conclusion of this study and discusses

the further work with this new method.

2 Theory of methods

In this section, through the PC transform formula,

we will first explain why different spatial distri-

bution of image pixels (or called samples) cannot

affect extraction results of spectral features when

using PC transform. Then the impact of spa-

tial distribution of pixels on MNF transform is

explained through analysis of MNF transform for-

mula. An improved MNF transform is presented

by integrating an existing noise estimation method
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on hyperspectral images with it. The reason why

there is little influence from spatial distribution of

samples on the new method is also addressed.

2.1 Influence of spatial arrangement of

samples on PC

PC transform is a technique of transforming the

original hyperspectral bands into a substantially

smaller set of uncorrelated bands that represents

most of information present in the original data set.

It uses a principle that maximizes the variance of

each band in hyperspectral images to extract prin-

cipal components. Since PC transform is applied

at the pixel level, the result of its feature extraction

is stable, no matter how the spatial arrangement

of pixels changes. MNF transform can extract the

spectral features of pixels better than PC trans-

form. However, the results of noise estimation are

seriously affected by the spatial continuity of pix-

els. For example, when the spectral types and the

numbers of ground objects to be classified are kept

unchanged, and only spatial arrangement of sam-

ples is changed, MNF transform may yield differ-

ent dimensionality reduction results. This will not

happen in PC transform. The reason of it is ana-

lyzed below.

Assuming that a hyperspectral image has N

bands, the spectral values of each pixel at different

wavelengths can be treated as an N -dimensional

vector x. Elements in vector x are spectral re-

flectance number at different wavelength bands.

Assume that m is the average of vector x, namely

m = E(x). Covariance matrix of the image can

be expressed as Σ = E((x − m)(x − m)T). Σ is a

symmetrical and positive definite matrix.

The PC transform uses transform matrix, A,

which consists of the orthonormalized eigenvectors

of the covariance matrix Σ between bands. As A

is symmetrical and orthogonal, i.e. A−1 = AT,

the similarity transform of Σ by A is diagonal, i.e.

A−1
ΣA = Λ. Λ is the covariance matrix of the PC-

transformed image. The transformed pixel vectors,

z, of the PC-transformed image are computed by

z = AT(x−m). It can be seen that AT and m will

keep intact when the spatial distribution of sam-

ple changes. In other words, spatial distribution of

samples cannot affect the results of feature extrac-

tion of PC transform. Therefore, it is not necessary

to consider the spatial information of any pixel in

PC transform.

2.2 Influence of spatial arrangement of

samples on MNF

In MNF or NAPC transform, eigenmatrix of Σ is

no longer used as the transform matrix in the pro-

cess of obtaining components ordered by signal-to-

noise ratio (SNR). The transform matrix used in

MNF transform is the eigenmatrix of ΣΣ
−1
n , where

Σn is the NCM between bands. The equation for

calculating generalized eigenvalue of ΣΣ
−1
n can be

expressed as det(Σ − λΣ
−1
n ) = 0, where λ is the

generalized eigenvalue. The information on spa-

tial arrangement of pixels will usually be taken

into account in estimating NCM of hyperspectral

images. Most of the noise-estimation methods

work in a spatial domain[15−17]. For example, in

minimum/maximum autocorrelation factor (MAF)

transform, Green et al. uses eq. (1) to obtain Σn:

Σn =
1

2
Σ∆ =

1

2
Cov(xi,k − xi+∆,k), (1)

where ∆ denotes spatial shift in vertical or hori-

zontal orientation, e.g. (0, 1), (−1, 0), (1, 1), etc.

xi,k refers to the ith element in the kth band. Spa-

tial correlation between pixels of image is used to

estimate noise. Because each pixel contains the

component of noise, the variance of noise gets dou-

bled when the operation of minus is used. 1/2 is

added before covariance matrix to eliminate this

influence.

