RESEARCH ARTICLE

National Science Review
7: 1059–1067, 2020
doi: 10.1093/nsr/nwaa039
Advance access publication 9 March 2020

MATERIALS SCIENCE

Paving the road toward the use of β -Fe₂O₃ in solar water splitting: Raman identification, phase transformation and strategies for phase stabilization

Ningsi Zhang¹, Xin Wang¹, Jianyong Feng¹, Huiting Huang¹, Yongsheng Guo¹, Zhaosheng Li D^{1,2},* and Zhigang Zou^{1,2}

ABSTRACT

Although β -Fe₂O₃ has a high theoretical solar-to-hydrogen efficiency because of its narrow band gap, the study of β -Fe₂O₃ photoanodes for water splitting is elusive as a result of their metastable nature. Raman identification of β -Fe₂O₃ is theoretically and experimentally investigated in this study for the first time, thus clarifying the debate about its Raman spectrum in the literature. Phase transformation of β -Fe₂O₃ to α -Fe₂O₃ was found to potentially take place under laser and electron irradiation as well as annealing. Herein, phase transformation of β -Fe₂O₃ to α -Fe₂O₃ was inhibited by introduction of Zr doping, and β -Fe₂O₃ was found to withstand a higher annealing temperature without any phase transformation. The solar water splitting photocurrent of the Zr-doped β -Fe₂O₃ photoanode was increased by 500% compared to that of the pure β -Fe₂O₃ photoanode. Additionally, Zr-doped β -Fe₂O₃ exhibited very good stability during the process of solar water splitting. These results indicate that by improving its thermal stability, metastable β -Fe₂O₃ film is a promising photoanode for solar water splitting.

Keywords: solar energy conversion, metastable phase, phase transformation, iron oxide, photoelectrochemical water splitting

INTRODUCTION

Since the concept of a hydrogen economy was introduced, solar hydrogen production using photoelectrochemical (PEC) or photocatalytic water splitting has occupied a very important position in the artificial utilization of inexhaustible solar energy [1-6]. Solar water splitting for hydrogen production has thereby attracted intensive and ever-increasing interest from many researchers [7–15]. The solar-tohydrogen efficiency of PEC water splitting reached over 19% using III-V multi-junction semiconductors (including In and Ga) prepared by molecular beam epitaxial growth [16]. Unfortunately, there is a lack of low-cost, environmentally friendly, efficient and stable photoelectrodes for PEC water splitting [17–22], thus hindering application of PEC cells for hydrogen production.

In recent decades, iron-based semiconductors with narrow band gaps (e.g. α -Fe₂O₃) have been considered as promising photoanode materials with

respect to nontoxicity, cost, stability and theoretical solar-to-hydrogen efficiency [23–34]. Recently, a β -Fe₂O₃ semiconductor with a direct band gap of 1.9 eV was reported by the present authors as a water splitting photoanode under Air Mass 1.5 Global spectrum (AM 1.5 G, 100 mW cm⁻²) illumination [35]. Theoretically, a β -Fe₂O₃ photoanode for solar water splitting may exhibit a solar-to-hydrogen efficiency of 20.9% because of its narrow band gap of 1.9 eV, whereas its solar photocurrent density is still very low [35]. The phase transformation of metastable β -Fe₂O₃ to mature α -Fe₂O₃ may occur initially at the surface or interface during fabrication of photoanode films because metastable β -Fe₂O₃ cannot withstand the high temperature of annealing.

Phase identification of β -Fe₂O₃ is very important to avoid the effects of impurities (e.g. α -Fe₂O₃) during the process of solar water splitting. Phase characterization of inorganic materials is frequently achieved with such methods as X-ray

¹Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China and ² Jiangsu Key Laboratory of Nano Technology, Nanjing University, Nanjing 210093, China

