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Abstract In this paper, we investigate the boundedness and compactness for variation operators of Calderón-

Zygmund singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces. To be

precise, let ρ > 2 and K be a standard Calderón-Zygmund kernel. Denote by Vρ(TK) and Vρ(T m
K,b) (m > 1) the

ρ-variation operators of Calderón-Zygmund singular integrals and their m-th iterated commutators, respectively.

By assuming that Vρ(TK) satisfies an a priori estimate, i.e., the map Vρ(TK) : Lp0 (Rn) → Lp0 (Rn) is bounded

for some p0 ∈ (1,∞), the bounds for Vρ(TK) and Vρ(T m
K,b) on weighted Morrey spaces and Sobolev spaces

are established. Meanwhile, the compactness properties of Vρ(T m
K,b) on weighted Lebesgue and Morrey spaces

are also discussed. As applications, the corresponding results for the Hilbert transform, the Hermite Riesz

transform, Riesz transforms and rough singular integrals as well as their commutators on the above function

spaces are presented.
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1 Introduction

The variational inequalities for various operators have been an active topic of current research. The

first work was due to Lépingle [32] who established the variational inequality for general martingales

(see also [42] for a simple proof). Motivated by the work [32], similar variation estimates were obtained

by Bourgain [2] for the ergodic averages of a dynamic system. Since then, more and more scholars

were devoted to studying variational inequalities for various operators. For examples, see [26, 27] for

the ergodic averages, [35, 36] for the differential operators, [3, 18] for the Hilbert transform, [13, 18]

for the Riesz transforms, [4, 5, 14, 28] for the singular integrals with rough kernels, [35, 36, 46, 47] for the

Calderón-Zygmund singular integrals and their commutators, and [37,38] for the discrete singular integral

operators.
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Most of the function spaces considered in the above references are Lebesgue spaces and their weighted

versions, and a natural question is whether variational inequalities hold for more general function spaces.

In this paper, we establish the boundedness and compactness for variation operators of Calderón-Zygmund

singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces. This is the main

motivation of this work.

1.1 Objectives of research

Let T = {Tϵ}ϵ>0 be a family of bounded operators satisfying limϵ→0 Tϵf(x) = Tf(x) almost everywhere

for a certain class of functions f . For ρ > 2, the ρ-variation operator of T is defined by

Vρ(T )(f)(x) = sup
{ϵi}↘0

( ∞∑
i=1

|Tϵif(x) − Tϵi+1f(x)|ρ
)1/ρ

,

where the supremum runs over all the sequences {ϵi} of positive numbers decreasing to zero.

Let K(·, ·) be a kernel defined on Rn × Rn \ {(x, x) : x ∈ Rn}. We consider the following operator of

Calderón-Zygmund type

TK(f)(x) =

∫
Rn

K(x, y)f(y)dy for all x /∈ suppf. (1.1)

Formally, the operator TK can be rewritten as TK(f)(x) = limϵ→0+ TK,ϵ(f)(x), where TK,ϵ is the trun-

cated singular integral operator, i.e.,

TK,ϵ(f)(x) =

∫
|x−y|>ϵ

K(x, y)f(y)dy.

The commutator of TK with a suitable function b is defined as

TK,b(f)(x) := [b, TK ](f)(x) =

∫
Rn

(b(x) − b(y))K(x, y)f(y)dy = lim
ϵ→0+

TK,b,ϵ(f)(x),

where

TK,b,ϵ(f)(x) :=

∫
|x−y|>ϵ

(b(x) − b(y))K(x, y)f(y)dy.

Let T 1
K,b = TK,b. For m > 2, the m-th iterated commutator Tm

K,b is defined by

Tm
K,b(f)(x) := [b, Tm−1

K,b ](f)(x) =

∫
Rn

(b(x) − b(y))mK(x, y)f(y)dy = lim
ϵ→0+

Tm
K,b,ϵ(f)(x), (1.2)

where

Tm
K,b,ϵ(f)(x) :=

∫
|x−y|>ϵ

(b(x) − b(y))mK(x, y)f(y)dy.

Based on the above, the variation operators of Calderón-Zygmund singular integrals and their com-

mutators can be defined as follows:

Definition 1.1 (Variation operators for singular integrals and their commutators). Let TK = {TK,ϵ}ϵ>0

and T m
K,b = {Tm

K,b,ϵ}ϵ>0 with m > 1. For ρ > 2, the ρ-variation operator of TK is defined by

Vρ(TK)(f)(x) := sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

K(x, y)f(y)dy

∣∣∣∣ρ)1/ρ

. (1.3)

Similarly, the ρ-variation operator of T m
K,b can be given as

Vρ(T m
K,b)(f)(x) := sup

εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

(b(x) − b(y))mK(x, y)f(y)dy

∣∣∣∣ρ)1/ρ

, (1.4)

where the above sup is taken over all the sequences {εi} decreasing to zero. For convenience, we set

Vρ(T m
K,b) = Vρ(TK) when m = 0.
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It should be pointed out that the operators defined in (1.1) and (1.2) have some classical models, which

are listed as follows:

• When n = 1 and K(x, y) = 1
x−y , TK (resp. Tm

K,b) is (resp. the m-th order commutator of) the

Hilbert transform. We define TK = H and T m
K,b = Hm

b for m > 1.

• When n = 1 and K(x, y) = R±(x, y), where R±(x, y) is an Hermite Riesz kernel whose expressions

can be found in [43], TK (resp. Tm
K,b) is (resp. the m-th order commutator of) the Hermite Riesz

transform. We define TK = R± and T m
K,b = Rm

±,b for m > 1.

• When n > 2 and K(x, y) = Rj(x, y), where Rj(x, y) := Γ(n+1
2 )π−n+1

2
xj−yj

|x−y|n+1 for 1 6 j 6 n, TK

(resp. Tm
K,b) is (resp. the m-th order commutator of) the Riesz transform. We define TK = Rj and

T m
K,b = Rm

j,b for m > 1.

• When n > 2 and K(x, y) = Ω(x−y)
|x−y|n , where Ω ∈ L1(Sn−1) is homogeneous of zero and satisfies∫

Sn−1 Ω(θ)dσ(θ) = 0, TK (resp. Tm
K,b) is just the usual (resp. the m-th order commutator of) singular

integral operator with the rough kernel Ω. We define TK = TΩ and T m
K,b = T m

Ω,b for m > 1.

• When TK is bounded on L2(Rn) and the kernel K is a standard Calderón-Zygmund kernel, which

satisfies the size condition

|K(x, y)| 6 A

|x− y|n
for x ̸= y (1.5)

and the regularity conditions

|K(x, y) −K(z, y)| 6 A|x− z|δ

|x− y|n+δ
for |x− y| > 2|x− z|, (1.6)

|K(y, x) −K(y, z)| 6 A|x− z|δ

|x− y|n+δ
for |x− y| > 2|x− z|, (1.7)

where δ > 0, then TK (resp. Tm
K,b) is the (resp. m-th order commutator of) standard Calderón-Zygmund

singular integral operator on Rn.

Denote by CZO(Rn) the set of all the Calderón-Zygmund singular integral operators on Rn. It is well

known that the Hilbert transform and the Hermite Riesz transform (see [43, Proposition 3.1]) belong to

CZO(R) and the Riesz transform belongs to CZO(Rn). Moreover, TΩ ∈ CZO(Rn) when Ω ∈ Lipα(Sn−1)

for α > 0.

Throughout this paper, we always assume that ρ > 2 since the ρ-variation in the case where ρ 6 2 is

often not bounded (see [1, 2]).

1.2 Variation operators for singular integrals

We attribute the developments of the variation operators for singular integrals to two stages.

Stage 1 (n = 1). The variation operators for singular integrals were originally studied by Campbell

et al. [3] who proved that Vρ(H) is of type (p, p) for 1 < p < ∞ and of weak type (1, 1). Subsequently,

Gillespie and Torrea [18] extended the result of [3] to the weighted version and showed that Vρ(H)

is bounded on Lp(w) for 1 < p < ∞ and w ∈ Ap(R). The same conclusion holds for Vρ(R±) (see

[13, Theorem A]). Later on, Crescimbeni et al. [13] obtained the L1(w) → L1,∞(w) bounds for Vρ(H)

and Vρ(R±) with w ∈ A1(R) (see [13, Theorem A]). Recently, Liu and Wu [33] established a weighted

boundedness criterion: the operator Vρ(TK) is bounded on Lp(w) for 1 < p < ∞ and w ∈ Ap(R), provided

that n = 1 and Vρ(TK) is of type (p0, p0) for some p0 ∈ (1,∞).

Stage 2 (n > 1). The higher-dimensional case began with Campbell et al. [4] in 2003 when they

obtained the Lp(Rn) (1 < p < ∞) bounds for Vρ(TΩ), provided that Ω ∈ L log+ L(Sn−1). This result

was essentially improved by Ding et al. [14] to the case where Ω ∈ H1(Sn−1) since L log+ L(Sn−1) (
H1(Sn−1). The weighted result for Vρ(TΩ) was first considered by Ma et al. [36] who proved that Vρ(TΩ)

is bounded on Lp(w) for 1 < p < ∞ and w ∈ Ap(Rn), provided that Ω ∈ Lipα(Sn−1) for α > 0. Later

on, the above result was improved by Chen et al. [5] to the case where Ω ∈ Lq(Sn−1) for some q > 1.

In [18], Gillespie and Torrea studied the variation operators for Riesz transforms and showed that Vρ(Rj)

is bounded on Lp(|x|α) for 1 < p < ∞ and −1 < α < p− 1. Recently, Zhang and Wu [47] extended the
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above result to the general Ap weight. Particularly, Ma et al. [36] established a criterion on weighted

variation inequalities for Calderón-Zygmund singular integrals, which is the following theorem.

Theorem A (See [36]). Let K be a kernel satisfying (1.5)–(1.7) and the a priori estimate

∥Vρ(TK)(f)∥Lp0 (Rn) .n,p0 ∥f∥Lp0 (Rn) (1.8)

hold for some p0 ∈ (1,∞). Then Vρ(TK) is bounded on Lp(w) for all 1 < p < ∞ and w ∈ Ap(Rn).

1.3 Variation operators for commutators of singular integrals

It is well known that the commutator [b, T ](f) := bT (f) − T (bf) with the suitable operator T and the

function b was initialized by Coifman et al. [11] who proved that the commutator [b,Rj ] is bounded

on Lp(Rn) for 1 < p < ∞ under the condition that b ∈ BMO(Rn). This result was later improved

by Uchiyama in his remarkable work [44], in which he showed that the commutator [b, TΩ] with Ω ∈
Lip1(Sn−1) is bounded (resp. compactness) on Lp(Rn) for all p ∈ (1,∞) if and only if the symbol

b ∈ BMO(Rn) (resp. b ∈ CMO(Rn)). Here, CMO(Rn) is the closure of C∞
c (Rn) in the BMO(Rn)

topology, which coincides with the space of functions of vanishing mean oscillation. Since then, the

boundedness and compactness of [b, T ] with sorts of operators T on various function spaces have been

studied by many authors (see, e.g., [7, 10,12,31]).

