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Abstract: It is widely accepted that hydrogeochemistry of  saline springs is extremely important to 
understand the water circulation and evolution of  saline basins and to evaluate the potential of  
potassium-rich evaporites. The Kuqa Basin, located in the northern part of  the Tarim Basin in Northwest 
China, is a saline basin regarded as the most potential potash-seeking area. However, the origin and water 
circulation processes of  saline springs have yet to be fully characterized in this saline basin. In this study, a 
total of  30 saline spring samples and 11 river water samples were collected from the Qiulitage Structural 
Belt (QSB) of  the Kuqa Basin. They were analyzed for major (K+, Ca2+, Na+, Mg2+, SO42−, Cl− and 
HCO3

−) and trace (Sr2+ and Br−) ion concentrations, stable H-O-Sr isotopes and tritium concentrations in 
combination with previously published hydrogeochemical and isotopic (H-O) data in the same area. It is 
found that the water chemical type of  saline springs in the study area belonged to the Na-Cl type, and that 
of  river water belonged to the Ca-Mg-HCO3-SO4 type. The total dissolved solid (TDS) of  saline springs 
in the QSB ranged from 117.77 to 314.92 g/L, reaching the brine level. On the basis of  the general 
chemical compositions and the characteristics of  the stable H-O-Sr isotopes of  saline springs, we infer 
that those saline springs mainly originated from precipitation following river water recharging. In addition, 
we found that saline springs were not formed by evapo-concentration because it is unlikely that the high 
chloride concentration of  saline springs resulted in evapo-concentration and high salinity. Therefore, we 
conclude that saline spring water may have experienced intense evapo-concentration before dissolving the 
salty minerals or after returning to the surface. The results show that the origin of  salinity was mainly 
dominated by dissolving salty minerals due to the river water and/or precipitation that passed through the 
halite-rich stratum. Moreover, there are two possible origins of  saline springs in the QSB: one is the 
infiltration of  the meteoric water (river water), which then circulates deep into the earth, wherein it 
dissolves salty minerals, travels along the fault and returns to the surface; another is the mixture of  
formation water, or the mixture of  seawater or marine evaporate sources and its subsequent discharge to 
the surface under fault conditions. Our findings provide new insight into the possible saltwater circulation 
and evolution of  saline basins in the Tarim Basin. 
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1  Introduction 
Giant potash deposits are common in the Mesozoic-Cenozoic Tethyan domain, such as in the Late 
Jurassic Central Asian Basin (Turkmenistan and Uzbekistan) and the Late Cretaceous Khorat 
Basin (Thailand and Laos) (Yang et al., 2014; Liu et al., 2018). The Tarim Basin, located in the 
eastern Tethyan domain in Northwest China, developed thick evaporites (including carbonate, 
gypsum, halite, etc.) and was considered as the target area for the future exploration of potash 
deposits in China (Liu et al., 2018). The Kuqa Basin is located in the northern part of the Tarim 
Basin and is regarded as the most potential potash-seeking area due to the following conditions: 
(1) during the Paleogene-Neogene, transgression from the Tethyan Ocean repeatedly invaded into 
the Kuqa Basin and provided abundant salt substances; (2) the long-term arid climate accelerated 
the formation of dominant salt-bearing strata, such as the Paleogene Kumugeliemu Formation 
(approximately 2200 m in thickness) and the Neogene Jidike Formation (about 1100 m in 
thickness) (Li et al., 2002; Wang et al., 2015); and (3) geological exploration of the drill cores and 
outcrops revealed the occurrence of minor potash minerals (e.g., sylvite, aphthitalite, picromerite 
and carnallite) in the Kuqa Basin (Liu et al., 1987; Liu et al., 2008, 2009a, b, 2018; Deng et al., 
2013; Zheng et al., 2015). Compared with the drilling implement, the investigation on the 
hydrogeochemistry of saline springs is a more economical, convenient and effective measure to 
understand the water circulation and evolution of a saline basin and to evaluate the potential of 
potassium-rich evaporites. 

Saline springs are developed in the Kuqa Basin. Over the past four decades, scholars have 
conducted several studies on the hydrogeochemical signatures of saline springs in this area (Chen 
and Qu, 1986; Tan et al., 2004; Ma and Ma, 2006; Bo et al., 2013a, b, 2015). These studies 
obtained the following conclusions: (1) low K+ concentrations (<1.0 g/L) and low K/Br and Br/Cl 
ratios indicated that the formation of saline springs was from leaching halite; and (2) gradual 
changes in the H-O isotope compositions of saline springs and the wide distribution of the 
chloride water suggested the influence of strong evaporation and deep Ca-Cl brines (Bo et al., 
2013a). However, the origin of saline springs is complicated as they may be produced from the 
mixing of deep brines, halite-leaching brines and surface waters (Bo et al., 2013b). Current 
research does not fully evince the origin of saline springs. In addition, water circulation processes 
involving saline springs have yet to be fully characterized. 

