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Abstract: It is widely accepted that hydrogeochemistry of saline springs is extremely important to
understand the water circulation and evolution of saline basins and to evaluate the potential of
potassium-rich evaporites. The Kuqa Basin, located in the northern part of the Tarim Basin in Northwest
China, is a saline basin regarded as the most potential potash-seecking area. However, the origin and water
circulation processes of saline springs have yet to be fully characterized in this saline basin. In this study, a
total of 30 saline spring samples and 11 river water samples were collected from the Qiulitage Structural
Belt (QSB) of the Kuqa Basin. They were analyzed for major (K*, Ca?*, Na*, Mg?", SO, ClI" and
HCOs3") and trace (St?* and Br") ion concentrations, stable H-O-Sr isotopes and tritium concentrations in
combination with previously published hydrogeochemical and isotopic (H-O) data in the same area. It is
found that the water chemical type of saline springs in the study area belonged to the Na-Cl type, and that
of river water belonged to the Ca-Mg-HCO3-SOy4 type. The total dissolved solid (TDS) of saline springs
in the QSB ranged from 117.77 to 314.92 g/, reaching the brine level. On the basis of the general
chemical compositions and the characteristics of the stable H-O-Sr isotopes of saline springs, we infer
that those saline springs mainly originated from precipitation following river water recharging. In addition,
we found that saline springs were not formed by evapo-concentration because it is unlikely that the high
chloride concentration of saline springs resulted in evapo-concentration and high salinity. Therefore, we
conclude that saline spring water may have experienced intense evapo-concentration before dissolving the
salty minerals or after returning to the surface. The results show that the origin of salinity was mainly
dominated by dissolving salty minerals due to the river water and/or precipitation that passed through the
halite-rich stratum. Moreover, there are two possible origins of saline springs in the QSB: one is the
infiltration of the meteoric water (river water), which then circulates deep into the earth, wherein it
dissolves salty minerals, travels along the fault and returns to the surface; another is the mixture of
formation water, or the mixture of seawater or marine evaporate sources and its subsequent discharge to
the surface under fault conditions. Our findings provide new insight into the possible saltwater circulation
and evolution of saline basins in the Tarim Basin.
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1 Introduction

Giant potash deposits are common in the Mesozoic-Cenozoic Tethyan domain, such as in the Late
Jurassic Central Asian Basin (Turkmenistan and Uzbekistan) and the Late Cretaceous Khorat
Basin (Thailand and Laos) (Yang et al., 2014; Liu et al., 2018). The Tarim Basin, located in the
eastern Tethyan domain in Northwest China, developed thick evaporites (including carbonate,
gypsum, halite, etc.) and was considered as the target area for the future exploration of potash
deposits in China (Liu et al., 2018). The Kuqga Basin is located in the northern part of the Tarim
Basin and is regarded as the most potential potash-seeking area due to the following conditions:
(1) during the Paleogene-Neogene, transgression from the Tethyan Ocean repeatedly invaded into
the Kuga Basin and provided abundant salt substances; (2) the long-term arid climate accelerated
the formation of dominant salt-bearing strata, such as the Paleogene Kumugeliemu Formation
(approximately 2200 m in thickness) and the Neogene Jidike Formation (about 1100 m in
thickness) (Li et al., 2002; Wang et al., 2015); and (3) geological exploration of the drill cores and
outcrops revealed the occurrence of minor potash minerals (e.g., sylvite, aphthitalite, picromerite
and carnallite) in the Kuqa Basin (Liu et al., 1987; Liu et al., 2008, 2009a, b, 2018; Deng et al.,
2013; Zheng et al., 2015). Compared with the drilling implement, the investigation on the
hydrogeochemistry of saline springs is a more economical, convenient and effective measure to
understand the water circulation and evolution of a saline basin and to evaluate the potential of
potassium-rich evaporites.

Saline springs are developed in the Kuga Basin. Over the past four decades, scholars have
conducted several studies on the hydrogeochemical signatures of saline springs in this area (Chen
and Qu, 1986; Tan et al., 2004; Ma and Ma, 2006; Bo et al., 2013a, b, 2015). These studies
obtained the following conclusions: (1) low K" concentrations (<1.0 g/L) and low K/Br and Br/Cl
ratios indicated that the formation of saline springs was from leaching halite; and (2) gradual
changes in the H-O isotope compositions of saline springs and the wide distribution of the
chloride water suggested the influence of strong evaporation and deep Ca-Cl brines (Bo et al.,
2013a). However, the origin of saline springs is complicated as they may be produced from the
mixing of deep brines, halite-leaching brines and surface waters (Bo et al., 2013b). Current
research does not fully evince the origin of saline springs. In addition, water circulation processes
involving saline springs have yet to be fully characterized.