In eq. (1), the subtractions between neighbor-

ing pixels must be performed in the estimating

procedure of Σn. There are many other similar

NCM estimation methods of using spatial infor-

mation about pixels, such as the simple differ-

encing method, the causal simultaneous autore-

gressive method, the differencing-with-the-local-

mean method, the differencing-with-local-median

method, and the quadratic surface method[8]. If

the spatial distribution of ground objects is very

complex as shown in Figure 6(a) in section 3.2 be-

low, noise estimation results will be seriously af-

fected. This will reduce the efficiency of spectral

feature extraction using MNF transform. This in-

fluence will be tested and illustrated in the exper-
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iments of section 3. In the following, an NCM es-

timation method which is less affected by spatial

distribution of pixels is designed, and an improved

MNF transform method is proposed.

2.3 MNF transform based on an improved

NCM estimation method

To get the NCM of image, the noise of each pixel

must be estimated. Then the standard deviation

of noise in each band and covariance of noise be-

tween bands must be calculated. Since homoge-

neous regions cannot always be found in hyperspec-

tral images, an NCM estimation method based on

full-image process must be designed to effectively

weaken the influence of the mixing of ground ob-

jects.

The method introduced in this paper uses the

high spectral correlation shown in spectral signa-

tures of hyperspectral data, which is also shown

in spatial signatures. To estimate the scalar quan-

tity value x̂i,j,k, the signal part of an original pixel

xi,j,k at position (i, j) in the kth band, the following

model which is modified from Roger and Arnold[12],

can be adopted. (The planar array (i, j) is used to

denote the spatial location here, which is differ-

ent from eq. (1).) To consider the influences of

between-band (spectral) and within-band (spatial)

correlations, we estimate signal of pixel xi,j,k via

the model:

x̂i,j,k =























axi,j,k+1 + cxp,k + d, k = 1,

axi,j,k−1 + bxi,j,k+1

+cxp,k + d, 1 < k < N,

axi,j,k−1 + cxp,k + d, k = 1,

(2)

where

xp,k =

{

xi−1,j,k, i > 1,

xi+1,j,k, i = 1,
1 6 i 6 W, 1 6 j 6 H,

i, j and k denote the vertical, horizontal coordi-

nates in spatial domain and band number. W , H

are the width and height of the image and N is

the total number of bands. The residual r = x− x̂

is the noise estimating value of each pixel. We

expect that Σr2 = 0 and the optimal estimation

x̂i,j,k of xi,j,k can be obtained with the linear re-

gression method shown in eq. (2). The coefficients

[a b c d] are computed to minimize the noise vari-

ance of each band, that is, to minimize S2 = Σr2.

There are M = W × H − 1 equations that partici-

pate in the linear regression for band k. In order to

get the values of these coefficients, the least square

method is used to form eq. (3):

W · [a b c d]′ = X ⇒ [a b c d]′

= W T(WW T)−1 · X. (3)

where X is a vector of the pixel values xi,j,k, W is

the matrix of the values of [xi,j,k−1, xi,j,k+1, xp,k, 1],

k is a constant and i, j are variables. Given the

coefficients of each band, the NCM of the hyper-

spectral image can be estimated. The variance of

band k and covariance between band k and band l

can be calculated by

σ2
k =

W
∑

i=1

H
∑

j=1

r2
i,j,k

M − 4
,

Ckl =

W
∑

i=1

H
∑

j=1

ri,j,k · ri,j,l

M − 4
, (4)

where 1 6 k, l 6 N, (i, j) 6= (1, 1). Since there are

four coefficients in the linear regression, the free-

dom degree in the denominator is M − 4. Like eq.

(1), formula of NCM estimation can be expressed

as

Σn = Cov(r) = Cov(xi,j,k − x̂i,j,k). (5)

In eq. (5), since x̂i,j,k is an unbiased estimation of

the signal part in xi,j,k, it is not necessary to divide

the covariance by 2.

If the ground objects in an image are not com-

pletely mixed, the image can be divided into many

blocks, and heterogeneous blocks are removed for a

subsequent process. The methods shown in Roger’s

paper[13] and Gao’s paper[14] can be used to esti-

mate NCM for homogeneous blocks first. This im-

proved method can be used to estimate NCM Σp of

each block, where 1 6 p 6 n and n is the number

of homogeneous blocks that can be found on the

image. The mean value of NCM of all blocks can

be used as the NCM of the whole hyperspectral

image.