Conventional chemical indices are not able to infer the provenance for potash deposits as 
compared to isotopic studies due to element variations in water, which are caused by various 
chemical reactions. Stable H-O isotopes are able to trace the formation process and provenance of 
saline springs (Henderson et al., 2003, 2010; Fan et al., 2010, 2014; Anderson et al., 2011; Li et 
al., 2012; Tan et al., 2014; Li et al., 2018; Xiao et al., 2018; Guo et al., 2019). Stable Sr isotope 
can also indicate the source of salt materials and efficiently trace the provenance of salts due to its 
weak fractionation under chemical, evaporative and microbial conditions (Chacko and Deines, 
2008; Luz et al., 2009; Tan et al., 2010, 2011; Chapman et al., 2013; Capo et al., 2014; Stewart et 
al., 2015; Fan et al., 2018). Herein, 30 saline spring samples and 11 river water samples were 
collected from the Qiulitage Structural Belt (QSB) of the Kuqa Basin and analyzed for major (K+, 
Ca2+, Na+, Mg2+, SO4

2−, Cl− and HCO3
−) and trace (Sr2+ and Br−) ion concentrations, stable 

H-O-Sr isotopes and tritium concentrations. In combination with previously published 
hydrogeochemical and isotopic (H-O) data in the same area (Tan et al., 2004; Ma and Ma, 2006; 
Bo et al., 2013a, b), this study aims to systematically discuss the origin and water circulation of 
saline springs in the QSB of the Kuqa Basin. Our findings will provide new insight into the 
possible saltwater circulation and evolution of saline basins. 

2  Geological setting 
The Kuqa Basin, which is located in the northern part of the Tarim Basin and the southern part of 
the Tianshan Mountains in Northwest China and belongs to the Mesozoic-Cenozoic sedimentary 
depression, has a width of about 70 km from south to north and a length of about 150 km from 
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east to west, thereby covering an area of about 30×103 km2 (Fig. 1a) (Bally and Snelson, 1980; 
Graham et al., 1993; Cao et al., 1994; Lu et al., 1994; Jia, 2001; Wang et al., 2016; Peng et al., 
2018). The Kuqa Basin consists of the Northern Monoclinic Belt, Kalasu-Yiqikelike Structural 
Belt, Baicheng Sag, Yangxia Sag, QSB and Southern Slope Region (Fig. 1b). The 
Mesozoic-Cenozoic stratigraphy in the Kuqa Basin includes the Jurassic and Cretaceous units, the 
Kumugeliemu (E1-2km) Group, the Suweiyi (E2-3s) Formation, the Jidike (N1j), Kangcun (N1-2k) 
and Kuqa (N2k) formations, and the Quaternary (Q) units from bottom to top (Fig. 2). Extensive 
evaporitic rocks are present in the Kumugeliemu Group and are exposed to the northern 
Kelasu-Yiqikelike Structural Belt (KYSB) and the southern QSB (Tang et al., 2004; Liu et al., 
2013). During the Paleogene to Quaternary, the South Tianshan Mountains were uplifted due to 
the Himalayan tectonic movement. However, the KYSB was too close to the South Tianshan 
Mountains, which was disadvantageous to the preservation of potassium in the later period. 
Instead, due to the ancient uplift of the QSB and relatively long distance to the South Tianshan 
Mountains, the QSB was conducive to potassium preservation in the later period. Thus, the QSB 
was regarded as the most potential potash-seeking area. 

 

Fig. 1  Geological map of the Kuqa Basin (a) and locations of the main sampling sites in the Qiulitage Structural 
Belt (QSB) of the Kuqa Basin (b). The geological map of the Kuqa Basin was modified after Liu et al. (2013). 
QL, Quele Tectonic Belt; WQ, Western Qiulitage Tectonic Belt; EQ, Eastern Qiulitage Tectonic Belt. (1), 
Yekeqigen Anticline; (2), Kurukol Anticline; (3), Awat Anticline; (4), Miskantak Anticline; (5), North Qiulitage 
Anticline; (6), South Qiulitage Anticline; (7), Kuqatawu Anticline; (8) Torclark Anticline; (9), Eastern Qiulitage 
Anticline. 