Conventional chemical indices are not able to infer the provenance for potash deposits as
compared to isotopic studies due to element variations in water, which are caused by various
chemical reactions. Stable H-O isotopes are able to trace the formation process and provenance of
saline springs (Henderson et al., 2003, 2010; Fan et al., 2010, 2014; Anderson et al., 2011; Li et
al., 2012; Tan et al., 2014; Li et al., 2018; Xiao et al., 2018; Guo et al., 2019). Stable Sr isotope
can also indicate the source of salt materials and efficiently trace the provenance of salts due to its
weak fractionation under chemical, evaporative and microbial conditions (Chacko and Deines,
2008; Luz et al., 2009; Tan et al., 2010, 2011; Chapman et al., 2013; Capo et al., 2014; Stewart et
al., 2015; Fan et al., 2018). Herein, 30 saline spring samples and 11 river water samples were
collected from the Qiulitage Structural Belt (QSB) of the Kuga Basin and analyzed for major (K,
Cazt Na’, Mg2+, SO42_, Cl" and HCOj3") and trace (Sr2+ and Br) ion concentrations, stable
H-O-Sr isotopes and tritium concentrations. In combination with previously published
hydrogeochemical and isotopic (H-O) data in the same area (Tan et al., 2004; Ma and Ma, 2006;
Bo et al., 2013a, b), this study aims to systematically discuss the origin and water circulation of
saline springs in the QSB of the Kuga Basin. Our findings will provide new insight into the
possible saltwater circulation and evolution of saline basins.

2  Geological setting

The Kuqa Basin, which is located in the northern part of the Tarim Basin and the southern part of
the Tianshan Mountains in Northwest China and belongs to the Mesozoic-Cenozoic sedimentary
depression, has a width of about 70 km from south to north and a length of about 150 km from
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east to west, thereby covering an area of about 30x10° km” (Fig. la) (Bally and Snelson, 1980;
Graham et al., 1993; Cao et al., 1994; Lu et al., 1994; Jia, 2001; Wang et al., 2016; Peng et al.,
2018). The Kuga Basin consists of the Northern Monoclinic Belt, Kalasu-Yiqikelike Structural
Belt, Baicheng Sag, Yangxia Sag, QSB and Southern Slope Region (Fig. 1b). The
Mesozoic-Cenozoic stratigraphy in the Kuga Basin includes the Jurassic and Cretaceous units, the
Kumugeliemu (E;,km) Group, the Suweiyi (E,_3s) Formation, the Jidike (N,j), Kangcun (N;_k)
and Kuqga (N,k) formations, and the Quaternary (Q) units from bottom to top (Fig. 2). Extensive
evaporitic rocks are present in the Kumugeliemu Group and are exposed to the northern
Kelasu-Yigikelike Structural Belt (KYSB) and the southern QSB (Tang et al., 2004; Liu et al.,
2013). During the Paleogene to Quaternary, the South Tianshan Mountains were uplifted due to
the Himalayan tectonic movement. However, the KYSB was too close to the South Tianshan
Mountains, which was disadvantageous to the preservation of potassium in the later period.
Instead, due to the ancient uplift of the QSB and relatively long distance to the South Tianshan
Mountains, the QSB was conducive to potassium preservation in the later period. Thus, the QSB
was regarded as the most potential potash-seeking area.
81°00'E 81°40'E 82°20'E 83°00'F 83°40'F

Cretaceous

(a)

@ Quaternary Ncogene Paleogene
- Triassic -Pa.leozoic - Jurassic

% E County River % z
S | @
E}l Inferred Fanlt ___ S
—
/5@2,':”2

Z

£ z
=) £
blg 1] 10 20km | =
o — o

81°00'E 81°40'E 82°20'E 83°00'E 83°40'E

GZ. 81.E 82‘E 83‘E 84.E SS‘E DZ
Q| (b) Mountaing g

Tianshan

N Legend

Anticling number
@ Anticline

Basin Margin
[o]Qr

_Srg‘c:tc:%ldizrg oundary|
[o]wo

Sample number

L 1 | I:l EQ

§1°E 82°E 83°E 84°E 85°E

41°N
41°N

Fig. 1 Geological map of the Kuqa Basin (a) and locations of the main sampling sites in the Qiulitage Structural
Belt (QSB) of the Kuqa Basin (b). The geological map of the Kuqa Basin was modified after Liu et al. (2013).
QL, Quele Tectonic Belt; WQ, Western Qiulitage Tectonic Belt; EQ, Eastern Qiulitage Tectonic Belt. (1),
Yekeqigen Anticline; (2), Kurukol Anticline; (3), Awat Anticline; (4), Miskantak Anticline; (5), North Qiulitage
Anticline; (6), South Qiulitage Anticline; (7), Kugatawu Anticline; (8) Torclark Anticline; (9), Eastern Qiulitage
Anticline.