*Corresponding author. E-mail: zsli@nju.edu.cn

Received 15 November 2019; Revised 11 January 2020; Accepted 8 February 2020

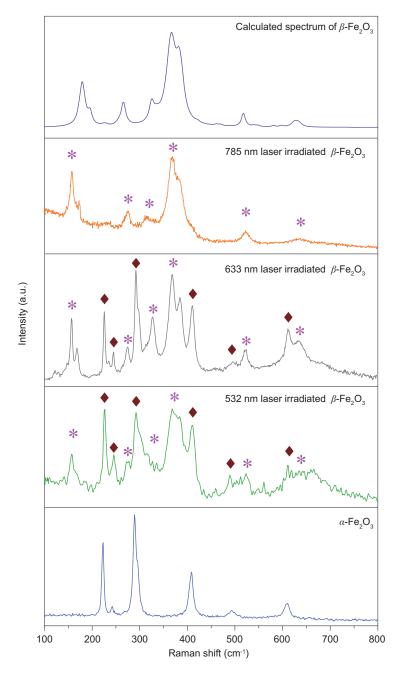
diffraction (XRD), neutron diffraction, electron diffraction, Raman scattering spectroscopy and infrared absorption spectroscopy. Among these methods, Raman spectroscopy is fast and highly sensitive toward material surface structural information. However, Raman spectra of β -Fe₂O₃ (including Raman peak position and shape) reported in the literature are often contradictory [36,37]. Thus, this study aims to clarify the debates surrounding the Raman spectra of β -Fe₂O₃.

The wavelength and power of the excitation laser should be chosen carefully during the process of Raman detection. An appropriate wavelength of laser should be selected to enhance the Raman sensibility and minimize the fluorescence emission of the samples. It is equally important that the power of the laser be examined cautiously to avoid the influences of thermal effects caused by the laser, especially for those materials with poor thermal stability. For example, phase transformation of ε -Fe₂O₃ and γ -Fe₂O₃ may take place under laser irradiation [38,39], and β -Fe₂O₃ may be converted into α -Fe₂O₃ upon heat treatment [35,40]. Therefore, low-power laser irradiation is required to avoid phase transformation of the β -Fe₂O₃ samples.

In this study, the influence of laser wavelength and irradiation power on phase transformation of β -Fe₂O₃ to α -Fe₂O₃ was investigated, and the Raman vibrational spectrum of β -Fe₂O₃ was clarified. After being doped with Zr, the particle-assembled β -Fe₂O₃ photoanodes can withstand higher annealing temperatures during the post-treatment process. Therefore, the solar water splitting photocurrent density for the particle-assembled Zr-doped β -Fe₂O₃ photoanodes was improved significantly to 1.2 mA cm⁻², which is five times greater than that of pure β -Fe₂O₃ photoanodes. Thus, this study suggests metastable β -Fe₂O₃ films as promising photoanode materials for solar water splitting.

RESULTS AND DISCUSSION

β-Fe₂O₃ belongs to the space group Ia $\bar{3}$, T_h⁷. Irreducible representations of the Γ-point phonon modes for β-Fe₂O₃ are shown in Supplementary Table S1. Factor group analysis of β-Fe₂O₃ predicts 49 phonon modes, 22 and 17 of which are Raman active modes and infrared active modes (Supplementary Table S2), respectively. Some Raman vibrational modes of β-Fe₂O₃ were observed in previous studies, whereas Rahman and coworkers reported different Raman spectra for β-Fe₂O₃ [36,37]. To clarify the Raman vibrational modes of β-Fe₂O₃, the Raman scatter spectrum of β-Fe₂O₃ was verified, as shown in Supplementary Fig. S1. Twelve clear vibrational peaks of β-Fe₂O₃ were observed at 158,


169, 234, 258, 274, 314, 328, 368, 386, 397, 522 and 635 cm $^{-1}$ using the 785 nm laser of 0.4 W. These peaks can clearly be distinguished from the Raman vibration peaks of α -Fe₂O₃ (227, 246, 293, 300, 411, 499, and 613 cm $^{-1}$). Compared to previous results from Liang and van de Krol [36], four new vibrational peaks at 258, 397, 522 and 635 cm $^{-1}$ were observed, whereas the vibrational peak at 208 cm $^{-1}$ was not observed.

The theoretical calculations and experimental values of Raman vibrational peaks are listed in Supplementary Table S3. Among the 22 vibrational modes predicted by the theoretical calculations, only 12 significant peaks were observed in the experiments. Three weak vibrational modes are marked with asterisks. The M10 (383 cm⁻¹) and M11 (389 cm⁻¹) modes merge into one peak (386 cm⁻¹) in the experimental spectrum. As given in Supplementary Fig. S1, typical peaks corresponding to vibrational modes 158 cm⁻¹ (T_g), 274 cm⁻¹ (T_g), $368 \text{ cm}^{-1} (T_g) \text{ and } 386 \text{ cm}^{-1} (E_g + T_g) \text{ can be used}$ as a characteristic spectrum for identifying the phase of β -Fe₂O₃. In addition, the theoretically calculated infrared vibrational peaks and the experimental infrared absorption spectrum are also given in Supplementary Table S4 and Supplementary Fig. S2, respectively.