The QSB is located in the southern part of the Kuqa Basin. It is bounded by the North Tarim 
uplift to the south and the Baicheng Sag to the north, and has an east−west length of 
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approximately 320 km and a north−south width of 20−30 km (Fig. 1b), covering a total area of 
about 5.2×103 km2 (Miao et al., 2004; Chen et al., 2007; Han et al., 2018; Du et al., 2019). In this 
study, the QSB was subdivided into three sub-belts: Quele Tectonic Belt (QL), Western Qiulitage 
Tectonic Belt (WQ) and Eastern Qiulitage Tectonic Belt (EQ). The QL was composed of the 
Yekeqigen Anticline, the Kurukol Anticline, the Awat Anticline and the Miskantak Anticline, with 
a length of about 75 km and a width of about 10−25 km. The WQ consists of the South Qiulitage 
Anticline and the North Qiulitage Anticline, with a length of about 120 km and a width of about 
15−25 km. The EQ is located at the connection of Baicheng Sag and Yangxia Sag and includes 
the Kuqatawu Anticline, the Torclark Anticline and the eastern Qiulitage Anticline, with a length 
of about 100 km and a width of about 15−25 km. 

 
Fig. 2  Generalized Mesozoic-Cenozoic stratigraphy of the Kuqa Basin 

3  Sample collection and analysis 
3.1  Sample collection 
The present study performed data collection and field investigations from 2015 to 2018. Thirty 
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saline spring samples were collected in the QSB of the Kuqa Basin (Fig. 1b). The collected 30 
saline spring samples basically represent the geochemical information of the salt bodies in the 
QSB. To further study the interrelation between the water bodies in the QSB, we collected 11 
water samples from the Muerzate River. Each sample was collected using an acid-washed 500 mL 
low-density polyethylene (LDPE) bottle that was rinsed with the sample water. Within 48 h of 
collection, each sample was filtered through a 0.45 μm Luerloch syringe filter (polypropylene 
membrane) and transferred into an acid-washed 125 mL LDPE bottle for further analysis. 
3.2  Elemental analysis 
The samples of saline springs and river water from the QSB were analyzed for K+, Ca2+, Na+, 
Mg2+, SO4

2−, Cl−, HCO3
−, Br− and Sr2+ concentrations in the Qinghai Institute of Salt Lakes, 

Chinese Academy of Sciences. The K+ and SO4
2− concentrations were determined by gravimetric 

methods. The Ca2+ and Mg2+ concentrations were measured by ethylene diaminetetraacetic acid 
(EDTA) titration. The Cl− concentration was determined by AgNO3 potentiometric titration. The 
HCO3

− concentration was analyzed by HCl titration. The Na+ concentration was calculated as 
follows: Na+ =(NCO 3

2−+NHCO 3
−+NSO

 

4
2−+NCl −)−(NK + +NCa 2+ +NMg 2+ ), where N represents the ionic 

equivalent value. The analytical precision of the major cations and anions was better than ±2%. 
The Sr2+ concentration was determined by atomic absorption spectrometry (GBC 908 AA 
spectrophotometer, GBC Co., Australia) with an analytical error of ±5%. All of the major ion 
analyses in this study followed the procedures of the Qinghai Institute of Salt Lakes (1988). 
3.3  Stable H-O isotopes and tritium concentration analysis 
The δD and δ18O analyses were performed in the Open Laboratory for Isotope Geochemistry, China 
Geological Survey. They were measured on a flash 1112HT elemental analyzer (Thermo Scientific 
Company, USA) and a MAT253 mass spectrometer (Thermo Scientific Company, USA) following a 
conjoint analysis, and the results were reported relative to the standard mean ocean water (SMOW), 
with the standard deviations of ±(1.00‰–2.00‰) for δD and ±(0.20‰–0.30‰) for δ18O. 

In this study, we collected 500 mL of water samples for tritium (3H or T) measurement, and 
tritium analyses were performed in the Institute of Hydrogeology and Environmental Geology, 
Chinese Academy of Geological Sciences. The tritium concentration was determined using 
electrolytic enrichment with a tritium enrichment factor of about 20 and the liquid scintillation 
counting (Quantulus 1220c) method with a detection limit of 0.30 tritium units (TU). 
3.4  Stable Sr isotope analysis 
87Sr/86Sr analyses were performed in the Open Laboratory for Isotope Geochemistry, China 
Geological Survey. For the determination of the 87Sr/86Sr ratio, a sufficient amount of solution 
was loaded in a cation exchange column resin (Dowex 50×8, produced by Dow Chemical 
Company, USA) to separate Sr from the other cations, particularly from Rb. The Sr isotope was 
measured on a thermoelectric ionization mass spectrometer (Thermo Scientific Company, USA) 
and corrected relative to NBS987 standard with a measured average value of 0.71032±0.00004 
(2σ). The precision of each sample was found to be within ±2.0×10−5. 