The QSB is located in the southern part of the Kuqa Basin. It is bounded by the North Tarim
uplift to the south and the Baicheng Sag to the north, and has an east-west length of



334 JOURNAL OF ARID LAND 2020 Vol. 12 No. 2

approximately 320 km and a north—south width of 20-30 km (Fig. 1b), covering a total area of
about 5.2x10° km? (Miao et al., 2004; Chen et al., 2007; Han et al., 2018; Du et al., 2019). In this
study, the QSB was subdivided into three sub-belts: Quele Tectonic Belt (QL), Western Qiulitage
Tectonic Belt (WQ) and Eastern Qiulitage Tectonic Belt (EQ). The QL was composed of the
Yekeqigen Anticline, the Kurukol Anticline, the Awat Anticline and the Miskantak Anticline, with
a length of about 75 km and a width of about 10-25 km. The WQ consists of the South Qiulitage
Anticline and the North Qiulitage Anticline, with a length of about 120 km and a width of about
15-25 km. The EQ is located at the connection of Baicheng Sag and Yangxia Sag and includes
the Kugatawu Anticline, the Torclark Anticline and the eastern Qiulitage Anticline, with a length
of about 100 km and a width of about 15-25 km.
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Fig. 2 Generalized Mesozoic-Cenozoic stratigraphy of the Kuqa Basin

3 Sample collection and analysis

3.1 Sample collection

The present study performed data collection and field investigations from 2015 to 2018. Thirty
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saline spring samples were collected in the QSB of the Kuga Basin (Fig. 1b). The collected 30
saline spring samples basically represent the geochemical information of the salt bodies in the
QSB. To further study the interrelation between the water bodies in the QSB, we collected 11
water samples from the Muerzate River. Each sample was collected using an acid-washed 500 mL
low-density polyethylene (LDPE) bottle that was rinsed with the sample water. Within 48 h of
collection, each sample was filtered through a 0.45 pum Luerloch syringe filter (polypropylene
membrane) and transferred into an acid-washed 125 mL LDPE bottle for further analysis.

3.2 Elemental analysis

The samples of saline springs and river water from the QSB were analyzed for K, Ca®*, Na',
Mg2+, SO42_, Cl', HCOs", Br and Sr** concentrations in the Qinghai Institute of Salt Lakes,
Chinese Academy of Sciences. The K™ and SO, concentrations were determined by gravimetric
methods. The Ca®" and Mg®" concentrations were measured by ethylene diaminetetraacetic acid
(EDTA) titration. The CI” concentration was determined by AgNO; potentiometric titration. The
HCO;~ concentration was analyzed by HCI titration. The Na' concentration was calculated as
follows: Na" =(Nco."+Nuco, *Nso."+N¢i )—(Ng +Nca*+Npg*), where N represents the ionic
equivalent value. The analytical precision of the major cations and anions was better than +2%.
The Sr** concentration was determined by atomic absorption spectrometry (GBC 908 AA
spectrophotometer, GBC Co., Australia) with an analytical error of +5%. All of the major ion
analyses in this study followed the procedures of the Qinghai Institute of Salt Lakes (1988).

3.3 Stable H-O isotopes and tritium concentration analysis

The 8D and 8'*0 analyses were performed in the Open Laboratory for Isotope Geochemistry, China
Geological Survey. They were measured on a flash 1112HT elemental analyzer (Thermo Scientific
Company, USA) and a MAT253 mass spectrometer (Thermo Scientific Company, USA) following a
conjoint analysis, and the results were reported relative to the standard mean ocean water (SMOW),
with the standard deviations of £(1.00%0—2.00%o) for 8D and (0.20%0—0.30%o) for 5'°0.

In this study, we collected 500 mL of water samples for tritium (H or T) measurement, and
tritium analyses were performed in the Institute of Hydrogeology and Environmental Geology,
Chinese Academy of Geological Sciences. The tritium concentration was determined using
electrolytic enrichment with a tritium enrichment factor of about 20 and the liquid scintillation
counting (Quantulus 1220c¢) method with a detection limit of 0.30 tritium units (TU).

3.4 Stable Sr isotope analysis

%7Sr/*°Sr analyses were performed in the Open Laboratory for Isotope Geochemistry, China
Geological Survey. For the determination of the ®’Sr/*Sr ratio, a sufficient amount of solution
was loaded in a cation exchange column resin (Dowex 50%8, produced by Dow Chemical
Company, USA) to separate Sr from the other cations, particularly from Rb. The Sr isotope was
measured on a thermoelectric ionization mass spectrometer (Thermo Scientific Company, USA)
and corrected relative to NBS987 standard with a measured average value of 0.71032+0.00004
(26). The precision of each sample was found to be within +2.0x107°.