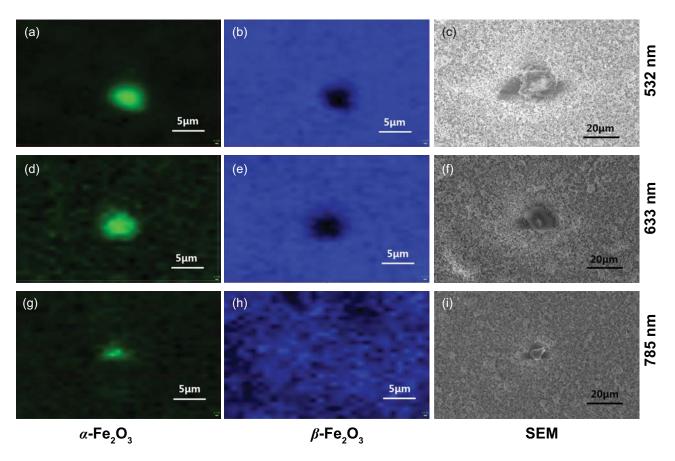
The metastable β -Fe₂O₃ phase may be converted to the mature α -Fe₂O₃ phase upon laser irradiation of different wavelengths and power. Figure 1 shows the effects of laser wavelength on the Raman spectrum of β -Fe₂O₃. The Raman peaks at 227, 293, 411, 499 and 613 cm⁻¹ belonging to α -Fe₂O₃ appeared after irradiation of the β -Fe₂O₃ samples with a 532 nm or 633 nm laser. In the case of 785 nm laser irradiation, the experimental and theoretical Raman peaks for β -Fe₂O₃ match in shape but exhibit a slight shift. These results suggest that a 785 nm laser is ideal for detecting the Raman spectra of metastable β -Fe₂O₃.

Raman spectra mapping images shown in Fig. 2 also indicate phase transformation of the particle-assembled $\beta\text{-Fe}_2\text{O}_3$ films without any necking treatment, in which the $\alpha\text{-Fe}_2\text{O}_3$ phase appears when the $\beta\text{-Fe}_2\text{O}_3$ film samples are irradiated with a 10 mW laser of 532 and 633 nm. Scanning electron microscope (SEM) images also suggest this phase transformation. Even when $\beta\text{-Fe}_2\text{O}_3$ was irradiated with a laser of 785 nm with 10 mW power, slight damage of the $\beta\text{-Fe}_2\text{O}_3$ films was observed.

Additionally, the effects of laser power on the Raman spectrum of β -Fe₂O₃ were investigated. When the power of the 785 nm laser is increased, a phase change of β -Fe₂O₃ to α -Fe₂O₃ possibly occurs (Fig. 3). After β -Fe₂O₃ is irradiated by 0.4 mW 785 nm laser for an extended period of 500 s, there

Figure 1. Theoretical calculation and experimental measurement of Raman spectra of β -Fe₂O₃ samples excited by a 0.4 mW laser at 785, 633 and 532 nm. The Raman spectrum of α -Fe₂O₃ is listed as a reference.

is no signal corresponding to α -Fe₂O₃. A significant phase transformation occurs with as little as 2 s irradiation with a 4 mW 785 nm laser. As the laser power increases and the exposure time is prolonged, all the β -Fe₂O₃ gradually converts to α -Fe₂O₃.

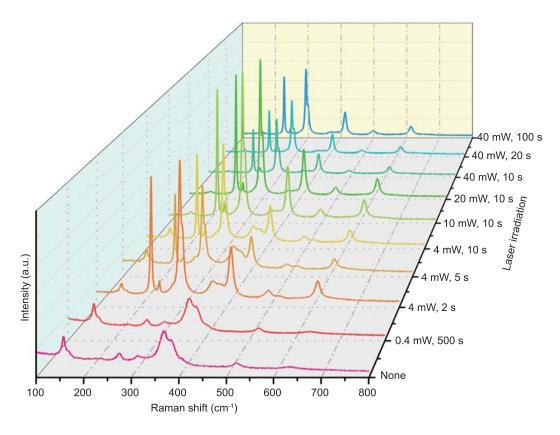

Figure 4 shows Raman spectra mapping and SEM images of the particle-assembled β -Fe₂O₃ films without any necking treatment after laser illumination of 785 nm. When the β -Fe₂O₃ films were irradiated with 785 nm laser at 0.4 W power, no α -Fe₂O₃ signal appeared. With the increasing power of the

785 nm laser, the signals of $\alpha\text{-Fe}_2O_3$ were enhanced, suggesting laser-induced phase transformation of $\beta\text{-Fe}_2O_3$ to $\alpha\text{-Fe}_2O_3$. The SEM images of Fig. 4 also corroborate this result. The phase transformation of $\beta\text{-Fe}_2O_3$ to $\alpha\text{-Fe}_2O_3$ is initiated by laser irradiation, likely as a result of the thermal effects of the laser. Therefore, low-power laser irradiation is required to avoid the phase transformation of metastable materials during Raman characterization to minimize its thermal effects. Thus, a 0.4 mW 785 nm laser is ideal for measuring the Raman spectra of $\beta\text{-Fe}_2O_3$.