4  Results 
4.1  Elemental compositions 
The chemical composition statistical summaries of saline springs and river water from the study 
area are shown in Tables 1 and 2. As a whole, the total dissolved solid (TDS) concentrations of 
saline springs in the QSB ranged from 117.77 to 314.92 g/L, reaching the brine level. The TDS 
concentrations of saline springs in the QL had the range of 282.25−312.00 g/L (mean value of 
302.67 g/L), which were higher than those of saline springs in the WQ (117.77−314.92 g/L, mean 
value of 251.52 g/L) and EQ (137.93−308.06 g/L, mean value of 218.90 g/L). The major ionic 
compositions of saline springs were dominated by Na+ and Cl−, belonging to the Na-Cl type. The 
concentrations of cations and anions of saline springs generally exhibited the following order:  
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Cl−>SO4
2−>HCO3

− and Na+>Ca2+>Mg2+ (Table 1). Most saline springs exhibited low K+ 

concentrations, ranging from 0.02 to 0.68 g/L (mean value of 0.17 g/L). However, six 
potassium-rich brines were observed in the WQ (Shan et al., 2019). The potassium-rich brines of 
the WQ (n=6) exhibited K+ concentrations ranging from 15.25 to 45.68 g/L (Table 1), which were 
dozens of times higher than those reported previously (Tan et al., 2004; Bo et al., 2013b, 2015). 
The Br− concentrations of saline springs in the QSB ranged from 0.60 to 53.54 mg/L, which were 
lower than the Br− concentration of seawater (61.00 mg/L; Chen, 1983), suggesting that the 
paleo-halite had low Br− concentration in the Tarim Basin (Tan et al., 2004).  

The TDS concentrations of river water were in the range of 0.22–0.51 g/L, with a mean value 
of 0.35 g/L. In addition, all these samples contained HCO3

− and SO4
2− as well as Ca2+ and Mg2+, 

which served as their predominant anions and cations, respectively. Generally, the chemical 
composition of river water can be used as background recharge source to indicate the chemical 
variation and evolution during the water circulation of saline springs. Tables 1 and 2 and Figure 3 
show the chemical data for the varying cation and anion compositions of saline springs and river 
water. The river water with low TDS concentrations was mainly characterized by 
Ca-Mg-HCO3-SO4 type of chemistry. As the TDS concentration increased, the concentrations of 
Na+ and Cl− correspondingly increased, such that the chemical type of river water evolved to the 
Na-Cl type following the long-term intensive evaporation and dissolution of halite. 

 
Fig. 3  Piper plots of chemical compositions of saline springs and river water in the QSB of the Kuqa Basin 

4.2  H-O isotopes and tritium concentration compositions 
As shown in Tables 1 and 2, saline springs and river water in the QSB of the Kuqa Basin 
exhibited δD values from –84.70‰ to –36.00‰ and from –82.00‰ to –70.00‰, respectively, and 
δ18O values from –9.10‰ to 2.00‰ and from –12.20‰ to –10.80‰, respectively. Saline springs 
of the QL presented δD values between –76.00‰ and –57.00‰ and δ18O values between –9.10‰ 
and –4.70‰. Similarly, saline springs of the WQ exhibited δD values ranging from –84.70‰ 
to –36.00‰ and δ18O values ranging from –9.10‰ to 2.00‰, whereas saline springs of the EQ 
showed δD values between –77.00‰ and –72.00‰ and δ18O values between –7.30‰ and  
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–5.60‰. 
Tritium (3H or T) is an unstable isotope of hydrogen with a half-life period of 12.32 a. There 

are two dominant sources of tritium in meteoric water: cosmic ray produce tritium and 
nuclear-bombing tritium (Solomon and Cook, 2000; Jiao et al., 2004; Michel, 2005; Huang and 
Pang, 2010; Pang et al., 2010; Huang et al., 2017). In this study, we would infer whether the 
sample water was sourced from modern water or paleo-water according to the tritium 
concentration values. The tritium input sequence of precipitation in the study area was based on 
the tritium sequence in the Tarim Basin from 1952 to 2007, which was constructed by Jiao et al. 
(2004), Huang and Pang (2010) and Pang et al. (2010). The results show a tritium concentration 
decreasing from 2586.00 TU (1963) to 20.00–30.00 TU (2007). Using an exponential decay 
equation, it can be found that the decayed tritium concentrations of precipitation in 2007 (which 
would represent the tritium concentrations in groundwater that had infiltrated between 1952 and 
2007) exhibited tritium concentration ranges from 50.00 to 225.00 TU during the period of 1962–
1966, and from 10.00 to 35.00 TU during the period of 1967–2007 (Fig. 4; Jiao et al., 2004; 
Huang and Pang, 2010; Pang et al., 2010). Thus, saline spring containing No. 7 sample in the QL 
with a tritium concentration of less than 1.00 TU was regarded as paleo-water (Table 1). Saline 
springs containing No. 16–21 and 36 samples in the WQ and saline spring containing No. 41 
sample in the EQ, which had tritium concentrations of less than 10.00 TU, were regarded as 
pre-modern water or mixtures of pre-modern water and modern water (Table 1). River water 
containing No. 50 and 51 samples with tritium concentrations ranging from 22.20 to 25.19 TU 
were regarded as modern water (Table 2). 