4 Results

4.1 Elemental compositions

The chemical composition statistical summaries of saline springs and river water from the study
area are shown in Tables 1 and 2. As a whole, the total dissolved solid (TDS) concentrations of
saline springs in the QSB ranged from 117.77 to 314.92 g/L, reaching the brine level. The TDS
concentrations of saline springs in the QL had the range of 282.25-312.00 g/L (mean value of
302.67 g/L), which were higher than those of saline springs in the WQ (117.77-314.92 g/L, mean
value of 251.52 g/L) and EQ (137.93-308.06 g/L, mean value of 218.90 g/L). The major ionic
compositions of saline springs were dominated by Na" and C1°, belonging to the Na-Cl type. The
concentrations of cations and anions of saline springs generally exhibited the following order:
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CI>S0,>HCO; and Na">Ca**>Mg*" (Table 1). Most saline springs exhibited low K"
concentrations, ranging from 0.02 to 0.68 g/L (mean value of 0.17 g/L). However, six
potassium-rich brines were observed in the WQ (Shan et al., 2019). The potassium-rich brines of
the WQ (n=6) exhibited K" concentrations ranging from 15.25 to 45.68 g/L (Table 1), which were
dozens of times higher than those reported previously (Tan et al., 2004; Bo et al., 2013b, 2015).
The Br concentrations of saline springs in the QSB ranged from 0.60 to 53.54 mg/L, which were
lower than the Br concentration of seawater (61.00 mg/L; Chen, 1983), suggesting that the
paleo-halite had low Br concentration in the Tarim Basin (Tan et al., 2004).

The TDS concentrations of river water were in the range of 0.22-0.51 g/L, with a mean value
of 0.35 g/L. In addition, all these samples contained HCO; ™ and SO4* as well as Ca®" and Mg”",
which served as their predominant anions and cations, respectively. Generally, the chemical
composition of river water can be used as background recharge source to indicate the chemical
variation and evolution during the water circulation of saline springs. Tables 1 and 2 and Figure 3
show the chemical data for the varying cation and anion compositions of saline springs and river
water. The river water with low TDS concentrations was mainly characterized by
Ca-Mg-HCO3-S0O4 type of chemistry. As the TDS concentration increased, the concentrations of
Na" and CI” correspondingly increased, such that the chemical type of river water evolved to the
Na-Cl type following the long-term intensive evaporation and dissolution of halite.

Saline springs in the QL
O Saline springs in the WQ
Saline springs in the EQ

4 River water

«—
Ca

Fig. 3 Piper plots of chemical compositions of saline springs and river water in the QSB of the Kuqa Basin

4.2 H-O isotopes and tritium concentration compositions

As shown in Tables 1 and 2, saline springs and river water in the QSB of the Kuga Basin
exhibited 6D values from —84.70%o to —36.00%0 and from —82.00%. to —70.00%o, respectively, and
8'%0 values from —9.10%o to 2.00%o and from —12.20%o to —10.80%o, respectively. Saline springs
of the QL presented 8D values between —76.00%0 and —57.00%o and 8'*0 values between —9.10%o
and —4.70%o. Similarly, saline springs of the WQ exhibited 3D values ranging from —84.70%o
to —36.00%o and 5'*0 values ranging from —9.10%o to 2.00%o, whereas saline springs of the EQ
showed 8D values between —77.00%0 and —72.00%o and §'%0 values between —7.30%o and
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—=5.60%o.

Tritium (H or T) is an unstable isotope of hydrogen with a half-life period of 12.32 a. There
are two dominant sources of tritium in meteoric water: cosmic ray produce trittum and
nuclear-bombing tritium (Solomon and Cook, 2000; Jiao et al., 2004; Michel, 2005; Huang and
Pang, 2010; Pang et al., 2010; Huang et al., 2017). In this study, we would infer whether the
sample water was sourced from modern water or paleo-water according to the tritium
concentration values. The tritium input sequence of precipitation in the study area was based on
the tritium sequence in the Tarim Basin from 1952 to 2007, which was constructed by Jiao et al.
(2004), Huang and Pang (2010) and Pang et al. (2010). The results show a tritium concentration
decreasing from 2586.00 TU (1963) to 20.00-30.00 TU (2007). Using an exponential decay
equation, it can be found that the decayed tritium concentrations of precipitation in 2007 (which
would represent the tritium concentrations in groundwater that had infiltrated between 1952 and
2007) exhibited tritium concentration ranges from 50.00 to 225.00 TU during the period of 1962—
1966, and from 10.00 to 35.00 TU during the period of 1967-2007 (Fig. 4; Jiao et al., 2004;
Huang and Pang, 2010; Pang et al., 2010). Thus, saline spring containing No. 7 sample in the QL
with a tritium concentration of less than 1.00 TU was regarded as paleo-water (Table 1). Saline
springs containing No. 16-21 and 36 samples in the WQ and saline spring containing No. 41
sample in the EQ, which had tritium concentrations of less than 10.00 TU, were regarded as
pre-modern water or mixtures of pre-modern water and modern water (Table 1). River water
containing No. 50 and 51 samples with tritium concentrations ranging from 22.20 to 25.19 TU
were regarded as modern water (Table 2).