The variation operator for the commutators was first studied by Liu and Wu [33] who showed that

Vρ(T m
K,b) is bounded on Lp(w) for 1 < p < ∞ and w ∈ Ap(R), provided that m > 1 and K satisfies

(1.5)–(1.8) and b ∈ BMO(R). As applications, they obtained the Lp(w) bounds for Vρ(Hm
b ) and Vρ(Rm

±,b)

for 1 < p < ∞ and w ∈ Ap(R) if b ∈ BMO(R). Later on, the above results were extended by Zhang

and Wu [46] to weighted Morrey spaces. In the general dimensional case where n > 1, Chen et al. [6]

established the following result.

Theorem B (See [6]). Let m = 1, ρ > 2, b ∈ BMO(Rn) and K be a kernel satisfying (1.5)–(1.8). Then

for 1 < p < ∞ and w ∈ Ap(Rn),

∥Vρ(T m
K,b)(f)∥Lp(w) .n,ρ,p ∥b∥BMO(Rn)∥f∥Lp(w), ∀ f ∈ Lp(w).

It should be pointed out that Theorem B can be extended to arbitrary order commutators of Calderón-

Zygmund singular integral operators by applying Theorem B, the method in the proof of [6, Theorem 1.1]

and the induction arguments as in getting [15, Theorem 1]. Here, we only list the relevant result and

leave the proof to the readers.

Theorem 1.2. Let m > 1, ρ > 2, b ∈ BMO(Rn) and Vρ(T m
K,b) be defined as in (1.4). Assume that the

kernel K satisfies (1.5)–(1.8). Then for 1 < p < ∞ and w ∈ Ap(Rn), we have

∥Vρ(T m
K,b)(f)∥Lp(w) .n,ρ,p ∥b∥mBMO(Rn)∥f∥Lp(w), ∀ f ∈ Lp(w).

Recently, Guo et al. [21] studied the compactness for Vρ(TK,b) on Lp(w), which can be formulated as

follows.

Theorem C (See [21]). Let 1 < p < ∞ and w ∈ Ap(Rn). Then Vρ(TK,b) is a compact operator

on Lp(w), provided that b ∈ CMO(Rn) and K satisfies (1.5)–(1.7) and that Vρ(TK,b) is of type (p, p).

1.4 Main motivations

The first question is based on Theorem 1.2 and Theorem C, which is the following question.

Question 1.3. Is the operator Vρ(T m
K,b) with m > 2 a compact operator on Lp(w) for some p ∈ (1,∞)

and w ∈ Ap(Rn) when b ∈ CMO(Rn) and K satisfies (1.5)–(1.8)?

Our next question is related to weighted Morrey spaces. Let us recall the weighted Morrey spaces.
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Definition 1.4 (Weighed Morrey spaces [30]). Let 1 6 p < ∞ and 0 6 β < 1. For a weight w defined

on Rn, the weighted Morrey space Mp,β(w) is defined by

Mp,β(w) := {f ∈ Lp
loc(w) : ∥f∥Mp,β(w) < ∞},

where

∥f∥Mp,β(w) := sup
B balls in Rn

(
1

w(B)β

∫
B

|f(x)|pw(x)dx

)1/p

with the supremum taken over all the balls in Rn. Particularly, Mp,β(w) is just the classical weighted

Lebesgue space Lp(w) when β = 0.

When w ≡ 1, Mp,β(w) reduces to the classical Morrey space Mp,β(Rn), which was first introduced

by Morrey [39] to study the local behavior of solutions to second order elliptic partial differential

equations. The weighted Morrey spaces Mp,β(w) were originally introduced by Komori and Shirai [30]

who established the bounds for the Hardy-Littlewood maximal operator, the fractional integral operator

and the Calderón-Zygmund singular integral operator on Mp,β(w). Later on, more and more scholars

have devoted to investigating the boundedness of various operators on Mp,β(Rn) (see, e.g., [16, 40,41]).

Some questions arise naturally.

Question 1.5. Let m > 1, p ∈ (1,∞), β ∈ (0, 1), w ∈ Ap(Rn) and K satisfy (1.5)–(1.8). Are the

operators Vρ(TK) and Vρ(T m
K,b) bounded on Mp,β(w)? Is Vρ(T m

K,b) compact on Mp,β(w)?

The third question focuses on the regularity properties of variation operators of singular integrals

and their commutators, which is inspired by the regularity theory of maximal operators. In 1997, Kin-

nunen [29] first studied the Sobolev regularity for maximal operators and showed that the centered

Hardy-Littlewood maximal operator M is bounded on the Sobolev space W 1,p(Rn) for all 1 < p 6 ∞,

where W 1,p(Rn) is the first order Sobolev space, i.e.,

W 1,p(Rn) := {f : Rn → R : ∥f∥W 1,p(Rn) = ∥f∥Lp(Rn) + ∥∇f∥Lp(Rn) < ∞},

where ∇f = (D1f, . . . , Dnf) is the weak gradient of f . Later on, Kinnunen’s work was extended and

generalized to various variants. Particularly, Haj lasz and Onninen [23] established the following Sobolev

boundedness criterion.

Theorem D (See [23]). Let T be a sublinear operator and be bounded on Lp(Rn) for some p ∈ (1,∞).

If T commutes with translations, i.e., (Tf)h(x) = T (fh)(x) for all x, h ∈ Rn, where fh(x) = f(x + h),

then T is bounded on W 1,p(Rn).

Note that the variation operators must not be linear, and it is natural to expect that it has similar

regularity properties to maximal operators. Actually, it is not difficult to see that when the kernel K

satisfies K(x, y) = K(x−y), the operator Vρ(TK) commutes with translations. Theorem D implies directly

the W 1,p bounds for Vρ(TK) under the Lp bounds for Vρ(TK) with some p ∈ (1,∞). Unfortunately,

the operator Vρ(T m
K,b) does not commute with translations, even in the special case where m = 1 and

K(x, y) = K(x− y), which makes that Theorem D does not apply for Vρ(T m
K,b). Therefore, it is natural

to ask the following question.

Question 1.6. Is the operator Vρ(T m
K,b) bounded on W 1,p(Rn)?

1.5 Outline of this paper

The rest of this paper is organized as follows. In Section 2, we shall present some preliminary definitions

and conclusions, including some properties for Ap(Rn) weights and BMO(Rn) functions as well as a com-

pactness criterion for operators on weighted Lebesgue and Morrey spaces, which are the main ingredients

of concluding the bounds and compactness for variation operators of Calderón-Zygmund singular inte-

grals and their commutators on weighted Lebesgue and Morrey spaces. In Section 3, we shall establish

the boundedness for variation operators of Calderón-Zygmund singular integrals and their commutators

on weighted Morrey spaces. The compactness for the above operators on weighted Lebesgue and Morrey
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spaces will be given in Section 4. Finally, the bounds for the above operators on Sobolev spaces will be

proved in Section 5. The main ingredients of proving the bounds for the above operators on Sobolev

spaces are to establish some suitable difference estimates for the above operators and some properties of

Sobolev spaces.

2 Preliminaries

Throughout the paper, the letters C or c, sometimes with certain parameters, will stand for positive

constants not necessarily the same at each occurrence, but are independent of the essential variables. If

there exists a constant c > 0 depending only on ϑ such that A 6 cB, we then write A .ϑ B or B &ϑ A,

and if A .ϑ and B .ϑ A, we then write A ≃ϑ B. In what follows, we set N = {0, 1, . . .}. The notation

Q(x, r) (resp. B(x, r)) represents the cube (resp. ball) in Rn centered at x ∈ Rn with the length of the

side (resp. radius) r > 0. For convenience, we define |y|∞ := max16j6n |yi| for every y = (y1, . . . , yn).

For a cube Q and a function f defined on Rn, we set fQ = 1
|Q|

∫
Q
f(x)dx.

We now give the definition of Ap weight class.

Definition 2.1 (Ap weight [19]). A weight is a nonnegative and locally integrable function on Rn that

takes values in (0,∞) almost everywhere. For 1 < p < ∞, a weight w is said to be in the Muckenhoupt

weight class Ap(Rn) if there exists a positive constant C such that

sup
Q cubes in Rn

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)1−p′
dx

)p−1

6 C. (2.1)

The smallest constant C in (2.1) is the corresponding Ap constant of w, which is denoted by [w]Ap .

We now recall the definition of BMO(Rn) space.

Definition 2.2 (BMO(Rn) space [19]). The BMO(Rn) space is given by

BMO(Rn) := {f ∈ L1
loc(Rn) : ∥f∥BMO(Rn) := ∥M ♯f∥L∞(Rn) < ∞},

where M ♯f is the sharp maximal function, i.e., M ♯f(x) = supQ∋x
1

|Q|
∫
Q
|f(y)−fQ|dy with the supremum

taken over all the cubes Q in Rn that contain the given point x.

The following result presents some properties for Ap(Rn) weights and BMO(Rn) functions, which are

very useful in the proofs of our main results.

Lemma 2.3. Let 1 < p < ∞ and w ∈ Ap(Rn). Then the following conclusions hold:

(i) There exists a constant θ ∈ (0, 1) such that w1+θ ∈ Ap(Rn). Both θ and [w1+θ]Ap depend only on

n, p and the Ap constant of w.

(ii) There exists a constant t ∈ (1,min{p, 2}) such that w ∈ Ap/t(Rn).

(iii) The measure w(x)dx is doubling, i.e., for all λ > 1 we have

sup
Q cubes in Rn

w(λQ)

w(Q)
6 [w]Apλ

np.

Moreover, there exists a constant γw > 1 such that

inf
Q cubes in Rn

w(2Q)

w(Q)
> γw.

(iv) There exists a constant ϵ > 0 depending only on n and [w]Ap such that for all cubes Q and all

measurable subsets A of Q,
w(A)

w(Q)
.n,[w]Ap

(
|A|
|Q|

)ϵ

.

(v) Let b ∈ BMO(Rn). Then

sup
Q cubes in Rn

(
1

w(Q)

∫
Q

|b(x) − bQ|pw(x)dx

)1/p

≃p,[w]Ap
∥b∥BMO(Rn).
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We remark that Lemma 2.3(i) follows from [9], Lemma 2.3(ii) follows from [30] and Lemma 2.3(iv)

follows from [19]. Lemma 2.3(iii) follows by modifying the proofs of [34, Theorem 1.4.1 and Proposi-

tion 1.4.2(viii)], and the details are omitted. Lemma 2.3(v) is a well-known property for BMO functions

(see [24, 25] for the recent developments).

For convenience, we always use the weighted Morrey spaces associated with cubes. Let 1 6 p < ∞ and

0 6 β < 1. For a weight w defined on Rn, the weighted Morrey space associated with cubes is defined by

M̃p,β(w) := {f ∈ Lp
loc(w) : ∥f∥

M̃p,β(w)
< ∞}, where

∥f∥
M̃p,β(w)

:= sup
Q cubes in Rn

(
1

w(Q)β

∫
Q

|f(x)|pw(x)dx

)1/p

with the supremum taken over all the cubes in Rn.

Remark 2.4. If the weight w is doubling, then we have M̃p,β(w) = Mp,β(w), i.e., ∥f∥
M̃p,β(w)

≃
∥f∥Mp,β(w), which can be seen by the doubling property for w and the observation

Q(x0, r) ⊂ B(x0,
√
n/2r) ⊂ Q(x0,

√
nr), ∀x0 ∈ Rn, r > 0.