 
Fig. 4  Tritium concentration in precipitation from 1952 to 2007 and the decayed tritium concentration in the 
QSB of the Kaqu Basin (modified after Huang and Pang (2010)). GNIP, Global Network of Isotopes in 
Precipitation. It should be noted that the tritium input sequence of precipitation in the study area was based on the 
tritium sequence in the Tarim Basin from 1952 to 2007, which was constructed by Jiao et al. (2004), Huang and 
Pang (2010) and Pang et al. (2010). 

4.3  Sr isotope compositions 
The 87Sr/86Sr ratios of saline springs in the QSB ranged from 0.70969 to 0.71110 (mean value of 
0.71038), which were lower than those of river water that ranged from 0.71192 to 0.71344 (mean 
value of 0.71293). Saline springs of the QL presented 87Sr/86Sr ratios varying from 0.70969 to 
0.71016 (mean value of 0.70983), whereas saline springs of the WQ exhibited 87Sr/86Sr ratios 
varying from 0.71008 to 0.71080 (mean value of 0.71046). Similarly, saline springs of the EQ 
showed 87Sr/86Sr ratios ranging from 0.71076 to 0.71110 (mean value of 0.71090). These results 
indicate that the 87Sr/86Sr ratios of saline springs increased from the QL (west) to the EQ (east) in 
the QSB. The Sr2+ concentrations of saline springs in the QSB ranged from 3.10 to 396.90 mg/L 
with a mean value of 149.36 mg/L (Table 1). In comparison, the Sr2+ concentrations of river water 
were in the range of 0.19−0.55 mg/L, with a mean value of 0.35 mg/L (Table 2). 
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5  Discussion 
5.1  Origin of saline springs 
5.1.1  Elemental evidence 
The origin of salinity in sedimentary basin fluids has historically been attributed to the subaerial 
evaporation of seawater and the dissolution of evaporates (Rittenhouse, 1967; Carpenter, 1978; 
Land and Prezbindowski, 1981; Tan et al., 2011). Previous studies about the K/Br ratio indicated 
that saline springs were formed by the leaching of halite (Tan et al., 2004). The explanation has 
been manifested from evidence lines of high Na+ plus Cl− concentrations and high Na/Cl ratio (the 
value is close to 1.0, exhibiting the characteristics of halite dissolution) in the QSB (Fig. 5). 
Abnormally low Na/Cl ratio has been observed in the saline spring containing No. 20 sample in 
the WQ, which may be a result of halite precipitation. Meanwhile, Cl− is a conservative element 
that has been continuously concentrated during the evaporation of water, given that the 
relationship between Na/Cl ratio and Cl− concentration of saline springs in the QSB reflected an 
uneven spatial distribution of Cl− concentrations (Fig. 5), indicating the different variations in 
salinity among the saline springs. Therefore, we conclude that saline springs from Group I (No. 
31, 37−38 and 43−45 samples; Table 1) to Group III (No. 1−15, 18−19, 22−23, 27−28, 32−34 and 
39−42 samples; Table 1) experienced gradual evaporation, which is depicted by the right radiating 
arrow in Figure 5. 

 
Fig. 5  Relationship between Na/Cl ratio and Cl− concentration of saline springs in the QSB of the Kuqa Basin. 
Group I included the No. 31, 37−38 and 43−45 samples; Group II included the No. 16−17, 21, 24−26, 29−30 and 
35−36 samples; and Group III included the No. 1−15, 18−19, 22−23, 27−28, 32−34 and 39−42 samples. The gray 
square represents the Na/Cl ratio ranged from 0.71 to1.00. 