It should be noted that, due to the partial use

of spectral correlation in noise estimation, the re-

sults of noise estimation are also correlated. Noise
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covariance Ckl between bands is reserved after cal-

culating Σn in our method, unlike the NCM esti-

mation method in Greco’s paper[18], the higher the

interval between bands (i.e., the larger the differ-

ence of k and l), the lower the Ckl.

In this new method, spectral correlation is used

to estimate NCM when ground objects are mixed

together. The correlation between pixels in the

spatial domain is considered more than in the spec-

tral domain when ground objects are not mixed.

The optimal NCM estimation method of using the

linear regression model makes the improved MNF

transform method adaptable to the variety of cor-

relation in spectral or spatial domain.

This transformation method requires that the

spectra of pixels should be continuous, which is

very common in hyperspectral images. The pro-

posed method uses the least square algorithm to

calculate four coefficients, and the cost of compu-

tation is high. Therefore, it is more suitable for

hyperspectral images with a small field of view.

3 Experiments and analysis

Simulated HYMAP hyperspectral images are used

to illustrate the feature extraction results of the

improved MNF transform and the classical MNF

transform. Later, a real hyperspectral image con-

taining mixed ground objects is used to demon-

strate the performance of the improved MNF

transform method.

3.1 Analysis of the influence of mixing

levels of ground objects on classification

accuracy

In this experiment, six different ground objects are

drawn out with different spectral vectors from the

HYMAP hyperspectral image first. Three types of

rocks and three types of vegetations are denoted by

R1, R2, R3 and V1, V2, V3. The spectral curves

of 110 samples with 115 bands from 400 to 2500

nm of each object are shown in Figure 1. It can be

seen that all spectra are mixed together and hard

to distinguish.

Some training samples of six classes used for su-

pervised classification are shown in Figure 2(c).

The training samples and the bands selected af-

ter MNF transform must be the same in all the

tasks. To clearly simulate the real classification cir-

cumstances, less than 10% of all training samples

and six feature bands of the transformed hyper-

spectral image are chosen in the classifications. A

simple classification method, minimum euclidean

distance, is used to obtain the OA data from this

experiment after bands-feature selection. The six

feature bands after the MNF transform are shown

in Figure 2(d). It can be seen from Figure 2(d) that

the OA results obtained using MNF are acceptable

in this experiment. But the results using PC trans-

form, as shown in Figure 2(e), are not acceptable.

It is clear that the classical MNF transform has

an obvious advantage in feature extraction when

ground objects are mixed. However, the classical

MNF transform seriously affects the accuracy of

classification when the mixing levels of ground ob-

jects are high. This will be proved in the next

experiment.
Next, we simulated images with different mixing

levels of ground objects. Figure 3 shows those sim-

ulated images with different spatial arrangements

of mixing blocks. The total width and height of

each hyperspectral image are the same. But the

level of mixing is varied. The subscript numbers in

Figure 3 express the number of scattered blocks.

In every experiment, it must be ensured that, no

matter how the positions of samples vary, training

samples are consistent. This is achieved using re-

cursive procedure. When classifying the image, the

first six principal components extracted by MNF

transform are used at all times. Because the re-

sults of the minimum distance (MD) classification

method are easily influenced by spatial distribu-

tion and spectral noise, this method is used in all

experiments to show the ability of each transform

method to restrain noise.
In each experiment, OA is used as the criterion

for evaluating the performance of feature extrac-

tion. In Figure 4, the X-axis represents the num-

ber of divided blocks of the same class, the Y -axis

represents the OA after using classical MNF trans-

form, and the black dashed line and gray dashed

line represent the OA with and without PC trans-

form, respectively. It can be seen from Figure 4

that the overall accuracy of classification with and
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Figure 1 Sample spectral curves of six sorts of ground objects,

vegetations and rocks. (The color denotations used in other fig-

ures are the same.)

(a) (b) (c) (d) (e)

Figure 2 (a) Simulated hyperspectral image with reordered

samples (R: 463 nm; G: 563 nm; B: 663 nm); (b) ground truth;

(c) training samples in the image; (d) results of MNF transform

(combined with the first 3 components); (e) results of classifica-

tion with PC transform.

without PC transform are the same, which means

that PC transform is not impacted by the spatial

distribution of pixels. However, the OAs of classi-

fication results descends dramatically with the in-

creasing number of mixed blocks when MNF trans-

form is used. This experiment demonstrated that

spatial distribution of pixels impacts both the fea-

ture extraction of MNF transform and classifica-

tion accuracy.

