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Single-atom skeletal editing of 2H-indazoles enabled by
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A novel difluorocarbene promoted single-atom skeletal editing of 2H-indazoles is demonstrated herein. Ethyl bromodi-
fluoroacetate was severed as the difluorocarbene source in the current protocol, facilitating the cleavage of the N–N bond via
carbon atom insertion. This metal-free ring expansion reaction enables the late-stage diversification of indazole skeletons,
assembling a diverse array of functionalized quinazolin-4(3H)-ones in decent yields with excellent functional group compat-
ibility.
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Since molecular editing contributes to the ability to enact
chemical transformations in a concise and chemospecific
fashion, it has indisputably represented the robust platform
for modern approaches to drug discovery and life sciences
[1]. In general, ornament of an exocyclic atom such as
functionalization of C–H or C–X bonds is preferably deemed
as peripheral editing. While altering the atomic composition
that comprises a ring system can be construed as molecular
skeletal editing (Scheme 1a). With respect to skeletal editing,
single-atom modification of the ring structure has loomed as
the most elementary of feasible changes to a molecular fra-
mework in chemical precision, which just manipulations the
ring texture by one atom without regard to the cases of the
exocyclic functional groups. The classical Tiffeneau-Dem-
jano [2], Ciamician-Dennstedt [3] and Gabriel-Colman [4]
rearrangement as well as the Bayer-Villiger [5], Beckmann
[6] and Favorskii [7] rearrangement of cyclic compounds are

known paradigm for such single-atom skeletal editing.
Throughout previously documented transformations, there
are three situations for single-atom molecular skeletal edit-
ing: (a) ring expansion (n→n+1) [8]; (b) ring contraction
(n→n−1) [9]; (c) the transmutation of one atom of an integral
part for another [10] (Scheme 1b). In consideration of the
retrosynthetic simplicity, single-atom logic skeletal editing
has emerged as fertile territory for the evolution of novel and
formidable synthetic transformations. Given the capacity to
surmount the traditional hurdles in pharmaceutic exploitation
at late-stage, the development of a novel and promising
platform for single-atom skeletal editing is still in great de-
mand in the realm of both chemistry and drug discovery.
To fulfill the single-atom skeletal editing of (hetero)cyclic

ring system, carbene has the inherent peculiarity for the or-
nament of the molecular skeleton. A variety of prominent
nitrene- and carbene-induced transformations have been in-
novated via the insertion of retrosynthetic disconnection of
the structural motifs and cores [11–13]. For instance, in
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2021, Levin’s group [12] described a preeminent chlor-
odiazirines-promoted carbon atom insertion into pyrroles
and indoles. During our preparation of this manuscript, the
same group also demonstrated an outstanding single-atom
skeletal editing reaction of pyrazole and indazole to forge
diverse pyrimidines and quinazolines [13]. Despite the
known outstanding contributions for skeletal editing of
(hetero)cyclic ring system enabled by carbene, there is an
astounding dearth of difluorocarbene-mediated modification
of the ring size of carbocyclic or heterocyclic frameworks.
Owing to the high electron deficiency, difluorocarbene re-
presents the versatile reactive species [14], which has been
frequently utilized as the vigorous difluoromethylenating
reagent [15], difluoromethylating reagent [16,17], carbonyl
source [18], C1 synthon [19,20] and so forth. In sharp con-
trast to previous decorations of difluorocarbene for the
construction of fluorinated or non-fluorinated products, di-
fluorocarbene involved skeletal editing of the ring system
has never been documented heretofore. Herein, we present
an expedient difluorocarbene-mediated single-atom skeletal
editing of 2H-indazoles via insertion into the N–N bond,
enabling the streamline synthesis of quinazolin-4(3H)-ones
[21] under metal- and oxidant-free conditions (Scheme 1c).
To commence the proof-concept study, the treatment of 2-

benzyl-2H-indazole (1a) with BrCF2COOEt was conducted
as the model reaction. When the model reaction proceeded in
CH3CN by using K3PO4 as the base, the ring-expansion
product 3-benzylquinazolin-4(3H)-one 2awas indeed gained
in 58% yield, the structure of which was unequivocally as-
certained by X-ray single crystal diffraction (CCDC:
2215093). Encouraged by this result, a battery of solvents

was then inspected (Table 1, entries 2–4), which turned out
CH3CN was still the best reaction medium to facilitate the
N–N bond cleavage of 2H-indazoles. In consideration of the
source of oxygen in the desired quinazolin-4(3H)-ones,

Scheme 1 (a) Examples of peripheral editing and skeletal editing; (b) classification of single-atom skeletal editing; (c) difluorocarbene promoted single-
atom skeletal editing of 2H-Indazoles (this work) (color online).