10000+

1000 -

1004

Tritium (TU)

10 4

{ ] A Urumgqi (GNIP) O Precipitation

L O Jiaoetal. (2004) A Decayedto 2007

0-1- T T T T T T T T T
1952 1958 1964 1970 1976 1982 1988 1994 2000 2006

Fig. 4 Tritium concentration in precipitation from 1952 to 2007 and the decayed tritium concentration in the
QSB of the Kaqu Basin (modified after Huang and Pang (2010)). GNIP, Global Network of Isotopes in
Precipitation. It should be noted that the tritium input sequence of precipitation in the study area was based on the
tritium sequence in the Tarim Basin from 1952 to 2007, which was constructed by Jiao et al. (2004), Huang and
Pang (2010) and Pang et al. (2010).

4.3 Srisotope compositions

The *’St/**Sr ratios of saline springs in the QSB ranged from 0.70969 to 0.71110 (mean value of
0.71038), which were lower than those of river water that ranged from 0.71192 to 0.71344 (mean
value of 0.71293). Saline springs of the QL presented *’Sr/*°Sr ratios varying from 0.70969 to
0.71016 (mean value of 0.70983), whereas saline springs of the WQ exhibited 7S1/*°Sr ratios
varying from 0.71008 to 0.71080 (mean value of 0.71046). Similarly, saline springs of the EQ
showed *’St/*°Sr ratios ranging from 0.71076 to 0.71110 (mean value of 0.71090). These results
indicate that the *’Sr/**Sr ratios of saline springs increased from the QL (west) to the EQ (east) in
the QSB. The Sr*" concentrations of saline springs in the QSB ranged from 3.10 to 396.90 mg/L
with a mean value of 149.36 mg/L (Table 1). In comparison, the Sr** concentrations of river water
were in the range of 0.19-0.55 mg/L, with a mean value of 0.35 mg/L (Table 2).
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5 Discussion

5.1 Origin of saline springs

5.1.1 Elemental evidence
The origin of salinity in sedimentary basin fluids has historically been attributed to the subaerial
evaporation of seawater and the dissolution of evaporates (Rittenhouse, 1967; Carpenter, 1978;
Land and Prezbindowski, 1981; Tan et al., 2011). Previous studies about the K/Br ratio indicated
that saline springs were formed by the leaching of halite (Tan et al., 2004). The explanation has
been manifested from evidence lines of high Na" plus C1~ concentrations and high Na/Clratio (the
value is close to 1.0, exhibiting the characteristics of halite dissolution) in the QSB (Fig. 5).
Abnormally low Na/Cl ratio has been observed in the saline spring containing No. 20 sample in
the WQ, which may be a result of halite precipitation. Meanwhile, C1™ is a conservative element
that has been continuously concentrated during the evaporation of water, given that the
relationship between Na/Cl ratio and Cl concentration of saline springs in the QSB reflected an
uneven spatial distribution of CI” concentrations (Fig. 5), indicating the different variations in
salinity among the saline springs. Therefore, we conclude that saline springs from Group I (No.
31, 37-38 and 43—-45 samples; Table 1) to Group III (No. 1-15, 18-19, 22-23, 27-28, 32-34 and
39-42 samples; Table 1) experienced gradual evaporation, which is depicted by the right radiating
arrow in Figure 5.
3
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Fig. 5 Relationship between Na/Cl ratio and C1” concentration of saline springs in the QSB of the Kuqga Basin.
Group I included the No. 31, 37-38 and 43-45 samples; Group II included the No. 16—-17, 21, 24-26, 29-30 and
35-36 samples; and Group III included the No. 1-15, 18—19, 22-23, 27-28, 32—-34 and 39-42 samples. The gray
square represents the Na/Cl ratio ranged from 0.71 to1.00.