To prove the compactness result, we need the following characterization that a subset in Mp,β(w) is a

strongly pre-compact set, which is a direct application of [22, Theorem 3.1].

Proposition 2.5. Let 1 < p < ∞, 0 6 β < 1 and w ∈ Ap(Rn). Then a subset F of Mp,β(w) is a

strongly pre-compact set in Mp,β(w) if F satisfies the following conditions:

(i) F is bounded, i.e., supf∈F ∥f∥Mp,β(w) < ∞;

(ii) F uniformly vanishes at infinity, i.e.,

lim
N→+∞

∥fχEN ∥Mp,β(w) = 0 uniformly for all f ∈ F,

where EN = {x ∈ Rn; |x| > N}.
(iii) F is uniformly translation-continuous, i.e.,

lim
r→0

sup
h∈B(0,r)

∥f(· + h) − f(·)∥Mp,β(w) = 0 uniformly for all f ∈ F.

Remark 2.6. When β = 0, Proposition 2.5 is just the weighted Fréchet-Kolmogorov theorem following

from [8]. When 0 < β < 1, Proposition 2.5 represents a weight version of [7, Theorem 1.12].

We end this section by presenting a useful inequality( ∞∑
i=1

∣∣∣∣ ∫
εi+1<f(x,y)6εi

F (x, y)dy

∣∣∣∣ρ)1/ρ

6
∫
Rn

|F (x, y)|dy (2.2)

for all x ∈ Rn, and any arbitrary functions F and f defined on Rn × Rn, where ρ > 1 and {εi} is an

increasing or decreasing sequence of positive numbers.

3 Boundedness on weighted Morrey spaces

3.1 A boundedness criterion on weighted Morrey spaces

The following is a criterion on the boundedness for variation operators of Calderón-Zygmund singular

integrals and their commutators on weighted Morrey spaces.

Theorem 3.1. Let m ∈ N, ρ > 2, b ∈ BMO(Rn) and Vρ(T m
K,b) be defined as in (1.4). Assume that the

kernel K satisfies (1.5)–(1.8). Then for 1 < p < ∞, w ∈ Ap(Rn) and 0 < β < 1,

∥Vρ(T m
K,b)(f)∥Mp,β(w) .n,m,ρ,p,[w]Ap

∥b∥mBMO(Rn)∥f∥Mp,β(w), ∀ f ∈ Mp,β(w).
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In fact, Theorem 3.1 can be deduced by Theorem 1.2 and the following proposition, which is of interest

in its own right.

Proposition 3.2. Let m ∈ N, ρ > 2, b ∈ BMO(Rn) and Vρ(T m
K,b) be defined as in (1.4). Assume

that K satisfies (1.5) and

∥Vρ(T m
K,b)(f)∥Lp(w) 6 Bp∥b∥mBMO(Rn)∥f∥Lp(w) (3.1)

for some p ∈ (1,∞) and w ∈ Ap(Rn). Here, Bp :=
∥Vρ(T m

K,b)∥Lp(w)→Lp(w)

∥b∥m
BMO(Rn)

. Then for any β ∈ (0, 1),

∥Vρ(T m
K,b)(f)∥Mp,β(w) .n,p,β,m,A,[w]Ap ,Bp

∥b∥mBMO(Rn)∥f∥Mp,β(w), ∀ f ∈ Mp,β(w). (3.2)

Proof. Let f ∈ M̃p,β(w) and β ∈ (0, 1). Fix a cube Q = Q(x0, r). To prove (3.2), by Remark 2.4, it

suffices to show that(
1

w(Q)β

∫
Q

|Vρ(T m
K,b)(f)(x)|pw(x)dx

)1/p

6 C∥b∥mBMO(Rn)∥f∥M̃p,β(w)
, (3.3)

where C > 0 is independent of x0, r and b.

Decompose f as f = fχ2Q + fχ(2Q)c . It is clear that(
1

w(Q)β

∫
Q

|Vρ(T m
K,b)(f)(x)|pw(x)dx

)1/p

6
(

1

w(Q)β

∫
Q

|Vρ(T m
K,b)(fχ2Q)(x)|pw(x)dx

)1/p

+

(
1

w(Q)β

∫
Q

|Vρ(T m
K,b)(fχ(2Q)c)(x)|pw(x)dx

)1/p

=: I1 + I2. (3.4)

By (3.1) and Lemma 2.3(iii), we get

I1 .p,Bp ∥b∥mBMO(Rn)

(
1

w(Q)β

∫
2Q

|f(x)|pw(x)dx

)1/p

.p,Bp ∥b∥mBMO(Rn)

((
w(2Q)

w(Q)

)β
1

w(2Q)β

∫
2Q

|f(x)|pw(x)dx

)1/p

.n,β,p,[w]Ap ,Bp
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

. (3.5)

We now estimate I2. Fixing x ∈ Q, we get from (2.2) and (1.5) that

Vρ(T m
K,b)(fχ(2Q)c)(x) 6

∫
(2Q)c

|b(x) − b(z)|m|K(x, z)f(z)|dz

6 A

∫
(2Q)c

|b(x) − b(z)|m|f(z)|
|x− z|n

dz. (3.6)

Note that |x− z| > |x− z|∞ > |z−x0|∞−|x−x0|∞ > 1
2 |z−x0|∞ for z ∈ (2Q)c. By Lemma 2.3(i), there

exists a constant θ ∈ (0, 1) such that w1+θ ∈ Ap(Rn). Let t = (1+ϵ)p′

(1+ϵ)p′−ϵ . Clearly, t ∈ (1, p). By (3.6), we

obtain

Vρ(T m
K,b)(fχ(2Q)c)(x) 6 2nA

∞∑
l=0

∫
2lr6|z−x0|∞<2l+1r

|f(z)||b(x) − b(z)|m

|z − x0|n∞
dz

6 2nA

∞∑
l=0

(2lr)−n

∫
2l+1Q

|f(z)||b(x) − b(z)|mdz

6 2n+mA
∞∑
l=0

(2lr)−n

∫
2l+1Q

|f(z)||b(z) − b2l+1Q|mdz



Liu F et al. Sci China Math June 2022 Vol. 65 No. 6 1275

+ 2n+mA

∞∑
l=0

(2lr)−n|b(x) − b2l+1Q|m
∫
2l+1Q

|f(z)|dz

=: I3 + I4. (3.7)

For I3, by Hölder’s inequality,

I3 6 2n+mA
∞∑
l=0

(2lr)−n

(∫
2l+1Q

|f(z)|tdz
)1/t(∫

2l+1Q

|b(z) − b2l+1Q|mt′dz

)1/t′

. (3.8)

Since b ∈ BMO(Rn), we have(∫
2l+1Q

|b(z) − b2l+1Q|mt′dz

)1/t′

.n,m,p ∥b∥mBMO(Rn)|2
l+1Q|1/t

′
. (3.9)

Let s = p/t. Then 1/(s′t) = 1/t− 1/p = 1/(p′(1 + ϵ)). By Hölder’s inequality, we get(∫
2l+1Q

|f(z)|tdz
)1/t

6
(∫

2l+1Q

|f(z)|pw(z)dz

)1/p(∫
2l+1Q

w(z)1−s′dz

)1/(s′t)

6 w(2l+1Q)β/p∥f∥
M̃p,β(w)

(∫
2l+1Q

w(z)1−s′dz

)1/(p′(1+ϵ))

. (3.10)

Since w1+ϵ ∈ Ap(Rn) and (1 + ϵ)(1 − p′) = 1 − s′, we have∫
2l+1Q

w(z)1−s′dz =

∫
2l+1Q

w(z)(1+ϵ)(1−p′)dz

6 [w1+ϵ]
1

p−1

Ap
|2l+1Q|p

′
(∫

2l+1Q

w(x)1+ϵdx

)−1/(p−1)

. (3.11)

By Hölder’s inequality, we get

w(2l+1Q) =

∫
2l+1Q

w(x)dx 6
(∫

2l+1Q

w(x)1+ϵdx

)1/(1+ϵ)

|2l+1Q|ϵ/(1+ϵ),

which leads to
∫
2l+1Q

w(x)1+ϵdx > w(2l+1Q)1+ϵ|2l+1Q|−ϵ. This together with (3.11) leads to∫
2l+1Q

w(z)1−s′dz 6 [w1+ϵ]
1

p−1

Ap
|2l+1Q|p

′
(w(2l+1Q)1+ϵ|2l+1Q|−ϵ)−

1
p−1

6 [w1+ϵ]
1

p−1

Ap
w(2l+1Q)−

1+ϵ
p−1 |2l+1Q|p

′+ ϵ
p−1 . (3.12)

Combining (3.12) with (3.10) implies(∫
2l+1Q

|f(z)|tdz
)1/t

6 [w1+ϵ]
1

p(1+ϵ)

Ap
|2l+1Q|

1
1+ϵ+

ϵ
p(1+ϵ)w(2l+1Q)

β−1
p ∥f∥

M̃p,β(w)
. (3.13)

Then we get from (3.8), (3.9) and (3.13) that

I3 .n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

×
∞∑
l=0

(2lr)−n|2l+1Q| 1
t′ |2l+1Q|

1
1+ϵ+

ϵ
p(1+ϵ)w(2l+1Q)

β−1
p

.n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

∞∑
l=0

w(2l+1Q)
β−1
p , (3.14)

where in the last inequality of (3.14) we have used that 1/(1 + ϵ) + ϵ/(p(1 + ϵ)) = 1/t.
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Fix l ∈ N. By Hölder’s inequality,∫
2l+1Q

|f(z)|dz 6
(∫

2l+1Q

|f(z)|pw(z)dz

)1/p(∫
2l+1Q

w(z)1−p′
dz

)1/p′

6 w(2l+1Q)β/p∥f∥
M̃p,β(w)

(∫
2l+1Q

w(z)1−p′
dz

)1/p′

.