Table 1 Optimization of reaction conditionsa)

Entry Base Solvent Additivec) T (°C) Yield (%)b)

1 K3PO4 CH3CN – 90 58

2 K3PO4 PhMe – 90 30

3 K3PO4 EtOAc – 90 41

4 K3PO4 1,4-Dioxane – 90 25

5 K3PO4 CH3CN TBHP 90 63

6 K3PO4 CH3CN H2O 90 75

7 K3PO4 CH3CN CAN 90 trace

8 K2CO3 CH3CN H2O 90 65

9 Na2CO3 CH3CN H2O 90 61

10 Cs2CO3 CH3CN H2O 90 54

11 KH2PO4 CH3CN H2O 90 60

12 K3PO4 CH3CN H2O RT 0

13 K3PO4 CH3CN H2O 70 52

14d) K3PO4 CH3CN H2O 90 23

a) 1a (0.3 mmol), BrCF2COOEt (0.9 mmol), base (0.9 mmol), solvent (2
mL), 16 h. b) isolated yields. c) 0.9 mmol of additive was added. d) 3 mmol
of H2O was used. TBHP = tert-Butyl hydroperoxide. CAN = Cerium(IV)
ammonium nitrate.
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several additives were added to this reaction system (Table 1,
entries 5–7). To our delight, the yield of 2a was increased to
75% when 3 equivalents of H2O were served as the additive
(Table 1, entry 6). Subsequently, a suite of inorganic bases
was examined (Table 1, entries 8–11). However, the results
showcased that no evident improvements were gained when
K3PO4 was replaced by other inorganic bases. As the fol-
lowing optimization, we also screened the effect of reaction
temperature, which indicated that the optimal choice for this
skeletal editing of 2H-indazoles was still carried out at 90 °C
(Table 1, entries 12–13). Since the water could slightly ac-
celerate this N–N bond cleavage of 2H-indazoles, the
amount of water was also investigated. When we increased
the amount of water, despondently, the inferior yield of 3-
benzylquinazolin-4(3H)-one 2a was acquired (Table 1, entry
14).
Given that the optimum reaction conditions have been

established, the generality of this difluorocarbene-induced
skeletal editing of 2H-indazoles was then perused. As sum-
marized in Scheme 2, a sequence of functionalized 2-benzyl-
2H-indazoles bearing different electronic properties on the
benzyl group displayed good reactivity in this transforma-

tion, enabling the production of 3-benzylquinazolin-4(3H)-
ones (2b–2g) in 65%–86% yields. Sterically demanding 2-
(naphthalen-2-ylmethyl)-2H-indazole (1h) was proven to be
a good candidate as well, affording the targeted quinazolin-4
(3H)-one 2h in 70% yield. Rejoicingly, a suite of N-sub-
stituted 2H-indazoles installed on the alkenyl were also
amenable to this difluorocarbene-mediated ring-expansion
reaction and the desired products (2i–2l) were isolated in
decent yields under the identified conditions. 2H-indazoles
tethered with N-substituted cyclic or chain alkanes and het-
erocycles (1m–1v) could also be engaged in this N–N bond
cleavage reaction, delivering the expected quinazolin-4(3H)-
ones 2m–2v in 58%–89% yields.
Next, we focused on the scope with respect to the sub-

stituents on the aromatic ring of the indazole skeleton. 2H-
Indazoles having the electron-donating functionality de-
monstrated excellent activity in this carbon atom insertion
reaction and the desired products 2w and 2x could be readily
obtained in 92% and 82% yields, respectively. Halo-aromatic
substituted 2H-indazoles, such as fluoro, chloro, bromo and
iodo groups, were also well compatible under this di-
fluorocarbene-involved ring expansion reaction, affording

Scheme 2 Substrate scope for the assembly of quinazolin-4(3H)-ones (color online).
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the halo-substituted quinazolin-4(3H)-ones (2y, 2za–2zc) in
modest yields. In addition, the aromatic ring of 2H-indazoles
mounted on electron-withdrawing groups was also found to
react with BrCF2COOEt smoothly and the corresponding
quinazolin-4(3H)-ones (2zd–2zf) could be achieved in 65%–
77% yields. When 2-ethyl-2H-indazol-5-amine was sub-
jected to this reaction system, difluorocarbene not only
prompted the N–N bond cleavage of the indazole skeleton
but also elaborated the free NH2 group to formamide
[18a,18b] under this basic conditions, giving the production
of N-(3-ethyl-4-oxo-3,4-dihydroquinazolin-6-yl)formamide
(2zg) in 61% yield. The scalability of this difluorocarbene
induced N–N bond deconstructive reaction was also as-
sessed. Treatment of 5 mmol of 1a with BrCF2COOEt under
these identified conditions enables to assemble 3-benzyl-
quinazolin-4(3H)-one 2a in 68% yield without loss of effi-

cacy.
To further illustrate the potential of the reaction for ex-

panding the accessible chemical space, the current method
was then applied to remodel 2H-indazoles containing
bioactive and pharmaceutical molecules, which was sum-
marized in Scheme 3. Gratifyingly, a sequence of natural
product alcohols, such as DL-Menthol, (−)-Borneol, (−)-β-
Citronellol, Perillyl alcohol, Tropine and Pregnenolone,
could be successfully incorporated into the 2H-indazoles.
And all of them enabled the generation of corresponding
quinazolin-4(3H)-ones 3a–3f in 60%–80% yields under this
metal-free ring expansion reaction. To further extrapolate the
late-stage modifications of 2H-indazoles, a suite of 2H-in-
dazoles derived from structurally complicated carboxylic
acids pharmaceutical molecules, such as Linolenic acid,
Tretinoin, Oxaprozin, Febuxostat, Fenbufen, Dehydrocholic