Figure 5 shows transmission electron microscope (TEM) and selected area electron diffraction (SAED) images of the β -Fe₂O₃ samples. A simulated SAED image of α -Fe₂O₃ is shown in Fig. 5 for comparison. The measured SAED image of β -Fe₂O₃ samples (Fig. 5a) is in good agreement with the simulated SAED image of α -Fe₂O₃ (Fig. 5d) rather than the simulated SAED image of β -Fe₂O₃ samples (Fig. 5c), suggesting that the phase transformation of β -Fe₂O₃ to α -Fe₂O₃ induced by electron irradiation was also observed in this study. Note that the use of SAED to detect β -Fe₂O₃ should be done with caution. The phase transformation of β -Fe₂O₃ to α -Fe₂O₃ may be driven by laser irradiation, electron irradiation and heating (Supplementary Figs S3 and S4).

In our previous work, phase transformation of β -Fe₂O₃ to α -Fe₂O₃ occurred after annealing at 650°C [29]. Phase transformation of β -Fe₂O₃ was also proven by the appearance of the Raman peaks of α -Fe₂O₃ (Supplementary Fig. S3). In this study, Zr was introduced into the metastable β -Fe₂O₃ to inhibit phase transformation of β -Fe₂O₃ to α -Fe₂O₃. The formation energy of Zr_{0.03}Fe_{1.97}O₃ (Zr-doped β -Fe₂O₃) was calculated as -0.16 eV relative to pure β -Fe₂O₃, suggesting that Zr can be doped into the lattice of β -Fe₂O₃ to form a more stable structure. The density of states (DOS) for Zr_{0.03}Fe_{1.97}O₃ indicates that the band gap of β -Fe₂O₃ does not change obviously by doping Zr (Supplementary Fig. S5).

The XRD pattern of Zr-doped β -Fe₂O₃ (Supplementary Fig. S6) is in good agreement with β -Fe₂O₃ (JCPDS#39–0238), suggesting that there is no impurity phase after doping with Zr. The X-ray photoelectron—spectroscopy—in—Supplementary Fig. S7 shows that Zr was doped into the sample. The absorption spectra of pure β -Fe₂O₃ and Zr-doped β -Fe₂O₃ are shown in Supplementary Fig. S8. After annealing, the band gap of pure β -Fe₂O₃ changed, whereas the band gap of Zr-doped β -Fe₂O₃ did not. In previous work, we have reported that the absorption spectrum of β -Fe₂O₃ varies after different calcining processes [35]. The change in band gap indicates that a phase transformation may


Figure 2. Raman mapping and SEM images of particle-assembled β -Fe₂O₃ films excited by a 0.4 mW laser at 785 nm after irradiation by a 10 mW laser with various wavelengths: (a-c) 532 nm, (d-f) 633 nm and (g-i) 785 nm. (a, d, g) α -Fe₂O₃; (b, e, h) β -Fe₂O₃.

occur. Indeed, after being annealed at 1023 K, the characteristic Raman peaks of $\alpha\text{-Fe}_2\text{O}_3$ appeared in the Raman spectrum of the $\beta\text{-Fe}_2\text{O}_3$ sample (Supplementary Fig. S9a), indicating that there was a phase transformation. The Raman spectra of Zr-doped $\beta\text{-Fe}_2\text{O}_3$ did not change after being annealed at 1023 K (Supplementary Fig. S9b), indicating that there was no phase transformation. Note that the results of differential scanning calorimetry show that the phase transition temperature of Zr-doped $\beta\text{-Fe}_2\text{O}_3$ is clearly increased, as shown in Supplementary Fig. S10. The above results show that Zr doping effectively increases the phase transition temperature of metastable iron oxide.