To further distinguish the origin of salinity in saline springs of the QSB, we calculated the
Br/Cl ratios in all of saline springs, given that bromide is an ideal element for identifying the
origin of solutes, the mixing or dilution of brines, and various water-rock interaction processes
without diagenetic alterations (Stueber and Walter, 1991; Tan et al., 2011). Figure 6 shows the
pitch points of Brx10°/Cl ratio on the concentration curve of water from the Yellow Sea (Chen,
1983). It can be seen that all of saline springs are located below the evaporation-concentration
curve of the Yellow Sea water. Furthermore, if the Na/Cl ratios were in the range of 0.87-0.99 or
higher and the ratios of Brx10°/Cl were in the range of 0.87-0.08 or smaller, then the saline
springs were generally considered to be leached halite (Tan et al., 2004). In addition, the Sr/Ca
ratio is also a good proxy of salinity and has been successfully used in some geologic studies
(Odum, 1951; Holmes et al., 1992; Bouaicha et al., 2019). In this study, the Sr/Ca ratios of saline
springs in the QSB were greater than 0.0050. Meanwhile, there is a good relationship between the
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concentrations of Sr°'and Ca®’, indicating that quite a significant portion of the Sr*” in saline
spring of the QSB was derived from the dissolution of evaporite minerals, which is consistent
with the lithologic characteristics of the area.

Based on the above results of the Na/Cl, Br/Cl and Str/Ca ratios, we suggest that salinity of
saline springs in the QSB likely was originated from the evaporation and halite dissolution of
river water and/or precipitation that passed through the halite-rich stratum. Nonetheless, it is
unreliable to determine the origin of saline springs by only using Na/Cl and Br/Cl ratios, such that
a combination of other isotopes must also be used. Therefore, the characteristics of the H-O-Sr
isotope compositions are discussed below to shed further light on the origin of saline springs.
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Fig. 6 Relationship between lg(Brx10%/Cl) ratio and CI™ concentration of saline springs in the QSB of the Kuqa
Basin. Evaporation-concentration curve of the Yellow Sea water is from Chen (1983).

5.1.2 H-O isotopes and tritium concentration evidence

The isotope compositions of saline springs and river water in the QSB of the Kuga Basin are
shown in Tables 1 and 2. The relationships between 6D and 8'%0 of saline springs and river water
in the QSB in relation to the global meteoric water line (GMWL: 8D=88'*0+10; Craig, 1961) are
shown in Figure 7. The local evaporation line (LEL: §D=4.875'%0-20.71; R*=1.000), which is the
linear regression line of river water in the study area and lake water of the Ebinur Lake, is also
shown in Figure 7.
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Fig. 7 Relationship between 8D and §'*0 of saline springs and river water in the QSB of the Kuqa Basin,
Ebinur Lake in Xinjiang (Zheng et al., 1995), intercrystalline brines in the Luo Bei sub-basin (Wang et al., 1997),
and the Osl formation water and the O,y formation water in the Tazhong area of Tarim Basin (Li and Cai, 2017).
The global meteoric water line (GMWL, 8D=85'%0+10) is from Craig (1961) and the local evaporation line

(LEL: 8D=4.878'%0-20.71) is from this study.
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River water in the QSB of the Kuqa Basin represented the modern meteoric water due to the
tritium concentrations of river water (ranging from 22.20 to 25.20 TU; Table 2) were similar to
the tritium concentration of the rainfall sample (29.8 TU) in the Tarim Basin (Huang and Pang,
2010). The tritium concentration of precipitation in the Tarim Basin was still higher than those in
the other areas (Liu, 2001; Huang and Pang, 2010; Pang et al., 2010), which may be the result of
nuclear explosion tests and high latitude atmospheric circulation. As shown in Figure 7, 6D and
8'%0 values (ranging from —70.00%o to —59.00%0 and —9.10%o to —7.30%o, respectively) of saline
springs in the WQ (No. 16, 18-20, 22, 23, 32—-33 and 36 samples) and 6D and 880 values
(ranging from —82.00%o to —70.00%o and —12.20%o to —10.80%o, respectively) of river water were
situated close to the GMWL, suggesting that those saline springs mainly originated from
precipitation following river water recharging. These observations were confirmed by the
similarities in major chemical compositions (Fig. 3).