Since w ∈ Ap(Rn), we have(∫
2l+1Q

w(z)1−p′
dz

)1/p′

6 [w]
1/p
Ap

|2l+1Q|w(2l+1Q)−1/p,

which gives ∫
2l+1Q

|f(z)|dz 6 [w]
1/p
Ap

w(2l+1Q)
β−1
p |2l+1Q|∥f∥

M̃p,β(w)
. (3.15)

We get from (3.15) that

I4 .n,p,m,A,[w]Ap
∥f∥

M̃p,β(w)

∞∑
l=1

|b(x) − b2l+1Q|mw(2l+1Q)
β−1
p . (3.16)

It follows from (3.7), (3.14) and (3.16) that

I2 .n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

∞∑
l=0

(
w(2l+1Q)

w(Q)

) β−1
p

+ ∥f∥
M̃p,β(w)

(
1

w(Q)β

∫
Q

( ∞∑
l=0

|b(x) − b2l+1Q|mw(2l+1Q)
β−1
p

)p

w(x)dx

)1/p

.n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

∞∑
l=0

γ
− (1−β)(l+1)

p
w

+ ∥f∥
M̃p,β(w)

(
1

w(Q)

∫
Q

( ∞∑
l=0

|b(x) − b2l+1Q|m
(
w(2l+1Q)

w(Q)

) β−1
p

)p

w(x)dx

)1/p

.n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

+ ∥f∥
M̃p,β(w)

w(Q)−1/p

(∫
Q

( ∞∑
l=0

γ
− (1−β)(l+1)

p
w |b(x) − b2l+1Q|m

)p

w(x)dx

)1/p

. (3.17)

By Minkowski’s inequality and Hölder’s inequality we get(∫
Q

( ∞∑
l=0

γ
− (1−β)(l+1)

p
w |b(x) − b2l+1Q|m

)p

w(x)dx

)1/p

6
∞∑
l=0

γ
− (1−β)(l+1)

p
w

(∫
Q

|b(x) − b2l+1Q|mpw(x)dx

)1/p

. (3.18)

By Lemma 2.3(v) and the fact that |bQ− b2l+1Q| .n (l+ 1)∥b∥BMO(Rn), we get by Minkowski’s inequality

that (∫
Q

|b(x) − b2l+1Q|mpw(x)dx

)1/p

6
(
w(Q)1/(mp)|bQ − b2l+1Q| +

(∫
Q

|b(x) − bQ|mpw(x)dx

)1/(mp))m

.n,m (l + 1)mw(Q)1/p∥b∥mBMO(Rn),
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which combining (3.17) and (3.18) implies

I2 .n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

∞∑
l=0

(l + 1)m

γ
(1−β)(l+1)

p
w

.n,p,m,A,[w]Ap
∥b∥mBMO(Rn)∥f∥M̃p,β(w)

, (3.19)

since γw > 1 and 0 < β < 1. Combining (3.19) with (3.4) and (3.5) yields (3.3). This completes the

proof of Proposition 3.2.

Remark 3.3. (i) Theorem 3.1 for the case where β = 0 and m = 0 was proved by Ma et al. [36] (see

Theorem A).

(ii) Theorem 3.1 implies [46, Theorem 1.6], which corresponds to the case where n = 1 and m = 0.

(iii) Theorem 3.1 is new, even in the unweighted case where w ≡ 1 or m = 0, n > 2.

3.2 Some applications

As applications of Theorem 3.1, we have the following corollaries.

Corollary 3.4. Let ρ > 2, 1 < p < ∞, w ∈ Ap(Rn) and 0 < β < 1. Then

∥Vρ(T )(f)∥Mp,β(w) 6 C∥f∥Mp,β(w), ∀ f ∈ Mp,β(w)

holds, provided that one of the following conditions holds:

(a) T = Rj, 1 6 j 6 n;

(b) T = TΩ, Ω ∈ Lipα(Sn−1) for some α > 0.

Corollary 3.5. Let ρ > 2 and m > 1. Then for 1 < p < ∞, w ∈ Ap(Rn) and 0 6 β < 1, we have

∥Vρ(T )(f)∥Mp,β(w) 6 C∥b∥mBMO(Rn)∥f∥Mp,β(w), ∀ f ∈ Mp,β(w),

provided that one of the following conditions holds:

(a) T = Rm
j,b, 1 6 j 6 n;

(b) T = T m
Ω,b, Ω ∈ Lipα(Sn−1) for some α > 0.

Remark 3.6. (i) The corresponding result for Rj (resp. TΩ) in the case where β = 0 in Corollary 3.4

was given in [47, Theorem 1.1] (resp. [36, Corollary 4]).

(ii) The bounds for Vρ(H) and Vρ(R±) on the weighted Morrey spaces were proved by Zhang and

Wu [46, Theorem 1.1].

(iii) It was shown in [18] that Vρ(Rj) is bounded on Lp(|x|α) for 1 < p < ∞ and −1 < α < p − 1,

which gives that Vρ(Rj) is bounded on Lp(Rn) for all 1 < p < ∞. On the other hand, Campbell et al. [4]

showed that Vρ(TΩ) is of type (p, p) for 1 < p < ∞ when Ω ∈ Lipα(Sn−1) for some α > 0. These bounds

together with Theorem 1.2 yield the conclusions in Corollary 3.4.

(iv) When n > 2, Corollary 3.4 is new, even in the unweighted case where w ≡ 1.

Remark 3.7. (i) Corollary 3.5 for Rm
j,b in the case where β = 0 was proved by Zhang and Wu [47,

Corollary 1.11]. Corollary 3.5 for T = T m
Ω,b in the case where β = 0 and m = 1 was shown by Chen et

al. [6, Corollary 1.2].

(ii) By the known Lp (1 < p < ∞) bounds for Vρ(Rj) with 1 6 j 6 n and Vρ(TΩ) with Ω ∈ Lipα(Sn−1)

for some α > 0 and Theorems 1.2 and 3.1, we can get the desired conclusions in Corollary 3.5.

(iii) Corollary 3.5 is new, even in the unweighted case where w ≡ 1 or β = 0.

4 Compactness on weighted Lebesgue and Morrey spaces

4.1 A compactness criterion on weighted Lebesgue and Morrey spaces

A compactness criterion on variation operators of commutators of Calderón-Zygmund singular integrals

on weighted Lebesgue and Morrey spaces is as follows.
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Theorem 4.1. Let m > 1, ρ > 2, 1 < p < ∞, w ∈ Ap(Rn) and 0 6 β < 1. If K satisfies (1.5)–(1.8)

and b ∈ CMO(Rn), then the operator Vρ(T m
K,b) defined as in (1.4) is a compact operator on Mp,β(w).

Proof. The proof of Theorem 4.1 will be divided into four steps:

Step 1 (Reduction via smooth truncated techniques). We shall adopt the truncated techniques following

from [31] to prove Theorem 4.1. Let φ ∈ C∞([0,∞)) satisfy that 0 6 φ 6 1, φ(t) ≡ 1 if t ∈ [0, 1] and

φ(t) ≡ 0 if t ∈ [2,∞). For any η > 0, we define the function Kη by

Kη(x, y) = K(x, y)

(
1 − φ

(
2

η
|x− y|

))
. (4.1)

In what follows, let us fix b ∈ CMO(Rn), 1 < p < ∞, w ∈ Ap(Rn) and 0 6 β < 1. We shall prove that

there exists a constant C > 0 independent of η such that

∥Vρ(T m
Kη,b)(f) − Vρ(T m

K,b)(f)∥Mp,β(w) 6 Cη∥f∥Mp,β(w), ∀ f ∈ Mp,β(w). (4.2)

By (1.4), (1.5) and (2.2), we have

|Vρ(T m
Kη,b)(f)(x) − Vρ(T m

K,b)(f)(x)|

6 sup
ϵi↘0

( ∞∑
i=1

∣∣∣∣ ∫
ϵi+1<|x−z|6ϵi

(b(x) − b(z))m(Kη(x, z) −K(x, z))f(z)dz

∣∣∣∣ρ)1/ρ

6
∫
Rn

|(b(x) − b(z))m(Kη(x, z) −K(x, z))f(z)|dz

=

∫
Rn

|(b(x) − b(z))mf(z)||K(x, z)|φ
(

2

η
|x− z|

)
dz

6 (2∥b∥L∞(Rn))
m−1∥∇b∥L∞(Rn)A

∫
|x−z|6η

|f(z)|
|x− z|n−1

dz

6 (2∥b∥L∞(Rn))
m−1∥∇b∥L∞(Rn)A2nωnηMf(x) (4.3)

for almost every x ∈ Rn, where ωn = |B(0, 1)|. Combining (4.3) with the Mp,β(w) boundedness for M

implies (4.2).

By (4.2) and [45, p. 278, Theorem (iii)], the compactness for Vρ(T m
K,b) reduces to the compactness for

Vρ(T m
Kη,b

) when η > 0 is small enough, i.e., to prove the compactness for Vρ(T m
K,b), it suffices to prove

that the set

F := {Vρ(T m
Kη,b)(f) : ∥f∥Mp,β(w) 6 1}

is pre-compact when η > 0 is small enough. By Proposition 2.5, it is enough to verify that F satisfies

Propositions 2.5(i)–2.5(iii) .

Step 2 (A verification for Proposition 2.5(i)). Let η ∈ (0, 1). By Theorems 1.2 and 3.1 and (4.2), we

have

∥Vρ(T m
Kη,b

)(f)∥Mp,β(w) 6 ∥Vρ(T m
Kη,b

)(f) − Vρ(T m
K,b)(f)∥Mp,β(w) + ∥Vρ(T m

K,b)(f)∥Mp,β(w)

6 C∥f∥Mp,β(w) 6 C

when ∥f∥Mp,β(w) 6 1. This yields that F satisfies Proposition 2.5(i).

Step 3 (A verification for Proposition 2.5(ii)). Assume that b ∈ C∞
0 (Rn) and is supported in a cube

Q = Q(0, r). Fix f ∈ Mp,β(w) with ∥f∥Mp,β(w) 6 1 and EN := {x ∈ Rn : |x| > N} with N > max{nr, 1}.

Note that |z| 6 n|z|∞ 6 1
2nr 6 1

2N 6 1
2 |x| when x ∈ EN and z ∈ Q. Then we have |x−z| > |x|−|z| > 1

2 |x|
when x ∈ EN and z ∈ Q. By (1.5), we have

|Kη(x, y)| 6 |K(x, y)| 6 A

|x− y|n
for x ̸= y. (4.4)
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Note that b(x) = 0 when x ∈ EN since N > nr. By (4.4) and (2.2), we have

Vρ(T m
Kη,b)(f)(x) 6 A

∫
Rn

|(b(x) − b(z))mf(z)|
|x− z|n

dz 6 2nA∥b∥mL∞(Rn)|x|
−n

∫
Q

|f(z)|dz (4.5)

for almost every x ∈ EN . By the arguments similar to those used to derive (3.15),∫
Q

|f(z)|dz 6 [w]
1/p
Ap

w(Q)
β−1
p |Q|∥f∥

M̃p,β(w)
. (4.6)

For a fixed cube Q̃ = Q̃(x0, t), we get from (4.5) and (4.6) that

1

w(Q̃)β

∫
Q̃

|Vρ(T m
Kη,b)(f)(x)χEN (x)|pw(x)dx

6 C1w(Q)β−1|Q|p 1

w(Q̃)β

∫
Q̃∩EN

|x|−npw(x)dx

6 C1w(Q)β−1|Q|p 1

w(Q̃)β

∞∑
j=0

∫
Q̃∩(B(0,2j+1N)\B(0,2jN))

|x|−npw(x)dx

6 C1w(Q)β−1|Q|p 1

w(Q̃)β

∞∑
j=0

(2jN)−npw(Q̃ ∩ (B(0, 2j+1N) \B(0, 2jN)))

6 C1w(Q)β−1|Q|p
∞∑
j=0

(2jN)−npw(Q̃ ∩ (B(0, 2j+1N) \B(0, 2jN)))1−β , (4.7)

where C1 = (2nA∥b∥mL∞(Rn)∥f∥M̃p,β(w)
)p[w]Ap . Since w ∈ Ap(Rn), there exists a constant ϵ ∈ (0, p) such

that w ∈ Ap−ϵ(Rn). Then by Lemma 2.3(iii), we have

w(Q̃ ∩ (B(0, 2j+1N) \B(0, 2jN)))

6 w(B(0, 2j+1N)) 6 w(Q(0, 2j+2N)) 6 [w]Ap−ϵ(2
j+2N)n(p−ϵ)w(Q(0, 1)).