1 2 3 4 5 6 7 8 9 10 18

Figure 3 Accurate classification maps (ground truth) when

ground samples were segmented into blocks with specified num-

ber, from 1 block to 18 blocks. For paper limit, some maps (11–17

blocks) are not displayed here.

Figure 4 The classification accuracy values of the MNF method

vary with different block numbers into which the ground samples

were segmented.

3.2 Classification experiments using the

improved MNF

From the analysis shown above, one can conclude

that, if estimated NCM is precise, classification re-

sult from MNF transform may be better than that

from PC transform. However, NCM estimation

is badly affected by spatial distribution of pixels.

To test the influence of the spatial distribution of

pixels on the classification OA with the improved

MNF method, the experiments in section 3.1 were

performed again. Here, the results of the 12th ex-

periments shown in Figure 6(a) are used to illus-

trate the advantage of the improved MNF trans-

form.
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In this experiment, ground objects are com-

pletely mixed. The eigenvalue curves of the classi-

cal and improved MNF method are listed in Fig-

ure 5. The ratio of the eigenvalues corresponding

to low-level principle components to those corre-

sponding to high-level principle components in the

new method is much higher than the ratio in the

classical method, which means that the first few

bands in the improved MNF can extract the fea-

tures of different ground objects more effectively.

Figure 6 shows MNF transform results and classi-

fication results with classical and improved NCM

estimation methods. Figure 6(a) is the original

hyperspectral image in which ground objects of

the same class were divided into 12 blocks. Fig-

ure 6(b) is the classical MNF transform result dis-

played with the first 3 bands. Figure 6(c) is the

improved MNF transform result. We can see that

the colors of different ground objects can be dif-

ferentiated more easily in 6(c), such as rock M1

and M2. From the classification results shown in

Figure 6(d) and (e), it is obvious that the classi-

fication image in 6(e) from the improved method

achieves better overall accuracy than the image in

6(d) when they are compared with Figure 6(f).

Figure 5 Eigenvalue curves of MNF transform using the old

noise-estimation method and the improved one when the block

number is 12. Different samples are mixed sufficiently.

The robustness of the improved MNF method

against the spatial distribution of pixels is also

proven using similar experiments in section 3.1.

The OA curve of the improved MNF transform

method is shown in Figure 7. Although the OA

curve of classical MNF transform is higher than

the curve of the improved method in the begin-

ning cases where the corresponding images are rel-

atively homogenous, the OA values of the improved

method become much higher and more stable than

those with the classical method when the mixing

levels is increasing. The overall accuracy of classifi-

cation with the improved MNF transform method

does not descend very much at the end of the curve.

3.3 Application of the improved MNF

In this experiment, the real hyperspectral image,

push-broom hyperspectral imager (PHI) data ac-

quired in Minamimaki of Japan is used to illus-

trate the advantage of the improved MNF trans-

form method. The PHI imager was developed by

the Shanghai Institute of Technical Physics, China.

The data used here is radiance hyperspectral data

with 80 bands from 400 to 850 nm. A region shown

in Figure 8(a) with mixing ground objects is chosen

as the test image. The image size is 144 high by

195 wide. There are seven types of ground objects

in it, including Japanese cabbage, Chinese cab-

bage, lettuce, grazing, ground film, wet soil and

dry soil. Their spectra are shown in Figure 8(c)

with different colors corresponding to the colors of

ground object in the ground truth image shown

in Figure 8(b). It can be seen from Figure 8(a)

that different types of ground object are dispersed

and mixed together, and the number of selected

bands is larger than that of object types. The

classified map treated as the ground truth image

in Figure 8(b) is obtained by a feature-optimized

expert decision-making classification method with

some artificial modifications and was verified by

field surveys in Minamimaki, Japan. Therefore,

this classified map is used as the reference for evalu-

ating classification results in this experiment[19,20].