To further distinguish the origin of salinity in saline springs of the QSB, we calculated the 
Br/Cl ratios in all of saline springs, given that bromide is an ideal element for identifying the 
origin of solutes, the mixing or dilution of brines, and various water-rock interaction processes 
without diagenetic alterations (Stueber and Walter, 1991; Tan et al., 2011). Figure 6 shows the 
pitch points of Br×103/Cl ratio on the concentration curve of water from the Yellow Sea (Chen, 
1983). It can be seen that all of saline springs are located below the evaporation-concentration 
curve of the Yellow Sea water. Furthermore, if the Na/Cl ratios were in the range of 0.87−0.99 or 
higher and the ratios of Br×103/Cl were in the range of 0.87−0.08 or smaller, then the saline 
springs were generally considered to be leached halite (Tan et al., 2004). In addition, the Sr/Ca 
ratio is also a good proxy of salinity and has been successfully used in some geologic studies 
(Odum, 1951; Holmes et al., 1992; Bouaicha et al., 2019). In this study, the Sr/Ca ratios of saline 
springs in the QSB were greater than 0.0050. Meanwhile, there is a good relationship between the 



 SHAN Junjie et al.: Origin and circulation of saline springs in the Kuqa Basin of the Tarim Basin… 341 

 

 

concentrations of Sr2+and Ca2+, indicating that quite a significant portion of the Sr2+ in saline 
spring of the QSB was derived from the dissolution of evaporite minerals, which is consistent 
with the lithologic characteristics of the area. 

Based on the above results of the Na/Cl, Br/Cl and Sr/Ca ratios, we suggest that salinity of 
saline springs in the QSB likely was originated from the evaporation and halite dissolution of 
river water and/or precipitation that passed through the halite-rich stratum. Nonetheless, it is 
unreliable to determine the origin of saline springs by only using Na/Cl and Br/Cl ratios, such that 
a combination of other isotopes must also be used. Therefore, the characteristics of the H-O-Sr 
isotope compositions are discussed below to shed further light on the origin of saline springs. 

 
Fig. 6  Relationship between lg(Br×103/Cl) ratio and Cl− concentration of saline springs in the QSB of the Kuqa 
Basin. Evaporation-concentration curve of the Yellow Sea water is from Chen (1983). 

5.1.2  H-O isotopes and tritium concentration evidence 
The isotope compositions of saline springs and river water in the QSB of the Kuqa Basin are 
shown in Tables 1 and 2. The relationships between δD and δ18O of saline springs and river water 
in the QSB in relation to the global meteoric water line (GMWL: δD=8δ18O+10; Craig, 1961) are 
shown in Figure 7. The local evaporation line (LEL: δD=4.87δ18O−20.71; R2=1.000), which is the 
linear regression line of river water in the study area and lake water of the Ebinur Lake, is also 
shown in Figure 7. 

 
Fig. 7  Relationship between δD and δ18O of saline springs and river water in the QSB of the Kuqa Basin, 
Ebinur Lake in Xinjiang (Zheng et al., 1995), intercrystalline brines in the Luo Bei sub-basin (Wang et al., 1997), 
and the O3l formation water and the O1-2y formation water in the Tazhong area of Tarim Basin (Li and Cai, 2017). 
The global meteoric water line (GMWL, δD=8δ18O+10) is from Craig (1961) and the local evaporation line 
(LEL: δD=4.87δ18O−20.71) is from this study. 
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River water in the QSB of the Kuqa Basin represented the modern meteoric water due to the 
tritium concentrations of river water (ranging from 22.20 to 25.20 TU; Table 2) were similar to 
the tritium concentration of the rainfall sample (29.8 TU) in the Tarim Basin (Huang and Pang, 
2010). The tritium concentration of precipitation in the Tarim Basin was still higher than those in 
the other areas (Liu, 2001; Huang and Pang, 2010; Pang et al., 2010), which may be the result of 
nuclear explosion tests and high latitude atmospheric circulation. As shown in Figure 7, δD and 
δ18O values (ranging from −70.00‰ to −59.00‰ and −9.10‰ to −7.30‰, respectively) of saline 
springs in the WQ (No. 16, 18−20, 22, 23, 32−33 and 36 samples) and δD and δ18O values 
(ranging from −82.00‰ to −70.00‰ and −12.20‰ to −10.80‰, respectively) of river water were 
situated close to the GMWL, suggesting that those saline springs mainly originated from 
precipitation following river water recharging. These observations were confirmed by the 
similarities in major chemical compositions (Fig. 3). 