This together with (4.7) implies that

1

w(Q̃)β

∫
Q̃

|Vρ(T m
Kη,b)(f)(x)χEN (x)|pw(x)dx

6 C1[w]Ap−ϵw(Q)β−1|Q|pw(Q(0, 1))1−β
∞∑
j=0

(2jN)−np(2j+2N)n(p−ϵ)(1−β)

6 C1[w]Ap−ϵw(Q)β−1|Q|pw(Q(0, 1))1−β
∞∑
j=0

(2jN)−npβ−ϵ(1−β)n

6 C1[w]Ap−ϵw(Q)β−1|Q|pw(Q(0, 1))1−βN−npβ−ϵ(1−β)n,

which leads to
∥Vρ(T m

Kη,b
)(f)χEN ∥Mp,β(w)

6 C
1/p
1 [w]

1/p
Ap−ϵ

w(Q)
β−1
p |Q|w(Q(0, 1))

1−β
p N−nβ− ϵ(1−β)n

p .

This implies that F satisfies Proposition 2.5(ii).

Step 4 (A verification for Proposition 2.5(iii)). It suffices to show that

lim
|h|→0

∥Vρ(T m
Kη,b)(f)(· + h) − Vρ(T m

Kη,b)(f)(·)∥Mp,β(w) = 0 (4.8)

for a fixed η ∈ (0, 1).

At first, we claim that Kη(x, y) satisfies

|Kη(x, y) −Kη(z, y)| 6 Ã|x− z|δ

|x− y|n+δ
for |x− y| > 2|x− z|, (4.9)
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where Ã = (2 + 2n+δ+1∥∇φ∥L∞([0,∞)))A.

When |x− y| > 2|x− z|, we consider the following different cases:

(i) (|x− y| > η and |z − y| > η) In this case we have Kη(x, y) = K(x, y) and Kη(z, y) = K(z, y). This

together with (1.6) yields (4.9).

(ii) (|x− y| > η and |z − y| < η) In this case we have Kη(x, y) = K(x, y) and |z − y| > 1
2 |x− y| since

|x− y| > 2|x− z|. These together with (1.5) and (1.6) imply that

|Kη(x, y) −Kη(z, y)| 6 |K(x, y) −K(z, y)| + |K(z, y)|
∣∣∣∣φ(2

η
|z − y|

)∣∣∣∣
= |K(x, y) −K(z, y)| + |K(z, y)|

∣∣∣∣φ(2

η
|z − y|

)
− φ

(
2

η
|x− y|

)∣∣∣∣
6 A|x− z|δ

|x− y|n+δ
+

A

|z − y|n
2

η
∥∇φ∥L∞([0,∞))|x− z|

6 (1 + 2n+δ+1∥∇φ∥L∞([0,∞)))A
|x− z|δ

|x− y|n+δ
,

which proves (4.9).

(iii) (|x− y| < η and |z − y| > η) The case is similar to the case (ii).

(iv) (|x− y| < η and |z − y| < η) Without loss of generality we may assume that |x− y| > |z − y|. By

(1.5) and (1.6) and the fact that |y − z| > 1
2 |x− y|, we get

|Kη(x, y) −Kη(z, y)| 6 |K(x, y) −K(z, y)| +

∣∣∣∣K(x, y)φ

(
2

η
|x− y|

)
−K(z, y)φ

(
2

η
|z − y|

)∣∣∣∣
6 |K(x, y) −K(z, y)| + |K(x, y) −K(z, y)|φ

(
2

η
|x− y|

)
+ |K(z, y)|

∣∣∣∣φ(2

η
|z − y|

)
− φ

(
2

η
|x− y|

)∣∣∣∣
6 2A|x− z|δ

|x− y|n+δ
+

A

|z − y|n
2

η
∥∇φ∥∞|x− z|

6 (2 + 2n+δ+1∥∇φ∥L∞([0,∞)))A
|x− z|δ

|x− y|n+δ
.

This proves (4.9) in this case.

In what follows, we set |h| < η
8 and η ∈ (0, 1). By the definition of Vρ(T m

Kη,b
), we have

|Vρ(T m
Kη,b)(f)(x + h) − Vρ(T m

Kη,b)(f)(x)|

6 sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x+h−y|6εi

(b(x + h) − b(y))mKη(x + h, y)f(y)dy

−
∫
εi+1<|x−y|6εi

(b(x) − b(y))mKη(x, y)f(y)dy

∣∣∣∣ρ)1/ρ

6 sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

((b(x + h) − b(y))m − (b(x) − b(y))m)Kη(x, y)f(y)dy

∣∣∣∣ρ)1/ρ

+ sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

(b(x + h) − b(y))m(Kη(x + h, y) −Kη(x, y))f(y)dy

∣∣∣∣ρ)1/ρ

+ sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
Rn

(b(x + h) − b(y))mKη(x + h, y)f(y)

× (χεi+1<|x+h−y|6εi(y) − χεi+1<|x−y|6εi(y))dy

∣∣∣∣ρ)1/ρ

=: I1 + I2 + I3. (4.10)
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For I1, it is easy to see that

(b(x + h) − b(y))m − (b(x) − b(y))m =
m−1∑
j=0

cjm(b(x + h) − b(x))m−j(b(x) − b(y))j

and

(b(x) − b(y))j =

j∑
µ=0

cµj b(x)j−µ(−1)µb(y)µ, ∀ 0 6 j 6 m− 1,

where Cr
N = N !

r!(N−r)! for any r, N ∈ N with r 6 N . Therefore, we have

I1 6
m−1∑
j=0

cjm∥∇b∥m−j
L∞(Rn)|h|

m−j

j∑
µ=0

cµj ∥b∥
j−µ
L∞(Rn)

× sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

Kη(x, y)(b(y))µf(y)dy

∣∣∣∣ρ)1/ρ

. (4.11)

Given a decreasing sequence {εi}i>1 of positive numbers converging to 0, we set N({εi}) :=

max{i > 1 : εi > η}. Note that Kη(x, y) = 0 when |x− y| 6 η
2 and Kη(x, y) = K(x, y) when |x− y| > η.

By (4.4) and (2.2), we have that for 0 6 j 6 m− 1 and 0 6 µ 6 j,( ∞∑
i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

Kη(x, y)bµ(y)f(y)dy

∣∣∣∣ρ)1/ρ

6
(N({εi})−1∑

i=1

∣∣∣∣ ∫
εi+1<|x−y|6εi

K(x, y)bµ(y)f(y)dy

∣∣∣∣ρ)1/ρ

+

( ∞∑
i=N({εi})

∣∣∣∣ ∫
εi+1<|x−y|6εi

Kη(x, y)χ η
2<|x−y|6η(y)bµ(y)f(y)dy

∣∣∣∣ρ)1/ρ

6 Vρ(TK)(bµf)(x) + A∥b∥µL∞(Rn)

∫
η
2<|x−y|6η

|f(y)|
|x− y|n

dy

6 Vρ(TK)(bµf)(x) + 2nωn∥b∥µL∞(Rn)AMf(x),

which together with (4.11) implies

I1 .m,b |h|
(m−1∑

µ=0

Vρ(TK)(bµf)(x) + 2nωn∥b∥µL∞(Rn)AMf(x)

)
. (4.12)

For I2, due to |h| < η
8 , we have Kη(x+h, y) = Kη(x, y) = 0 when |x−y| 6 η

4 . Moreover, |x−y| > 2|h|
when |x− y| > η

4 . In light of (2.2) and (4.9), we have

I2 6 sup
εi↘0

( ∞∑
i=1

∣∣∣∣ ∫
ϵi+1<|x−y|6ϵi

(b(x + h) − b(y))m(Kη(x + h, y) −Kη(x, y))f(y)χ|x−y|> η
4
(y)dy

∣∣∣∣ρ)1/ρ

6
∫
Rn

|(b(x + h) − b(y))m(Kη(x + h, y) −Kη(x, y))f(y)|χ|x−y|> η
4
(y)dy

6 2m∥b∥mL∞(Rn)Ã|h|
δ

∫
|x−y|> η

4

|f(y)|
|x− y|n+δ

dy

.m,b,n,δ,A,φ

(
|h|
η

)δ

Mf(x) (4.13)

for almost every x ∈ Rn.

It remains to estimate I3. Note that χεi+1<|x+h−y|6εi(y)−χεi+1<|x−y|6εi(y) ̸= 0 if and only if at least

one of the following statements holds:
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(a) εi+1 < |x + h− y| 6 εi and |x− y| 6 εi+1;

(b) εi+1 < |x + h− y| 6 εi and |x− y| > εi;

(c) εi+1 < |x− y| 6 εi and |x + h− y| 6 εi+1;

(d) εi+1 < |x− y| 6 εi and |x + h− y| > εi.

Then we get from (4.4) that∣∣∣∣ ∫
Rn

(b(x + h) − b(y))mKη(x + h, y)f(y)(χεi+1<|x+h−y|6εi(y) − χεi+1<|x−y|6εi(y))dy

∣∣∣∣
.m,b,A

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x+h−y|6εi(y)χ|x−y|6εi+1
(y)dy

+

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x+h−y|6εi(y)χ|x−y|>εi(y)dy

+

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x−y|6εi(y)χ|x+h−y|6εi+1
(y)dy

+

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x−y|6εi(y)χ|x+h−y|>εi(y)dy

=: I3,1 + I3,2 + I3,3 + I3,4. (4.14)

By Lemma 2.3(ii), there exists s ∈ (1, 2) such that w ∈ Ap/s(Rn). We now estimate I3,i, i = 1, 2, 3, 4,

respectively.

For I3,1, in the case (a) we have that εi+1 > |x − y| > |x + h − y| − |h| > η
2 − η

8 > η
4 > 2|h| and

|x + h− y| > |x− y| − |h| > 1
2 |x− y| when |x + h− y| > η

2 . By Hölder’s inequality,

I3,1 .m,b,A C

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x+h−y|6εi(y)χεi+1<|x+h−y|6εi+1+|h|(y)dy

.m,b,A

(∫
|x+h−y|> η

2

|f(y)|s

|x + h− y|ns
χεi+1<|x+h−y|6εi(y)dy

)1/s

×
(∫

Rn

χεi+1<|x+h−y|6εi+1+|h|(y)dy

)1/s′

.m,b,n,A,s

(∫
|x+h−y|> η

2

|f(y)|s

|x + h− y|ns
χεi+1<|x+h−y|6εi(y)dy

)1/s

× ((εi+1 + |h|)n − εni+1)1/s
′

.m,b,n,A,s

(∫
|x+h−y|> η

2

|f(y)|s

|x + h− y|ns
χεi+1<|x+h−y|6εi(y)dy

)1/s

× ((εi+1 + |h|)n−1|h|)1/s
′

.m,b,n,A,s |h|1/s
′
(∫

|x−y|> η
4

|f(y)|s

|x− y|n+s−1
χεi+1<|x+h−y|6εi(y)dy

)1/s

, (4.15)

where in the last inequality of (4.15) we have used the fact that

(εi+1 + |h|)(n−1)/s′ 6
(

5

4

)(n−1)/s′

|x + h− y|(n−1)/s′

and |x + h− y| > 1
2 |x− y| when |x + h− y| > η

2 .