Meanwhile, saline springs of the QSB in the Kuga Basin (3D: —84.70%o to —36.00%o, 5'°O:
-9.10%0 to 2.00%o) and intercrystalline brines in the Luo Bei sub-basin (8D: —32.00%o to
—10.00%o0; 8'%0: 5.10%o to 7.60%0; Wang et al., 1997) showed a gradual positive enrichment trend
in heavy isotopes along the LEL, suggesting the influence of evaporation. However, despite that,
saline springs were not formed by evapo-concentration because it is unlikely that high chloride
concentrations in saline springs can result in evapo-concentration and highly salinity. Thus, we
conclude that saline spring water may have experienced intense evapo-concentration before
dissolving the salty minerals or after returning to the surface. Thus, the high CI” concentration in
saline spring water was mainly dominated by the dissolution of salty minerals in this study (Fig.
5). In addition, 6D and §'%0 (ranging from —61.00%0 to —37.00%0 and —3.50%0 to 2.00%eo,
respectively) of saline springs in the QSB of the Kuqa Basin overlapped with those (8D:
~53.00%0 to —30.30%0, 8'°0: —2.60%o to 1.30%0) of the O;l formation water in the Tarim Basin
(Li and Cai, 2017), indicating similar genesis between these water. According to the residence
times, saline spring containing No. 7 sample in the QL with tritium concentrations of less than
1.00 TU was regarded as paleo-water (Table 1; Fig. 4). In contrast, saline springs containing No.
16-21 and 36 samples in the WQ and saline spring containing No. 41 sample in the EQ, which
had tritium concentrations of less than 10.00 TU, were regarded as pre-modern water or mixtures
of pre-modern water and modern water (Table 1; Fig. 4). All of these saline springs had relatively
short residence time. In addition, the long residence time of saline spring containing No. 7 sample
in the QL may be caused by the mixture of formation water (e.g., residual brines from salt layers).

On the basis of the above discussion, we conclude that the presented 6D and §'%0 values of
saline springs (Fig. 7) are indicative of multiple origins and/or influences. In addition, it is
difficult to discriminate amongst the possible mechanisms of saline spring formation from only
oxygen and hydrogen isotopes. The following discussion will rely on Sr isotope to further
constrain the origins of saline springs.

5.1.3 Srisotope evidence

Evaporite deposits are not only from the marine or terrestrial brine but also from different inputs
of deep circulating atmospheric water, basinal fluids, or hydrothermal fluids. Large evaporite
deposits are associated with marine fluids, whereas small evaporite deposits may be associated
with terrestrial fluids (Lowenstein et al., 1989, 2016, 2017; Zhang et al., 1991; Lowenstein and
Risacher, 2009; Fan et al., 2018; Li et al., 2018). Generally, terrestrial fluids with high 7Sr/8Sr
ratios are affected by crust materials. In contrast, seawater with low ¥7Sr/%Sr ratios is affected by
mantle materials. The *’Sr/*°Sr ratios of seawater ranged from 0.70772 to 0.70783 during the
Paleocene (Hess et al., 1986; Fig. 8). Tertiary halites in the western Qaidam Basin exhibited
¥7Sr/*Sr ratios between 0.711566 and 0.711607 (Tan et al., 2010; Fig. 8). The ¥'St/**Sr ratios of
Khammouan potash deposit ranged from 0.707542 to 0.709461 (Tan et al., 2010; Fig. 8). In
contrast, the ®’Sr/**Sr ratios of saline springs in the QSB of the Kuga Basin were likely close to
the value of a mixture of marine and terrestrial sources (Fig. 8). The results indicated a gradual

increase in *’Sr/*Sr ratios of saline springs from the QL (west) to the EQ (east) in the QSB (Figs.
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- Khummouan potash deposite, Laos
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Fig. 8 Ranges of *’Sr/*Sr ratios in saline springs of the QSB in the Kuqa Basin and from other different
strontium sources. The mantle and lithosphere data were sourced from Kelts (1987), seawater data from Hess et
al. (1986), and Tertiary halites and Khammouan potash deposit data from Tan et al. (2010).
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Fig. 9 Plots of relationship between *’Sr/**Sr ratio and 1g(1000/Sr) of saline springs and river water in the QSB
of the Kuqa Basin (this study) and the Osl formation water and the O,y formation water in the Tazhong area of
the Tarim Basin (Li and Cai, 2017). Group I represents meteoric water source; Group II represents formation
water mixed with paleo-meteoric water; Group III represents saline springs; and Group IV represents formation
water mixed with hydrothermal water.