Meanwhile, saline springs of the QSB in the Kuqa Basin (δD: −84.70‰ to −36.00‰, δ18O: 
−9.10‰ to 2.00‰) and intercrystalline brines in the Luo Bei sub-basin (δD: −32.00‰ to 
−10.00‰; δ18O: 5.10‰ to 7.60‰; Wang et al., 1997) showed a gradual positive enrichment trend 
in heavy isotopes along the LEL, suggesting the influence of evaporation. However, despite that, 
saline springs were not formed by evapo-concentration because it is unlikely that high chloride 
concentrations in saline springs can result in evapo-concentration and highly salinity. Thus, we 
conclude that saline spring water may have experienced intense evapo-concentration before 
dissolving the salty minerals or after returning to the surface. Thus, the high Cl− concentration in 
saline spring water was mainly dominated by the dissolution of salty minerals in this study (Fig. 
5). In addition, δD and δ18O (ranging from −61.00‰ to −37.00‰ and −3.50‰ to 2.00‰, 
respectively) of saline springs in the QSB of the Kuqa Basin overlapped with those (δD: 
−53.00‰ to −30.30‰, δ18O: −2.60‰ to 1.30‰) of the O3l formation water in the Tarim Basin 
(Li and Cai, 2017), indicating similar genesis between these water. According to the residence 
times, saline spring containing No. 7 sample in the QL with tritium concentrations of less than 
1.00 TU was regarded as paleo-water (Table 1; Fig. 4). In contrast, saline springs containing No. 
16−21 and 36 samples in the WQ and saline spring containing No. 41 sample in the EQ, which 
had tritium concentrations of less than 10.00 TU, were regarded as pre-modern water or mixtures 
of pre-modern water and modern water (Table 1; Fig. 4). All of these saline springs had relatively 
short residence time. In addition, the long residence time of saline spring containing No. 7 sample 
in the QL may be caused by the mixture of formation water (e.g., residual brines from salt layers). 

On the basis of the above discussion, we conclude that the presented δD and δ18O values of 
saline springs (Fig. 7) are indicative of multiple origins and/or influences. In addition, it is 
difficult to discriminate amongst the possible mechanisms of saline spring formation from only 
oxygen and hydrogen isotopes. The following discussion will rely on Sr isotope to further 
constrain the origins of saline springs. 
5.1.3  Sr isotope evidence 
Evaporite deposits are not only from the marine or terrestrial brine but also from different inputs 
of deep circulating atmospheric water, basinal fluids, or hydrothermal fluids. Large evaporite 
deposits are associated with marine fluids, whereas small evaporite deposits may be associated 
with terrestrial fluids (Lowenstein et al., 1989, 2016, 2017; Zhang et al., 1991; Lowenstein and 
Risacher, 2009; Fan et al., 2018; Li et al., 2018). Generally, terrestrial fluids with high 87Sr/86Sr 
ratios are affected by crust materials. In contrast, seawater with low 87Sr/86Sr ratios is affected by 
mantle materials. The 87Sr/86Sr ratios of seawater ranged from 0.70772 to 0.70783 during the 
Paleocene (Hess et al., 1986; Fig. 8). Tertiary halites in the western Qaidam Basin exhibited 
87Sr/86Sr ratios between 0.711566 and 0.711607 (Tan et al., 2010; Fig. 8). The 87Sr/86Sr ratios of 
Khammouan potash deposit ranged from 0.707542 to 0.709461 (Tan et al., 2010; Fig. 8). In 
contrast, the 87Sr/86Sr ratios of saline springs in the QSB of the Kuqa Basin were likely close to 
the value of a mixture of marine and terrestrial sources (Fig. 8). The results indicated a gradual 
increase in 87Sr/86Sr ratios of saline springs from the QL (west) to the EQ (east) in the QSB (Figs.  
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Fig. 8  Ranges of 87Sr/86Sr ratios in saline springs of the QSB in the Kuqa Basin and from other different 
strontium sources. The mantle and lithosphere data were sourced from Kelts (1987), seawater data from Hess et 
al. (1986), and Tertiary halites and Khammouan potash deposit data from Tan et al. (2010).  

 

Fig. 9  Plots of relationship between 87Sr/86Sr ratio and lg(1000/Sr) of saline springs and river water in the QSB 
of the Kuqa Basin (this study) and the O3l formation water and the O1-2y formation water in the Tazhong area of 
the Tarim Basin (Li and Cai, 2017). Group I represents meteoric water source; Group II represents formation 
water mixed with paleo-meteoric water; Group III represents saline springs; and Group IV represents formation 
water mixed with hydrothermal water.  

8−10). This conclusion is consistent with the characteristics of the depositional environment of 
the EQ that has been converted to the continental facies during the Miocene (Liu et al., 2013). 