For I3,2, in the case (b) we have that |x−y| > εi > |x+h−y| > η
2 > 4|h| and |x+h−y| > |x−y|− |h|

> |x−y|
2 when |x + h− y| > η

2 . By the arguments similar to those used to derive (4.15),

I3,2 .m,b,A

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x+h−y|6εi(y)χεi<|x−y|6εi+|h|(y)dy
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.m,b,n,A,s |h|1/s
′
(∫

|x−y|> η
4

|f(y)|s

|x− y|n+s−1
χεi+1<|x+h−y|6εi(y)dy

)1/s

. (4.16)

For I3,3, in the case (c) we have that |x−y| > εi+1 > |x+h−y| > η
2 > 4|h| and |x+h−y| > |x−y|−|h|

> |x−y|
2 when |x + h− y| > η

2 . By the arguments similar to those used to derive (4.15),

I3,3 .m,b,n,A,s

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x−y|6εi(y)χεi+1<|x−y|6εi+1+|h|(y)dy

.m,b,n,A,s C|h|1/s
′
(∫

|x−y|> η
4

|f(y)|s

|x− y|n+s−1
χεi+1<|x−y|6εi(y)dy

)1/s

. (4.17)

For I3,4, in the case (d) we have that εi > |x − y| > |x + h − y| − |h| > η
2 − η

8 > η
4 > 2|h| and

|x + h − y| > |x − y| − |h| > |x−y|
2 when |x + h − y| > η

2 . By the arguments similar to those used to

derive (4.15),

I3,4 .m,b,A

∫
|x+h−y|> η

2

|f(y)|
|x + h− y|n

χεi+1<|x−y|6εi(y)χεi<|x+h−y|6εi+|h|(y)dy

.m,b,n,A,s |h|1/s
′
(∫

|x−y|> η
4

|f(y)|s

|x− y|n+s−1
χεi+1<|x−y|6εi(y)dy

)1/s

. (4.18)

Combining (4.18) with (2.2) and (4.14)–(4.17) implies

I3 .m,b,n,A,s |h|1/s
′
(

sup
εi↘0

( ∞∑
i=1

(∫
|x−y|> η

4

|f(y)|s

|x− y|n+s−1
χεi+1<|x+h−y|6εi(y)dy

)ρ/s)1/ρ

+ sup
εi↘0

( ∞∑
i=1

(∫
|x−y|> η

4

|f(y)|s

|x− y|n+s−1
χεi+1<|x−y|6εi(y)dy

)ρ/s)1/ρ)

.m,b,n,A,s |h|1/s
′
(∫

|x−y|> η
4

|f(y)|s

|x− y|n+s−1
dy

)1/s

.m,b,n,A,s

(
|h|
η

)1/s′

(M |f |s)1/s(x). (4.19)

It follows from (4.10), (4.12), (4.13) and (4.19) that

|Vρ(T m
Kη,b)(f)(x + h) − Vρ(T m

Kη,b)(f)(x)|

.m,b,n,A,s,φ

(
|h|Mf(x) + |h|

m−1∑
µ=0

Vρ(TK)(bµf)(x) +

(
|h|
η

)δ

Mf(x) +

(
|h|
η

)1/s′

(M |f |s)1/s(x)

)
(4.20)

for all x ∈ Rn when |h| < η
8 . Note that w ∈ Ap/s(Rn). This together with the boundedness for M

on weighted Morrey spaces implies ∥(M |f |s)1/s∥Mp,β(w) .n,p,β ∥f∥Mp,β(w). On the other hand, by our

assumptions and Theorem A, we have that Vρ(TK) is bounded on Lp(w). This together with Theorem 3.1

yields that Vρ(TK) is bounded on Mp,β(w). Combining these with the boundedness of M on Mp,β(w),

Minkowski’s inequality and (4.20) implies that

∥Vρ(T m
Kη,b)(f)(· + h) − Vρ(T m

Kη,b)(f)(·)∥Mp,β(w)

.m,b,n,A,s,p,β |h|∥Mf∥Mp,β(w) + C|h|
m−1∑
µ=0

∥Vρ(TK)(bµf)∥Mp,β(w)

+

(
|h|
η

)δ

∥Mf∥Mp,β(w) + C

(
|h|
η

)1/s′

∥(M |f |s)1/s∥Mp,β(w)

.m,b,n,A,s,p,β

(
|h| +

(
|h|
η

)δ

+

(
|h|
η

)1/s′)
when |h| < η

8 , which leads to (4.8). This finishes the proof of Theorem 4.1.
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4.2 Applications

As applications of Theorem 4.1, we can get the following result.

Corollary 4.2. Let m > 1, ρ > 2, 1 < p < ∞, w ∈ Ap(Rn) and 0 6 β < 1. If b ∈ CMO(Rn), then

Vρ(T m
k,b) is a compact operator on Mp,β(w), provided that one of the following conditions holds:

(i) n = 1 and T m
k,b = Hm

b ;

(ii) n = 1 and T m
k,b = Rm

±,b;

(iii) T m
k,b = Rm

j,b, 1 6 j 6 n;

(iv) T m
k,b = T m

Ω,b, Ω ∈ Lipα(Sn−1) for some α > 0.

Remark 4.3. (i) It was shown in [13] that both Vρ(H) and Vρ(R±) are bounded on Lp(w) for 1 <

p < ∞ and w ∈ Ap(R). This together with Theorem 4.1 leads to the desired conclusions for Hb and R±,b

in Corollary 4.2.

(ii) By the known Lp (1 < p < ∞) bounds for Vρ(Rj) with 1 6 j 6 n and Vρ(TΩ) with Ω ∈ Lipα(Sn−1)

for some α > 0 and Theorem 4.1, we can get the desired conclusions for Rj,b and TΩ,b in Corollary 4.2.

(iii) When α = 1, m = 1 and β = 0, the corresponding result in Corollary 4.2 for the case (iv) was

proved by Guo et al. [21, Corollary 1.5].

(iv) Theorem 4.1 and Corollary 4.2 are new, even in the unweighted case where w ≡ 1 or β = 0.

5 Boundedness on Sobolev spaces

This section is devoted to discussing the boundedness for variation operators of Calderón-Zygmund

singular integrals and their commutators on Sobolev spaces. Before presenting our main results, let us

introduce some notations. Let el = (0, . . . , 0, 1, 0, . . . , 0) be the canonical l-th base vector in Rn for

l = 1, . . . , n. For a fixed f ∈ Lp(Rn) with p > 1, all h ∈ R with |h| > 0 and i = 1, . . . , n, we define the

function fh,i by setting

fh,i(x) =
f(x + hei) − f(x)

h
.

It is well known that for p > 1, fh,i → Dif in Lp(Rn) when h → 0 if f ∈ W 1,p(Rn). For x, y ∈ Rn, we

denote by ∆yf the 1st difference of f , i.e., ∆yf(x) = fy(x) − f(x), where fy(x) = f(x + y). Set

G(f ; p) = lim sup
|h|→0

∥∆hf∥Lp(Rn)

|h|
.

According to [17, Subsection 7.11], we have

u ∈ W 1,q(Rn), 1 < q < ∞ ⇔ u ∈ Lq(Rn) and G(u; q) < ∞. (5.1)

5.1 Boundedness for variation operators of singular integrals

The following result represents a perfection of Theorem D.

Proposition 5.1. Let T be a sublinear operator. Assume that T is bounded on Lp(Rn) for some

p ∈ (1,∞) and commutes with translations. Then T is bounded on W 1,p(Rn). Moreover, if f ∈ W 1,p(Rn),

then for any i = 1, . . . , n, we have

|Di(Tf)(x)| 6 |T (Dif)(x)| (5.2)

for almost every x ∈ Rn. As an application of (5.2), we have

∥Tf∥W 1,p(Rn) 6 ∥T∥Lp(Rn)→Lp(Rn)∥f∥W 1,p(Rn). (5.3)

Proof. By Theorem D, we know that Tf ∈ W 1,p(Rn). Fix i ∈ {1, . . . , n}. Since f ∈ W 1,p(Rn) and

Tf ∈ W 1,p(Rn), we have fh,i → Dif and (Tf)h,i → Di(Tf) in Lp(Rn) as h → 0. By the sublinearity

and the Lp boundedness for T and the fact that fh,i → Dif in Lp(Rn) as k → ∞, we have that

T (fh,i) → T (Dif) in Lp(Rn) as h → 0. Therefore, there exist a sequence {hk} of real numbers with
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limk→0 hk = 0 and a measurable set E with |Rn \ E| = 0 such that (Tf)hk,i(x) → Di(Tf)(x) and

T (fhk,i)(x) → T (Dif)(x) as k → ∞ for x ∈ E.

Since T commutes with translations and is sublinear, for any x ∈ E we have

|(Tf)hk,i(x)| =
|Tf(x + hkei) − Tf(x)|

|hk|

=
|Tfhkei(x) − Tf(x)|

|hk|
6 |T (fhkei − f)(x)|

|hk|
= |T (fhk,i)(x)|.

This yields

|Di(Tf)(x)| =
∣∣∣ lim
k→∞

(Tf)hk,i(x)
∣∣∣ 6 lim

k→∞
|T (fhk,i)(x)| = |T (Dif)(x)|

for all x ∈ E. This proves (5.2). By (5.2) and the arguments similar to those used to derive (2.4)

in [29], we have |∇(Tf)(x)| 6 |T (|∇f |)(x)| for almost every x ∈ Rn. This together with our assumption

implies (5.3).

As an application of Proposition 5.1, we have the following theorem.

Theorem 5.2. Let ρ > 2 and Vρ(TK) be defined as in (1.3). Assume that K(x, y) = K(x − y) and

Vρ(TK) is of type (p, p) for some p ∈ (1,∞). Then Vρ(TK) is bounded on W 1,p(Rn). To be precise, if

f ∈ W 1,p(Rn), then for any i = 1, . . . , n, we have |Di(Vρ(TK)(f))(x)| 6 Vρ(TK)(Dif)(x) for almost every

x ∈ Rn. Moreover, ∥Vρ(TK)(f)∥W 1,p(Rn) 6 ∥Vρ(TK)∥Lp(Rn)→Lp(Rn)∥f∥W 1,p(Rn).

As consequences of Theorem 5.2, we have the following corollaries.

Corollary 5.3. Let ρ > 2 and Vρ(TK) be defined as in (1.3). Assume that K(x, y) = K(x − y)

and K satisfies the conditions (1.5)–(1.8). Then for any 1 < p < ∞, the operator Vρ(TK) is bounded on

W 1,p(Rn). To be precise, if f ∈ W 1,p(Rn), then for any i = 1, . . . , n and almost every x ∈ Rn,

|Di(Vρ(TK)(f))(x)| 6 Vρ(TK)(Dif)(x).

Moreover, ∥Vρ(TK)(f)∥W 1,p(Rn) 6 ∥Vρ(TK)∥Lp(Rn)→Lp(Rn)∥f∥W 1,p(Rn).