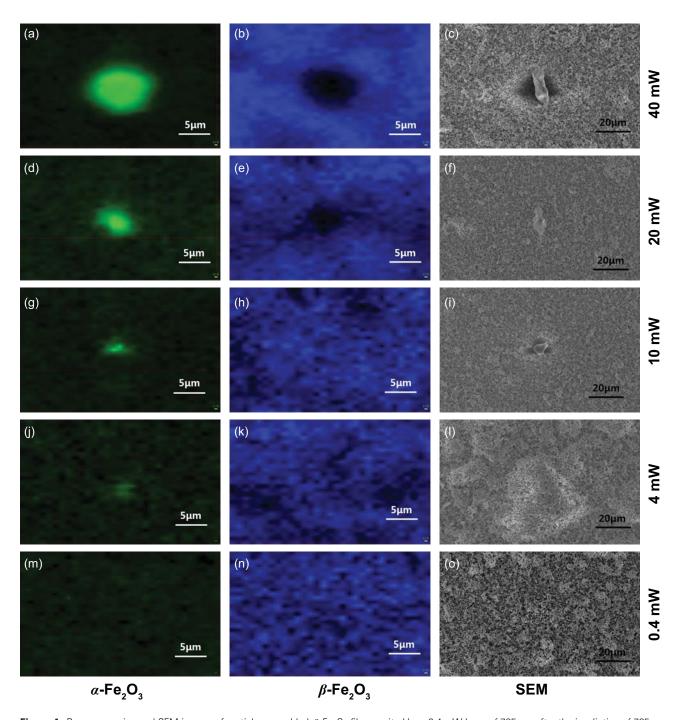
SEM images of the particle-assembled β -Fe₂O₃ photoanodes with and without Zr doping are shown in Supplementary Fig. S11. Figure 6a shows a comparison of the PEC performances of the particle-assembled β -Fe₂O₃ photoanodes with and without Zr doping under AM 1.5 G irradiation (100 mW cm⁻²). The results show that the photocurrent of Zr-doped β -Fe₂O₃ photoanodes is much higher than that of pure β -Fe₂O₃ photoanodes. Zr-doped β -Fe₂O₃ photoanodes also exhibit much larger monochromatic incident

photon-to-electron conversion efficiency (IPCE) than pure β -Fe₂O₃ photoanodes (Fig. 6b). Compared to the pure β -Fe₂O₃, the carrier density of Zr-doped β -Fe₂O₃ has been improved from 1.8 × 10^{20} to 4.6×10^{20} cm⁻³, which can be estimated from the Supplementary Fig. S12a. As shown in Supplementary Fig. S12b, the charge separation efficiency of Zr-doped β -Fe₂O₃ is improved by approximately four times at 1.6 V versus Reversible Hydrogen Electrode (RHE), compared to that of β -Fe₂O₃. The increase in the carrier concentration may favor the charge transport and contribute to the improvement in water splitting photocurrent of the Zr-doped β -Fe₂O₃ photoanode.

Under AM 1.5 G irradiation (100 mW cm⁻²), both Zr-doped and pure β -Fe₂O₃ photoanodes exhibit very good photochemical stability for water splitting during the PEC reaction over 10 h, as shown in Fig. 6c. In the case of particle-assembled Zr-doped β -Fe₂O₃ photoanodes, the Faradaic efficiencies for hydrogen production and oxygen production are 85% and 80%, respectively (Fig. 6d). This result suggests that the photocurrent of the particle-assembled β -Fe₂O₃ photoanodes is mainly attributed to water splitting.

Figure 3. Raman spectra of β -Fe₂O₃ under different power laser irradiations of 785 nm.

During the process of solar water splitting, β -Fe₂O₃ as a photoanode material may be exposed to standard simulated sunlight for a long time. To assess the possibility for phase transformation of β -Fe₂O₃ to α -Fe₂O₃ under simulated sunlight, the Raman spectra of the samples were measured before and after the photochemical stability testing. As shown in Supplementary Fig. S13, the phase of the β -Fe₂O₃ photoanodes before and after the reaction of PEC water splitting remains unchanged. In a typical PEC reaction, the intensity of the light used is not sufficient to promote the phase transformation of β -Fe₂O₃ particle-assembled films. Therefore, β -Fe₂O₃ is a promising photoanode for water splitting. The PEC performance of β -Fe₂O₃ may be improved further by not only the rational design of electrocatalysts but also the optimization of preparation methods [41,42].