The relationship between 87Sr/86Sr ratio and lg(1000/Sr) is commonly utilized to trace the 
origin of water to further distinguish the genetic type of saline springs (Fig. 9). The sample area 
can be broadly divided into four groups. First, the modern river water located in Group I with 
distinctly higher 87Sr/86Sr ratios and very lower Sr concentrations (Figs. 9 and 10) can be regarded 
as an end-member of meteoric water source. Second, the O3l formation water located in Group II 
with higher 87Sr/86Sr ratios and Sr concentrations may have resulted from the mixing of meteoric 
water (Figs. 9 and 10) (Li and Cai, 2017). Third, the O1-2y formation water located in Group III 
with distinctly lower 87Sr/86Sr ratios and significantly higher Sr concentrations may have resulted 
from the mixing of hydrothermal water (Figs. 9 and 10) (Li and Cai, 2017). Generally, the 
formation of brines related to seawater or marine evaporate sources and oilfield brine also 
exhibited low 87Sr/86Sr ratios (Tan et al., 2011; Fan et al., 2018). Lastly, the saline springs in 
Group III which located between groups II and IV, has the same origin as that observed in the 
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end-member mixing of water with low 87Sr/86Sr ratios and high Sr concentrations, showing a 
mixed origin (Figs. 9 and 10). Thus, it is more possible that the lower 87Sr/86Sr ratio compositions 
with higher Sr concentrations were partly attributed to the mixture of formation water, or the 
mixture of seawater or marine evaporate sources. Meanwhile, the 87Sr/86Sr ratios of saline springs 
gradually increased from the QL (west) to the EQ (east) with mean values of 0.70983, 0.71046 
and 0.71090 for the QL, WQ and EQ, respectively, indicating the gradual mixing of the terrestrial 
sources water. In addition, the TDS of Group III was significantly higher than those of other 
groups (Fig. 10), implying that halite dissolution is a major solute source for saline springs in the 
QSB. This conclusion was also verified by the relationship between Na/Cl and Br/Cl ratios.  

 
Fig. 10  Plots of relationship between 87Sr/86Sr ratio and total dissolved solid (TDS) concentration of saline 
springs and river water in the QSB of the Kuqa Basin (this study) and the O3l formation water and the O1-2y 
formation water in the Tazhong area of the Tarim Basin (Li and Cai, 2017). Group I represents meteoric water 
source; Group II represents formation water mixed with paleo-meteoric water; Group III represents saline springs; 
and Group IV represents formation water mixed with hydrothermal water. 

The above results were combined with the general chemical compositions and the 
characteristics of the H-O-Sr isotopes of saline springs. Above all, the origin of salinity was 
mainly dominated by the dissolution of salty minerals due to the river water and/or precipitation 
passed through halite-rich stratum. Moreover, we conclude that there are two possible origins of 
saline springs in the QSB of the Kuqa Basin: (1) the infiltration of meteoric water (river water) 
that circulated deep into the earth, thus dissolving salty minerals and returning to the surface 
along the fault; and (2) the mixture of formation water, or the mixture of seawater or marine 
evaporate sources and its subsequent discharge to the surface through faults. 
5.2  Conceptual model of saline spring circulation and potential prediction of potassium 
formation 
From the Paleogene to Quaternary, the South Tianshan Mountains began to uplift due to the 
Himalayan tectonic movement. Many high and steep thrust faults were well-developed in the 
Kuqa Basin due to the complex tectonic evolutions (Lai et al., 2017; Feng et al., 2018), which 
served as favorable conduits for conducting groundwater circulation. Precipitation or river water 
easily infiltrated under tectonic fracture conditions from the source area to the discharge area and 
circulated deep into the earth, dissolving salty minerals and returning to the surface along the 
fault (Fig. 11). Thus, groundwater was transported from the deep earth to the ground surface and 
carried information reflecting the underground geological status. The evolution process of spring 
water in this area is concisely illustrated in Figure 11. The characteristics of saline spring 
circulation in the QSB of the Kuqa Basin indicated the considerable potential of QSB for seeking 
potassium. 
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Fig. 11  Water circulation and evolution of saline springs in the QSB of the Kuqa Basin 

6  Conclusions 
The Kuqa Basin is located in the northern part of the Tarim Basin and is regarded as the most 
potential potash-seeking area. Thus, it is important to understand the saltwater circulation and 
evolution of this saline basin. By analyzing the elemental concentrations and H-O-Sr isotopes of 
saline springs and river water in the QSB of the Kuqa Basin, we summarize some conclusions. 
According to the evolution and formation of saline springs, the origin of salinity was mainly 
dominated by the dissolution of salty minerals due to the river water and/or precipitation passing 
through halite-rich stratum in the study area. In combination with the general chemical 
compositions and the characteristics of H-O-Sr isotopes of saline springs, we conclude that there 
are two possible origins of saline springs in the QSB: (1) the infiltration of meteoric water (river 
water), which circulated deep into the earth, dissolving salty minerals and returning to the surface 
along the fault; and (2) the mixture of formation water, or the mixture of seawater or marine 
evaporate sources and its subsequent discharge to the surface through faults. Moreover, the 
87Sr/86Sr ratios of saline springs gradually increased from the QL (west) to the EQ (east) in the 
QSB. This conclusion is consistent with the characteristics of the depositional environment of the 
EQ that has been converted to the continental facies during the Miocene. Our findings provide 
new insight into the possible saltwater circulation and evolution of saline basins. 
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