8—10). This conclusion is consistent with the characteristics of the depositional environment of
the EQ that has been converted to the continental facies during the Miocene (Liu et al., 2013).
The relationship between *’Sr/*®Sr ratio and 1g(1000/Sr) is commonly utilized to trace the
origin of water to further distinguish the genetic type of saline springs (Fig. 9). The sample area
can be broadly divided into four groups. First, the modern river water located in Group I with
distinctly higher ®’Sr/*Sr ratios and very lower Sr concentrations (Figs. 9 and 10) can be regarded
as an end-member of meteoric water source. Second, the O;l formation water located in Group II
with higher *’Sr/*Sr ratios and Sr concentrations may have resulted from the mixing of meteoric
water (Figs. 9 and 10) (Li and Cai, 2017). Third, the O,y formation water located in Group III
with distinctly lower *’Sr/*Sr ratios and significantly higher Sr concentrations may have resulted
from the mixing of hydrothermal water (Figs. 9 and 10) (Li and Cai, 2017). Generally, the
formation of brines related to seawater or marine evaporate sources and oilfield brine also
exhibited low *’Sr/**Sr ratios (Tan et al., 2011; Fan et al., 2018). Lastly, the saline springs in
Group III which located between groups II and IV, has the same origin as that observed in the
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end-member mixing of water with low *’Sr/*°Sr ratios and high Sr concentrations, showing a
mixed origin (Figs. 9 and 10). Thus, it is more possible that the lower ®’Sr/*Sr ratio compositions
with higher Sr concentrations were partly attributed to the mixture of formation water, or the
mixture of seawater or marine evaporate sources. Meanwhile, the *’Sr/*Sr ratios of saline springs
gradually increased from the QL (west) to the EQ (east) with mean values of 0.70983, 0.71046
and 0.71090 for the QL, WQ and EQ, respectively, indicating the gradual mixing of the terrestrial
sources water. In addition, the TDS of Group III was significantly higher than those of other
groups (Fig. 10), implying that halite dissolution is a major solute source for saline springs in the
QSB. This conclusion was also verified by the relationship between Na/Cl and Br/Cl ratios.
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Fig. 10 Plots of relationship between ¥’Sr/*Sr ratio and total dissolved solid (TDS) concentration of saline
springs and river water in the QSB of the Kuqa Basin (this study) and the O3l formation water and the O,y
formation water in the Tazhong area of the Tarim Basin (Li and Cai, 2017). Group I represents meteoric water
source; Group II represents formation water mixed with paleo-meteoric water; Group III represents saline springs;
and Group IV represents formation water mixed with hydrothermal water.

The above results were combined with the general chemical compositions and the
characteristics of the H-O-Sr isotopes of saline springs. Above all, the origin of salinity was
mainly dominated by the dissolution of salty minerals due to the river water and/or precipitation
passed through halite-rich stratum. Moreover, we conclude that there are two possible origins of
saline springs in the QSB of the Kuqa Basin: (1) the infiltration of meteoric water (river water)
that circulated deep into the earth, thus dissolving salty minerals and returning to the surface
along the fault; and (2) the mixture of formation water, or the mixture of seawater or marine
evaporate sources and its subsequent discharge to the surface through faults.

5.2 Conceptual model of saline spring circulation and potential prediction of potassium
formation

From the Paleogene to Quaternary, the South Tianshan Mountains began to uplift due to the
Himalayan tectonic movement. Many high and steep thrust faults were well-developed in the
Kuga Basin due to the complex tectonic evolutions (Lai et al., 2017; Feng et al., 2018), which
served as favorable conduits for conducting groundwater circulation. Precipitation or river water
easily infiltrated under tectonic fracture conditions from the source area to the discharge area and
circulated deep into the earth, dissolving salty minerals and returning to the surface along the
fault (Fig. 11). Thus, groundwater was transported from the deep earth to the ground surface and
carried information reflecting the underground geological status. The evolution process of spring
water in this area is concisely illustrated in Figure 11. The characteristics of saline spring
circulation in the QSB of the Kuqa Basin indicated the considerable potential of QSB for seeking
potassium.
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Fig. 11 Water circulation and evolution of saline springs in the QSB of the Kuga Basin

6 Conclusions

The Kuqa Basin is located in the northern part of the Tarim Basin and is regarded as the most

potential potash-seeking area. Thus, it is important to understand the saltwater circulation and
evolution of this saline basin. By analyzing the elemental concentrations and H-O-Sr isotopes of
saline springs and river water in the QSB of the Kuga Basin, we summarize some conclusions.
According to the evolution and formation of saline springs, the origin of salinity was mainly
dominated by the dissolution of salty minerals due to the river water and/or precipitation passing
through halite-rich stratum in the study area. In combination with the general chemical
compositions and the characteristics of H-O-Sr isotopes of saline springs, we conclude that there
are two possible origins of saline springs in the QSB: (1) the infiltration of meteoric water (river
water), which circulated deep into the earth, dissolving salty minerals and returning to the surface
along the fault; and (2) the mixture of formation water, or the mixture of seawater or marine
evaporate sources and its subsequent discharge to the surface through faults. Moreover, the
87S1/*Sr ratios of saline springs gradually increased from the QL (west) to the EQ (east) in the
QSB. This conclusion is consistent with the characteristics of the depositional environment of the
EQ that has been converted to the continental facies during the Miocene. Our findings provide
new insight into the possible saltwater circulation and evolution of saline basins.
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