CONCLUSION

In conclusion, the Raman spectrum of β -Fe₂O₃ under excitation by a 785 nm laser with 0.4 W power shows 12 significant vibrational modes corresponding to β -Fe₂O₃. The phase transformation of metastable β -Fe₂O₃ to mature α -Fe₂O₃ may be observed under laser irradiation, electron irradiation

and heating. Zr doping was introduced to particle-assembled β -Fe₂O₃ films, thus not only increasing the carrier concentration but also suppressing the phase transformation of β -Fe₂O₃. The PEC performance of the Zr-doped β -Fe₂O₃ photoanode was vastly boosted, in comparison with that of the pure β -Fe₂O₃ photoanode. This study demonstrates that metastable β -Fe₂O₃ remains stable during the PEC reaction and is a promising photoanode material for decomposing water, thus paving the road toward the use of β -Fe₂O₃ in solar water splitting (Supplementary Scheme S1).

METHODS

In this study, β -Fe₂O₃ powder was synthesized by calcining the mixture of NaFe(SO₄)₂ (or 1.5% ZrSO₄ doped NaFe(SO₄)₂) and NaCl in a muffle furnace at 450°C for 1 h [43]. As-prepared β -Fe₂O₃ powder was then deposited on fluorine-doped tin oxide (FTO) glass by electrophoretic deposition to prepare the particle-assembled films. In the case of necking treatment for the particle-assembled β -Fe₂O₃ films, 0.2 μ mol of TiCl₄ in methanol solution was dropped on the particle-assembled β -Fe₂O₃ films. Afterward, the

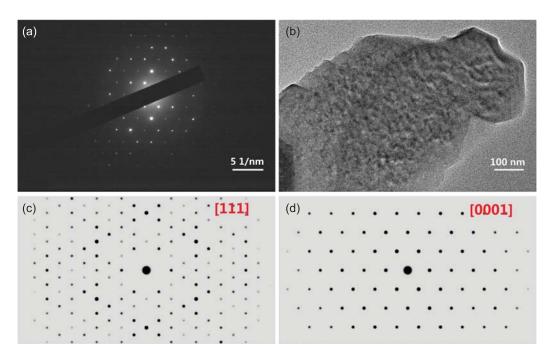
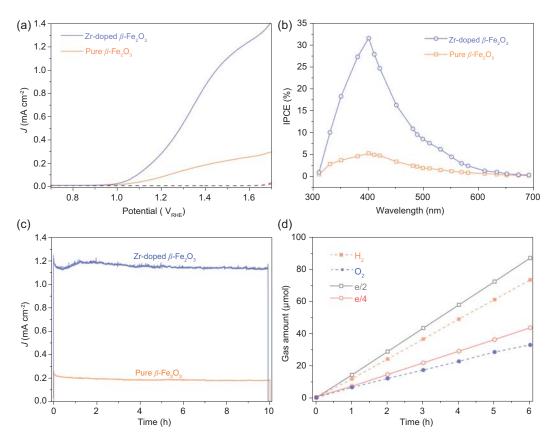


Figure 4. Raman mapping and SEM images of particle-assembled β -Fe₂O₃ films excited by a 0.4 mW laser of 785 nm after the irradiation of 785 nm laser with various power: (a-c) 40 mW, (d-f) 20 mW, (g-i) 10 mW, (j-l) 4 mW and (m-o) 0.4 mW. (a, d, g, j, m) α-Fe₂O₃; (b, e, h, k, n) β-Fe₂O₃.


films were annealed in a muffle furnace at 600° C (or 650° C) for 1 h.

Raman spectra of the samples were characterized with a confocal laser Raman spectrometer (Japan, Horiba, LabRAM Aramis, calibrated with silicon). Except for Fig. 1, all of the Raman spectra data acquisition used a 785 nm laser as the excitation source. Except for Fig. 3, all of the Raman spectra data acquisition used a 0.4 mW power

laser as the excitation source. Raman imaging was obtained using a 785 nm, 0.4 mW laser. All laser-induced phase-change samples were confirmed using a 785 nm laser as the excitation source before laser irradiation to ensure that the samples contained no $\alpha\text{-Fe}_2\text{O}_3$. The phosphor spectrum calculations were calculated in Material Studio with the Local Density Approximate, using the norm-conserving situation.

Figure 5. SAED and TEM images of the samples. (a) Measured SAED image of the β -Fe₂O₃ sample. (b) TEM image of the β -Fe₂O₃ sample. (c) Simulated SAED image of β -Fe₂O₃. (d) Simulated SAED image of α -Fe₂O₃.

Figure 6. (a) Photocurrent density, (b) IPCE, (c) photochemical stability at 1.6 V_{RHE} and (d) Faradic efficiencies of the particle-assembled β -Fe₂O₃ films with Zr doping under illumination of standard simulated sunlight (100 mW cm⁻²) in 1 M NaOH electrolyte (pH = 13.6). Reference sample: α -Fe₂O₃.