Corollary 5.4. Let ρ > 2 and 1 < p < ∞. Assume that one of the following conditions holds:

(i) n = 1 and T = H;

(ii) n = 1 and T = R±;

(iii) T = Rj, 1 6 j 6 n;

(iv) T = TΩ, Ω ∈ H1(Sn−1) or Ω ∈
∩

α>2 Fα(Sn−1), where Fα(Sn−1) for α > 0 denotes the set of all

the integrable functions over Sn−1 which satisfy the condition

sup
ξ′∈Sn−1

∫
Sn−1

|Ω(y′)|
(

log+ 1

|ξ′ · y′|

)α

dσ(y′) < ∞.

Then the map Vρ(T ) : W 1,p(Rn) → W 1,p(Rn) is bounded. To be precise, if f ∈ W 1,p(Rn), then for

any i = 1, . . . , n, |Di(Vρ(T )(f))(x)| 6 Vρ(T )(Dif)(x) for almost every x ∈ Rn. Moreover,

∥Vρ(T )(f)∥W 1,p(Rn) 6 ∥Vρ(T )∥Lp(Rn)→Lp(Rn)∥f∥W 1,p(Rn).

Remark 5.5. (i) Corollary 5.3 follows from Theorems A and 5.2. The corresponding results in Corol-

lary 5.4 for the cases (i)–(iii) follow from Theorems A and 5.2.

(ii) The space Fα(Sn−1) was introduced by Grafakos and Stefanov [20] in the study of the Lp bound-

edness of the singular integral operator with rough kernels. Clearly,
∪

q>1 L
q(Sn−1) ( Fα(Sn−1) for any

α > 0. Moreover, the examples in [20] show that∩
α>1

Fα(Sn−1) * H1(Sn−1) *
∪
α>1

Fα(Sn−1).

(iii) It was shown in [14, Theorem 1.2 and Corollary 1.6] that Vρ(TΩ) is bounded on Lp(Rn) for

all p ∈ (1,∞) under the condition that Ω ∈ H1(Sn−1) or Ω ∈
∩

α>2 Fα(Sn−1). This together with

Theorem 5.2 yields the conclusions of Corollary 5.4 for the case (iv).
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5.2 Boundedness for variation operators of commutators

As mentioned in Section 1, the operator Vρ(T m
K,b) does not commute with translations, even in the special

case where m = 1 and K(x, y) = K(x−y), which makes that Proposition 5.1 does not apply for Vρ(T m
K,b).

In order to establish the Sobolev regularity for variation operators of commutators of Calderón-Zygmund

singular integrals, we shall make the most of the characterizations of Sobolev functions. At first, let us

introduce the definition of Lipschitz spaces.

Definition 5.6 (Lipschitz space). The homogeneous Lipschitz space Λ̇(Rn) is given by

Λ̇(Rn) := {f : Rn → C continuous : ∥f∥Λ̇(Rn) < ∞},

where

∥f∥Λ̇(Rn) := sup
x∈Rn

sup
h∈Rn\{0}

|f(x + h) − f(x)|
|h|

< ∞.

The inhomogeneous Lipschitz space Λ(Rn) is defined by

Λ(Rn) := {f : Rn → C continuous : ∥f∥Λ(Rn) := ∥f∥L∞(Rn) + ∥f∥Λ̇(Rn) < ∞}.

Remark 5.7. Let b ∈ Λ̇(Rn). Then the weak partial derivatives Dib (i = 1, . . . , n) exist almost

everywhere. Moreover, for almost every x ∈ Rn, we have

lim
h→0

bh,i(x) = Dib(x) (5.4)

and

|Dib(x)| 6 ∥b∥Λ̇(Rn). (5.5)

To see this, let us fix i = 1, . . . , n. Since b is Lipschitz continuous, b is differentiable almost everywhere by

Rademacher’s theorem. Therefore, the partial derivatives Dib exist almost everywhere and (5.4) holds.

For almost every x ∈ Rn, we get from (5.4) that

|Dib(x)| =

∣∣∣∣ limh→0

b(x + hei) − b(x)

h

∣∣∣∣ 6 lim
h→0

|b(x + hei) − b(x)|
h

6 ∥b∥Λ̇(Rn),

which gives (5.5).

The Sobolev regularity for the commutators is the following theorem.

Theorem 5.8. Let ρ > 2, m > 1, b ∈ Λ(Rn) and Vρ(T m
K,b) be defined as in (1.4). Assume that

K(x, y) = K(x − y) and Vρ(TK) is of type (p, p) for some p ∈ (1,∞). Then Vρ(T m
K,b) is bounded on

W 1,p(Rn). To be precise, if f ∈ W 1,p(Rn), then for any i = 1, . . . , n and almost every x ∈ Rn,

DiVρ(T m
K,b)(f)(x) 6

m∑
k=0

ckm∥b∥m−k
L∞(Rn)Vρ(TK)(bkDif)(x)

+ m
m−1∑
µ=0

cµm−1∥b∥
m−1−µ
L∞(Rn)(Vρ(TK)(bµDibf)(x) + |Dib|(x)Vρ(TK)(bµf)(x)). (5.6)

As an application of (5.6), we have

∥Vρ(T m
K,b)(f)∥W 1,p(Rn) 6 2mmnAp∥b∥mΛ(Rn)∥f∥W 1,p(Rn), (5.7)

where Ap := ∥Vρ(TK)∥Lp(Rn)→Lp(Rn).

Proof. We divide the proof of Theorem 5.8 into three steps:

Step 1. Proof of Vρ(T m
K,b)(f) ∈ W 1,p(Rn). By the definition of Vρ(T m

K,b)(f), we conclude that for all

x ∈ Rn,

Vρ(T m
K,b)(f)(x) 6 |b(x)|Vρ(T m−1

K,b )(f)(x) + Vρ(T m−1
K,b )(bf)(x), ∀m > 2. (5.8)
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When m = 1, one can easily check that

Vρ(TK,b)(f)(x) 6 |b(x)|Vρ(TK)(f)(x) + Vρ(TK)(bf)(x) (5.9)

for all x ∈ Rn. Then (5.8) and (5.9) give that

Vρ(T m
K,b)(f)(x) 6

m∑
k=0

ckm|bm−k(x)|Vρ(TK)(bkf)(x) (5.10)

for all x ∈ Rn. Combining (5.10) with our assumptions and Minkowski’s inequality implies

∥Vρ(T m
K,b)(f)∥Lp(Rn) 6

m∑
k=0

ckm∥b∥m−k
L∞(Rn)∥Vρ(TK)(bkf)∥Lp(Rn)

6
m∑

k=0

ckmAp∥b∥m−k
L∞(Rn)∥b

kf∥Lp(Rn) = 2mAp∥b∥mL∞(Rn)∥f∥Lp(Rn). (5.11)

Fix x, h ∈ Rn. By a change of variables, we have

Vρ(T m
K,b)(f)(x + h) = sup

ϵi↘0

( ∞∑
i=1

∣∣∣∣ ∫
ϵi+1<|x+h−z|6ϵi

(b(x + h) − b(z))mK(x + h− z)f(z)dz

∣∣∣∣ρ)1/ρ

= sup
ϵi↘0

( ∞∑
i=1

∣∣∣∣ ∫
ϵi+1<|x−z|6ϵi

(b(x + h) − b(z + h))mK(x− z)f(z + h)dz

∣∣∣∣ρ)1/ρ

= Vρ(T m
K,bh

)(fh)(x). (5.12)

This yields that the operator Vρ(T m
K,b) does not commute with translations. By (5.12) and the sublinearity

of Vρ(T m
K,b), one finds

|∆h(Vρ(T m
K,b)(f))(x)| = |Vρ(T m

K,b)(f)(x + h) − Vρ(T m
K,b)(f)(x)|

= |Vρ(T m
K,bh

)(fh)(x) − Vρ(T m
K,b)(f)(x)|

6 Vρ(T m
K,bh

)(∆hf)(x) + |Vρ(T m
K,bh

)(f)(x) − Vρ(T m
K,b)(f)(x)|. (5.13)

By (5.10), we have

Vρ(T m
K,bh

)(∆hf)(x) 6
m∑

k=0

ckm|bm−k
h (x)|Vρ(TK)(bkh∆hf)(x). (5.14)

Note that

(bh(x) − bh(z))m − (b(x) − b(z))m = (b(x) − b(z) + ∆hb(x) − ∆hb(z))m − (b(x) − b(z))m

=

m∑
k=1

ckm(∆hb(x) − ∆hb(z))k(b(x) − b(z))m−k

=
m∑

k=1

ckm

k∑
ℓ=0

cℓk(∆hb(x))ℓ(−∆hb(z))k−ℓ(b(x) − b(z))m−k.

This together with (5.10) implies

|Vρ(T m
K,bh

)(f)(x) − Vρ(T m
K,b)(f)(x)|

6 sup
ϵi↘0

( ∞∑
i=1

∣∣∣∣ ∫
ϵi+1<|x−z|6ϵi

((bh(x) − bh(z))m − (b(x) − b(z))m)K(x, z)f(z)dz

∣∣∣∣ρ)1/ρ

6
m∑

k=1

ckm

k∑
ℓ=0

cℓk|∆hb(x)|ℓVρ(T m−k
K,b )((∆hb)

k−ℓf)
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6
m∑

k=1

ckm

k∑
ℓ=0

cℓk|∆hb(x)|ℓ
m−k∑
µ=0

cµm−k|b
m−k−µ(x)|Vρ(TK)(bµ(∆hb)

k−ℓf)(x). (5.15)

It follows from (5.13)–(5.15) that

|∆h(Vρ(T m
K,b)(f))(x)| 6

m∑
k=0

ckm|bm−k
h (x)|Vρ(TK)(bkh∆hf)(x)

+

m∑
k=1

ckm

k∑
ℓ=0

cℓk|∆hb(x)|ℓ
m−k∑
µ=0

cµm−k|b
m−k−µ(x)|Vρ(TK)(bµ(∆hb)

k−ℓf)(x). (5.16)

By our assumptions, (5.16) and Minkowski’s inequality,

∥∆h(Vρ(T m
K,b)(f))∥Lp(Rn)

6
m∑

k=0

ckm∥b∥m−k
L∞(Rn)∥Vρ(TK)(bkh∆hf)∥Lp(Rn)

+

m∑
k=1

ckm

k∑
ℓ=0

cℓk(∥b∥Λ̇(Rn)|h|)
ℓ
m−k∑
µ=0

cµm−k∥b∥
m−k−µ
L∞(Rn)∥Vρ(TK)(bµ(∆hb)

k−ℓf)∥Lp(Rn)

6
m∑

k=0

ckmAp∥b∥m−k
L∞(Rn)∥b

k
h∆hf∥Lp(Rn)

+

m∑
k=1

Apc
k
m

k∑
ℓ=0

cℓk(∥b∥Λ̇(Rn)|h|)
ℓ
m−k∑
µ=0

cµm−k∥b∥
m−k−µ
L∞(Rn)∥b

µ(∆hb)
k−ℓf∥Lp(Rn)

6 2mAp∥b∥mL∞(Rn)∥∆hf∥Lp(Rn) + 2mAp∥f∥Lp(Rn)

( m∑
k=1

ckm∥b∥m−k
L∞(Rn)∥b∥

k
Λ̇(Rn)

|h|k
)
.