Scheme 3 Synthesis of quinazolin-4(3H)-ones bearing bioactive and drug molecules (color online).
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acid, Indometacin and Sulindac, were also engaged in this
difluorocarbene promoted skeletal editing reaction and the
expected products 3g–3n could be readily gained in syn-
thetically acceptable yields. The above results reveal that the
current synthetic methodology not only showcased com-
mendable functional group tolerance, but also enabled the
capacity for the streamline construction of bioactive quina-
zolin-4(3H)-ones.
As the following-up investigations, a suite of experiments

was conducted to gain mechanistic insight into this di-
fluorocarbene-promoted skeletal editing reaction of 2H-in-
dazoles (Scheme 4). When 2,2,6,6-tetramethyl-1-piperidiny-
loxy (TEMPO), 2,6-di-tert-butyl-4-methylphenol (BHT) and
1,1-diphenylethylene were added as radical scavengers in
this reaction, the ring-expansion of 2H-indazoles could also
work smoothly and the desired quinazolin-4(3H)-one 2a
were still obtained in good yields (Scheme 4a), which pos-
sibly eliminated a radical-type reaction regime for this N–N
bond cleavage of 2H-indazoles. When carbene trapping re-
agent indazole 4 was subjected to this reaction, the 1-(di-

fluoromethyl)-1H-indazole 5 was detected as the major
product by GC-MS and a relatively lower yield of 2a was
observed (Scheme 4b). We were curious to understand
whether 1H-indazole derivatives could be converted in this
reaction system. A number of 1H-indazoles were prepared
and submitted to these metal-free conditions. However, when
N-substituted 1H-indazoles were deemed as the starting
materials, no skeletal editing reactions of 1H-indazoles were
observed under these established conditions (Scheme 4c). To
affirm the source of hydrogen in the imine entity of quina-
zolin-4(3H)-one, deuterium labeling experiments were then
carried out. When the model reaction proceeded in CD3CN
without adding water, no deuteration of 3-benzylquinazolin-
4(3H)-one was detected (Scheme 4d). When 1a reacted with
BrCF2COOEt by adding 3 equivalents of D2O as the ad-
scititious reagent, 70% deuteration of 2a was detected at the
C–H bond of imine (Scheme 4e). Subsequently, an isotope
labeling experiment was also executed to confirm the ori-
gination of the carbonyl oxygen atom of the targeted qui-
nazolin-4(3H)-ones. When this N–N bond cleavage reaction

Scheme 4 Primary mechanism studies (color online).
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was performed by employing 3 equivalents of H2
18O as the

accelerant, 59% of 18O-labeled quinazolin-4(3H)-one 2a was
detected (Scheme 4f). These results manifested that both the
hydrogen of the imine entity and the oxygen of the carbonyl
group should derive from water.
According to previous work and the above empirical data,

a plausible reaction mechanism for this metal-free skeletal
editing reaction via disconnection of 2H-indazoles is deli-
neated in Scheme 5. First, difluorocarbene (:CF2) is formed
in-situ via base-promoted double cleavage of BrCF2COOEt
[20]. Subsequently, the in-situ generated difluorocarbene
species is captured by 2H-indazole 1 to afford the inter-
mediate A or it is resonant structure B. This imine carbo-
cation B is further attacked by water to provide the ring-
opening intermediate C via the N–N bond cleavage of 2H-
indazoles. Later on, the amide compound D goes through the
intramolecular nucleophilic attack, delivering compound E
via C–F bond scission. Since the group of NH-CF2H is un-
stable, another alternative pathway for the production of
compound E is showcased as path b in Scheme 5. De-
fluorination of intermediate F enables to deliver the inter-
mediateG bearing an N=CFH moiety, which subsequently is
attacked by another nitrogen to render the intermediate E.
With the assistance of base, further defluorination of com-
pound E furnishes the desired product quinazolin-4(3H)-
ones 2.
In conclusion, we have discovered a novel single-atom

skeletal editing of 2H-Indazoles promoted by di-
fluorocarbene. This difluorocarbene-induced N–N bond
cleavage of 2H-indazoles endows a new platform for the

streamline assembly of functionalized quinazolin-4(3H)-
ones via late-stage functionalizations. The current protocol
features such as metal-free, oxidant-free, user-friendly op-
eration, good yields and broad substrate scope as well as
valuable products. Furthermore, this ring expansion reaction
can be easily amplified without loss of effectiveness. Further
synthetic applications of difluorocarbene induced skeletal
editing reactions are in progress in our laboratory.
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