Density functional theory calculations on Zr-doped β -Fe₂O₃ were implemented in the VASP (Vienna Ab-initio Simulation Package) with a projected-augmented-wave method in the scheme of generalized-gradient approximation, whereas the strong on-site Coulomb repulsion among the localized Fe 3d electrons was described with the generalized-gradient approximation +U approach ('U' is 'the strength of the on-site Coulomb interaction').

SEM images were obtained on an SEM (Germany, Zessis, Ultra 55) and SAED images of the samples were obtained on a TEM (Japan, JEOL, Ltd. IEM2100).

PEC water splitting of the β -Fe₂O₃ particle-assembled films was carried out in 1 M NaOH solution (pH = 13.6) under AM 1.5 G standard simulated sunlight (American, Newport, Oriel Sol3A, 100 mW cm⁻²).

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.

ACKNOWLEDGEMENTS

The characterizations were made at the Collaborative Innovation Center of Advanced Microstructures in Nanjing University. The numerical calculations were conducted thanks to the access to the IBM Blade cluster system at the High Performance Computing Center (HPCC) of Nanjing University.

FUNDING

This work was supported by the National Key Research and Development Program of China (2018YFA0209303), the National Natural Science Foundation of China (U1663228, 51902153 and 51972165) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Conflict of interest statement. None declared.

REFERENCES

- Notzel R. InN/InGaN quantum dot electrochemical devices: new solutions for energy and health. Natl Sci Rev 2017; 4: 184–95.
- Li Z, Luo W and Zhang M et al. Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ Sci 2013; 6: 347–70.
- 3. Han H and Li C. Photocatalysis in solar fuel production. *Natl Sci Rev* 2015; **2**: 145–7.
- Young JL, Steiner MA and Döscher H et al. Direct solar-tohydrogen conversion via inverted metamorphic multi-junction semiconductor architectures. Nat Energy 2017; 2: 17028.

- 5. Yang Y, Niu S and Han D *et al.* Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. *Adv Energy Mater* 2017; **7**: 1700555.
- Pan L, Kim JH and Mayer MT et al. Boosting the performance of Cu₂O photocathodes for unassisted solar water splitting devices. Nat Catal 2018; 1: 412–20.
- Feng J, Huang H and Fang T et al. Defect engineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion. Adv Funct Mater 2019; 29: 1808389.
- Warren SC, Voïtchovsky K and Dotan H et al. Identifying champion nanostructures for solar water-splitting. Nat Mater 2013; 12: 847–9.
- Li Z, Feng J and Yan S et al. Solar fuel production: strategies and new opportunities with nanostructures. Nano Today 2015; 10: 468–86.
- Pendlebury SR, Wang X and Le Formal F et al. Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. J Am Chem Soc 2014; 136: 9854–7.
- Sivula K and Van De Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mater 2016; 1: 15010
- Walter MG, Warren EL and McKone JR et al. Solar water splitting cells. Chem Rev 2010; 110: 6446–73.
- 13. Kment S, Riboni F and Pausova S *et al.* Photoanodes based on TiO_2 and α -Fe₂O₃ for solar water splitting—superior role of 1D nanoarchitectures and of combined heterostructures. *Chem Soc Rev* 2017; **46**: 3716–69.
- Le Formal F, Pastor E and Tilley SD *et al*. Rate law analysis of water oxidation on a hematite surface. *J Am Chem Soc* 2015;
 137: 6629–37.
- Zhu Y, Qian Q and Fan G et al. Insight into the influence of high temperature annealing on the onset potential of Ti-doped hematite photoanodes for solar water splitting. Chin Chem Lett 2018: 29: 791–4.
- Cheng W, Richter MH and May MM et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency. ACS Energy Lett 2018; 3: 1795–800.
- Klahr B, Gimenez S and Fabregat-Santiago F et al. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ Sci 2012; 5: 7626–36.
- Klahr B, Gimenez S and Fabregat-Santiago F et al. Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 2012; 134: 4294–302.
- Zhao X, Feng J and Wang N et al. The influence of Ti doping on morphology and photoelectrochemical properties of hematite grown from aqueous solution for water splitting. Energy Technol 2018; 6: 2188–99.
- Liang Q, Guo Y and Zhang N et al. Improved water-splitting performances of CuW_{1-x}Mo_xO₄ photoanodes synthesized by spray pyrolysis. Sci China Mater 2018; 61: 1297–304.
- Fang T, Huang H and Feng J et al. Exploring facile strategies for high-oxidation-state metal nitride synthesis: carbonate-assisted one-step synthesis of Ta₃N₅ films for solar water splitting. Sci Bull 2018; 63: 1404–10.