It can be seen from Figure 8(c) that wet soil, dry

soil and ground film can be easily distinguished,

but it is difficult to distinguish the four types of

vegetations. Eight different classification experi-

ments were conducted with the different combina-

tions of image transform methods, ROI samples

selection or spectral band selection (see Table 1).

The PCA, MNF and improved MNF transform

methods are used to compress spectral information
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(a) (b) (c) (d) (e) (f)

Figure 6 (a) Original hyperspectral image; (b) MNF trans-

forms results using the old NCM estimation method; (c) MNF

transforms results using the improved NCM estimation method;

(d) classification results using the old MNF method; (e) classifi-

cation results using the improved MNF method; (f) ground truth

image.

Figure 7 Comparisons of the classification OA using MNF

transform with old and improved NCM estimation.
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Figure 8 Classification results of crops on the PHI image. (a) Infrared color image of reflectance combined by bands 80, 42 and

19, 2% linear stretch displayed; (b) approximately correct classification result; (c) spectral curves of 7 sorts of typical ground objects;

(d) combined display of first three components acquired by classical MNF transform; (e) classification result using classical MNF

transform (5th experiment); (f) combined display of the first three principal components acquired by the improved MNF transform;

(g) classification result using the improved MNF transform (8th experiment).
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Table 1 Statistics of OA using different combinations

Sequence number Transform method
ROI extraction Band/component

Classification accuracy Kappa coefficient
method selection

1 No transform Prior knowledge 80 bands 1.2963% 0.5725

2 PCA PPI Fore 9 components 71.2108% 0.5714

3 MNF Prior knowledge Fore 9 components 74.2949% 0.6039

4 MNF PPI Fore 9 components 75.2778% 0.5951

5 Improved MNF Prior knowledge Fore 9 components 76.2286% 0.6598

6 Improved MNF PPI Fore 9 components 85.9900% 0.7876

7 Improved MNF PPI Fore 30 components 86.1930% 0.7907

8 Improved MNF PPI Fore 50 components 86.2179% 0.7910

and separate noise before classification. The ROI

used in classification is extracted through priori

knowledges or the pure pixel index (PPI) method.

Final classification results are evaluated using the

overall accuracy (OA) and Kappa coefficient which

are listed in Table 1. From Table 1 it is clear that

the classification accuracies are approximately the

same with and without the use of the PC trans-

form, which proves that the PC transform can only

compress spectral information. The accuracy re-

sult is improved obviously when the classical MNF

transform method is used for classification. How-

ever, this improvement is not obvious due to the in-

accurate NCM estimate for mixed ground objects.

It can be seen in Figure 8(d) that the classical

MNF transform method treats noise caused by a

heterogeneous array of sensors as signals in fea-

ture extraction. The classification result using the

improved MNF transform method is shown in Fig-

ure 8(g). The classification accuracy is obviously

improved when the improved MNF transform is

used to extract features, especially when ground

objects are completely mixed together. Because

the improved MNF transform method uses the in-

formation of correlation between bands to estimate

noise, it can also restrain the heterogeneous noise

of the sensors in principal components. It should

be noted from Figure 8(g) that most pixels at the

ridge of field are mixtures of soil and vegetation.

Classification results through any combinations are

not accurate in this place. How to get correct de-

cisions on mixed pixels along the edge needs to be

studied further.

4 Conclusions and discussion

This paper shows that Green and Berman’s MNF

transform can be used to compress data, separate

noise and extract features for homogenous images.

However, the spatial distribution of pixels affects

this transform dramatically, and feature extrac-

tion results may not be used for classification when

ground objects are mixed together. The theoretical

reasons on this are illustrated. An improved MNF

method is proposed to solve this problem, in which

the NCM is estimated in both the spatial and spec-

tral domains. Feature extraction results from this

improved method are better than those from the

classical MNF transform. This transform method

can be used to compress data and separate noise

effectively when the homogeneous blocks cannot be

found in the whole image.

Experimental results from both simulated and

real hyperspectral images in this study show

the advantages of the improved MNF transform

method. The algorithm complication of the im-

proved MNF transform method for hyperspectral

image needs to be reduced. The advantages of this

method in other applications of the feature extrac-

tion field should be further studied.
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