It follows that

G(Vρ(T m
K,b)(f); p) = lim sup

|h|→0

∥∆h(Vρ(T m
K,b)(f))∥Lp(Rn)

|h|

6 2mAp∥b∥mL∞(Rn)G(f ; p) + 2mmAp∥f∥Lp(Rn)∥b∥m−1
L∞(Rn)∥b∥Λ̇(Rn) < ∞, (5.17)

where in the last inequality of (5.17) we have used the fact that G(f ; p) < ∞ since f ∈ W 1,p(Rn).

Combining (5.17) with (5.1) and (5.11) yields Vρ(T m
K,b)(f) ∈ W 1,p(Rn).

Step 2. Proof of (5.6). Observe that

bkh(x) = (∆hb(x) + b(x))k =

k∑
ι=0

cιk(∆hb(x))ιb(x)k−ι, bm−k
h (x) =

m−k∑
ν=0

cνm−k(∆hb(x))νb(x)m−k−ν .

These together with the sublinearity of Vρ(TK) imply

|bm−k
h (x)|Vρ(TK)(bkh∆hf)(x)

6
(m−k∑

ν=0

cνm−k|∆hb(x)|ν |b(x)|m−k−ν

)( k∑
ι=0

cιkVρ(TK)((∆hb)
ιbk−ι∆hf)(x)

)
. (5.18)

In light of (5.16) and (5.18) we would have that for all x, h ∈ Rn,

|∆h(Vρ(T m
K,b)(f))(x)|

6
m∑

k=0

ckm

(m−k∑
ν=0

cνm−k|∆hb(x)|ν |b(x)|m−k−ν

)( k∑
ι=0

cιkVρ(TK)((∆hb)
ιbk−ι∆hf)(x)

)
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+

m∑
k=1

ckm

k∑
ℓ=0

cℓk|∆hb(x)|ℓ
m−k∑
µ=0

cµm−k|b
m−k−µ(x)|Vρ(TK)(bµ(∆hb)

k−ℓf)(x). (5.19)

Fix i ∈ {1, . . . , n}. When 1 6 k 6 m and 1 6 ι 6 k, by the Lp boundedness and the sublinearity for

Vρ(TK) and the fact that fh,i → Dif in Lp(Rn) as k → ∞, we have

∥Vρ(TK)((∆heib)
ιbk−ιfh,i)∥Lp(Rn)

6 Ap∥b∥Λ̇(Rn)∥b∥
k−ι
L∞(Rn)|h|

ι∥fh,i∥Lp(Rn) → 0 as h → 0 (5.20)

and

∥Vρ(TK)(bkfh,i) − Vρ(TK)(bkDif)∥Lp(Rn)

6 ∥Vρ(TK)(bk(fh,i −Dif))∥Lp(Rn)

6 Ap∥b∥kL∞(Rn)∥fh,i −Dif∥Lp(Rn) → 0 as h → 0. (5.21)

When 2 6 k 6 m and 0 6 µ 6 m− k, it is easy to see that

∥Vρ(TK)(bµ(∆heib)
k−1bh,if)∥Lp(Rn)

6 Ap∥bµ(∆heib)
k−1bh,if∥Lp(Rn)

6 Ap∥b∥µL∞(Rn)∥b∥
k
Λ̇(Rn)

|h|k−1∥f∥Lp(Rn) → 0 as h → 0. (5.22)

By (5.4), we have

bµ(x)bh,i(x)f(x) → bµ(x)Dib(x)f(x)

as h → ∞ for almost every x ∈ Rn. By (5.5), we have

∥bµDibf∥Lp(Rn) 6 ∥b∥µL∞(Rn)∥b∥Λ̇(Rn)∥f∥Lp(Rn),

which combining the dominated convergence theorem implies that bµbh,if → bµDibf in Lp(Rn) as h → ∞.

These together with the sublinearity and the Lp boundedness for Vρ(TK) imply that

∥Vρ(TK)(bµbh,if) − Vρ(TK)(bµDibf)∥Lp(Rn) 6 Ap∥bµbh,if − bµDibf∥Lp(Rn) → 0 as h → 0 (5.23)

for 0 6 µ 6 m− 1. By the arguments similar to those used to derive (5.22),

∥Vρ(TK)(bµ(∆heib)
k−ℓf)∥Lp(Rn) → 0 as h → 0 (5.24)

for 1 6 k 6 m and 1 6 ℓ 6 k − 1.

Since f ∈ W 1,p(Rn) and Vρ(T m
K,b)(f) ∈ W 1,p(Rn), we have (Vρ(T m

K,b)(f))h,i → Di(Vρ(T m
K,b)(f)) and

fh,i → Dif in Lp(Rn) when h → 0. These together with (5.20)–(5.24) and Remark 5.7 imply that

there exist a sequence {hj} of positive numbers satisfying limj→0 hj = 0 and a measurable set E with

|Rn \ E| = 0 such that for all x ∈ E,

(i) (Vρ(T m
K,b)(f))hj ,i(x) → Di(Vρ(T m

K,b)(f))(x) as j → ∞;

(ii) |b(x)| 6 ∥b∥L∞(Rn), |Dib|(x) 6 ∥b∥Λ̇(Rn) and bhj ,i(x) → Dib(x) as j → ∞;

(iii) Vρ(TK)((∆hjeib)
ιbk−ιfhj ,i)(x) → 0 as j → ∞ for 1 6 k 6 m and 1 6 ι 6 k;

(iv) Vρ(TK)(bkfhj ,i)(x) → Vρ(TK)(bkDif)(x) as j → ∞ for 1 6 k 6 m;

(v) Vρ(TK)(bµ(∆hjeib)
k−1bhj ,if)(x) → 0 as j → ∞ for 2 6 k 6 m and 0 6 µ 6 m− k;

(vi) Vρ(TK)(bµbhj ,if)(x) → Vρ(TK)(bµDibf)(x) as j → ∞ for 0 6 µ 6 m− 1;

(vii) Vρ(TK)(bµ(∆hjeib)
k−ℓf)(x) → 0 as j → ∞ for 1 6 k 6 m and 1 6 ℓ 6 k − 1.

Hence, we get by (5.20) and the above (i)–(vii) that for any x ∈ E,

|Di(Vρ(T m
K,b)(f))(x)|

=
∣∣∣ lim
j→∞

(Vρ(T m
K,b)(f))hj ,i(x)

∣∣∣
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6 lim
j→∞

m∑
k=0

ckm

(m−k∑
ν=0

cνm−k|∆hjeib(x)|ν |b(x)|m−k−ν

)

×
( k∑

ι=0

cιkVρ(TK)((∆hjeib)
ιbk−ιfhj ,i)(x)

)

+ lim
j→∞

m∑
k=1

ckm

m−k∑
µ=0

cµm−k|b
m−k−µ(x)|Vρ(TK)(bµ(∆hjeib)

k−1bhj ,if)(x)

+ lim
j→∞

m∑
k=1

ckm

k∑
ℓ=1

cℓk|∆hjeib(x)|ℓ−1|bhj ,i|(x)

×
m−k∑
µ=0

cµm−k|b
m−k−µ(x)|Vρ(TK)(bµ(∆hjeib)

k−ℓf)(x)

6
m∑

k=0

ckm∥b∥m−k
L∞(Rn)Vρ(TK)(bkDif)(x)

+ m

m−1∑
µ=0

cµm−1∥b∥
m−1−µ
L∞(Rn)(Vρ(TK)(bµDibf)(x) + |Dib|(x)Vρ(TK)(bµf)(x)).

This proves (5.6).

Step 3. Proof of (5.7). By (5.5), (5.6), our assumptions and Minkowski’s inequality, we have

∥DiVρ(T m
K,b)(f)∥Lp(Rn)

6
m∑

k=0

ckm∥b∥m−k
L∞(Rn)∥Vρ(TK)(bkDif)∥Lp(Rn)

+ m
m−1∑
µ=0

cµm−1∥b∥
m−1−µ
L∞(Rn)(∥Vρ(TK)(bµDibf)∥Lp(Rn) + ∥DibVρ(TK)(bµf)∥Lp(Rn))

6 Ap2m∥b∥mL∞(Rn)∥Dif∥Lp(Rn) + 2mmAp∥b∥m−1
L∞(Rn)∥b∥Λ̇(Rn)∥f∥Lp(Rn). (5.25)

Combining (5.25) with (5.11) leads to (5.7). Then we finish the proof of Theorem 5.8.

As several applications of Theorem 5.2, we have the following corollaries.

Corollary 5.9. Let ρ > 2, m > 1, b ∈ Λ(Rn) and Vρ(T m
K,b) be defined as in (1.4). Suppose that

K(x, y) = K(x − y) and K satisfies the conditions (1.5)–(1.8). Then for any 1 < p < ∞, the operator

Vρ(T m
K,b) is bounded on W 1,p(Rn). To be precise, if f ∈ W 1,p(Rn), then for any i = 1, . . . , n and almost

every x ∈ Rn,

DiVρ(T m
K,bf)(x) 6

m∑
k=0

ckm∥b∥m−k
L∞(Rn)Vρ(TK)(bkDif)(x)

+ m
m−1∑
µ=0

cµm−1∥b∥
m−1−µ
L∞(Rn)(Vρ(TK)(bµDibf)(x) + |Dib|(x)Vρ(TK)(bµf)(x)).

As an application of the above estimate, we have

∥Vρ(T m
K,bf)∥W 1,p(Rn) 6 2mmn∥Vρ(TK)∥Lp(Rn)→Lp(Rn)∥b∥mΛ(Rn)∥f∥W 1,p(Rn).

Corollary 5.10. Let m > 1, ρ > 2, 1 < p < ∞, b ∈ Λ(Rn) and one of the following conditions hold:

(i) n = 1 and T = Hm
b ;

(ii) n = 1 and T = Rm
±,b;

(iii) T = Rm
j,b, 1 6 j 6 n;
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(iv) T = T m
Ω,b, Ω ∈ H1(Sn−1) or Ω ∈

∩
α>2 Fα(Sn−1).

Then the map Vρ(T ) : W 1,p(Rn) → W 1,p(Rn) is bounded. To be precise, if f ∈ W 1,p(Rn), we have

∥Vρ(T )(f)∥W 1,p(Rn) .m,n,p,ρ,Ω ∥b∥mΛ(Rn)∥f∥W 1,p(Rn).

Remark 5.11. (i) It should be pointed out that Corollary 5.9 follows from Theorems A and 5.8. The

corresponding results in Corollary 5.10 for the cases (i)–(iii) follow from Theorems A and 5.8.

(ii) It was known that Vρ(TΩ) is bounded on Lp(Rn) for all p ∈ (1,∞) under the condition that Ω ∈
H1(Sn−1) or Ω ∈

∩
α>2 Fα(Sn−1). This together with Theorem 5.8 yields the conclusion of Corollary 5.10

for the case (iv).

Question 5.12. What happens when we consider the Calderón-Zygmund singular integrals of non-

convolution type? To be more precise, do the corresponding results in Theorems 5.2 and 5.8 and Corol-

laries 5.3 and 5.9 hold when K(x, y) ̸= K(x− y)?
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