 Chen Q, Fan G and Fu H et al. Tandem photoelectrochemical cells for solar water splitting. Adv Phys X 2018; 3: 1487267.

- 23. Wang Z, Mao X and Chen P *et al.* Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. *Angew Chem* 2019; **131**: 1042–6.
- Xu YF, Wang XD and Chen HY et al. Toward high performance photoelectrochemical water oxidation: combined effects of ultrafine cobalt iron oxide nanoparticle. Adv Funct Mater 2016; 26: 4414–21.
- 25. Qiu Y, Leung SF and Zhang Q *et al.* Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. *Nano Lett* 2014; **14**: 2123–9.
- Marelli M, Naldoni A and Minguzzi A et al. Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. ACS Appl Mater Interfaces 2014; 6: 11997–2004
- 27. Hou Y, Zuo F and Dagg A *et al.* Visible light-driven α -Fe₂O₃ nanorod/ graphene/BiV_{1-x}Mo_xO₄ core/shell heterojunction array for efficient photoelectrochemical water splitting. *Nano Lett* 2012; **12**: 6464–73.
- 28. Wang L, Nguyen NT and Huang X *et al.* Hematite photoanodes: synergetic enhancement of light harvesting and charge management by sandwiched with $Fe_2TiO_5/Fe_2O_3/Pt$ structures. *Adv Funct Mater* 2017; **27**: 1703527.
- 29. Hufnagel AG, Hajiyani H and Zhang S *et al.* Why tin-doping enhances the efficiency of hematite photoanodes for water splitting—the full picture. *Adv Funct Mater* 2018; **28**: 1804472.
- 30. Malviya KD, Dotan H and Shlenkevich D *et al.* Systematic comparison of different dopants in thin film hematite (α -Fe₂O₃) photoanodes for solar water splitting. *J Mater Chem A* 2016; **4**: 3091–9.
- Malara F, Fabbri F and Marelli M et al. Controlling the surface energetics and kinetics of hematite photoanodes through few atomic layers of NiO_x. ACS Catal 2016; 6: 3619–28.
- Wang CW, Yang S and Fang WQ et al. Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting. Nano Lett 2015; 16: 427–33.

- Sabba D, Kumar MH and Wong LH et al. Perovskite—hematite tandem cells for efficient overall solar driven water splitting. Nano Lett 2015; 15: 3833—9.
- Sun Y, Chemelewski WD and Berglund SP et al. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. ACS Appl Mater Interfaces 2014; 6: 5494–9.
- Zhang N, Guo Y and Wang X et al. A beta-Fe₂O₃ nanoparticle-assembled film for photoelectrochemical water splitting. Dalton Trans 2017; 46: 10673–7.
- 36. Liang Y and van de Krol R. Influence of Si dopant and SnO₂ interfacial layer on the structure of the spray-deposited Fe₂O₃ films. *Chem Phys Lett* 2009; **479**: 86–90
- 37. Rahman MM, Jamal A and Khan SB *et al.* Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β -Fe₂O₃ nanoparticles. *Superlattices Microstruct* 2011; **50**: 369–76.
- 38. López-Sánchez J, Serrano A and Del Campo A *et al.* Sol–gel synthesis and micro-Raman characterization of ε -Fe $_2$ O $_3$ micro-and nanoparticles. *Chem Mater* 2016; **28**: 511–8.
- 39. El Mendili Y, Bardeau JF and Randrianantoandro N *et al.* Insights into the mechanism related to the phase transition from γ -Fe₂O₃ to α -Fe₂O₃ nanoparticles induced by thermal treatment and laser irradiation. *J Phys Chem C* 2012; **116**: 23785–92.
- 40. Danno T, Nakatsuka D and Kusano Y *et al.* Crystal structure of β -Fe₂O₃ and topotactic phase transformation to α -Fe₂O₃. *Cryst Growth Des* 2013; **13**: 770–4.
- 41. Hu Y, Wu Y and Feng J *et al.* Rational design of electrocatalysts for simultaneously promoting bulk charge separation and surface charge transfer in solar water splitting photoelectrodes. *J Mater Chem A* 2018; **6**: 2568–76.
- Fang T, Huang H and Feng J et al. Reactive inorganic vapor deposition of perovskite oxynitride films for solar energy conversion. Research 2019; 2019: 9282674.
- 43. Danno T, Asoka H and Nakanishi M *et al.* Formation mechanism of nanocrystalline β -Fe₂O₃ particles with bixbyite structure and their magnetic properties. *J Phys Conf Ser* 2010; **200**: 082003.