
SCIENCE CHINA
Information Sciences

July 2019, Vol. 62 072102:1–072102:14

https://doi.org/10.1007/s11432-017-9324-0

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 info.scichina.com link.springer.com

. RESEARCH PAPER .

Constrained maximum weighted bipartite matching:

a novel approach to radio broadcast scheduling

Shaojiang WANG1,2, Tianyong WU1,2, Yuan YAO2,3, Dongbo BU4 & Shaowei CAI1,2*

1State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China;

2School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing 100190, China;
3Beijing Key Lab of Human-Computer Interaction, Institute of Software,

Chinese Academy of Sciences, Beijing 100190, China;
4Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

Received 28 July 2017/Revised 25 September 2017/Accepted 29 November 2017/Published online 7 May 2019

Abstract Given a set of radio broadcast programs, the radio broadcast scheduling problem is to allocate

a set of devices to transmit the programs to achieve the optimal sound quality. In this article, we propose

a complete algorithm to solve the problem, which is based on a branch-and-bound (BnB) algorithm. We

formulate the problem with a new model, called constrained maximum weighted bipartite matching (CMBM),

i.e., the maximum matching problem on a weighted bipartite graph with constraints. For the reduced

matching problem, we propose a novel BnB algorithm by introducing three new strategies, including the

highest quality first, the least conflict first and the more edge first. We also establish an upper bound

estimating function for pruning the search space of the algorithm. The experimental results show that our

new algorithm can quickly find the optimal solution for the radio broadcast scheduling problem at small

scales, and has higher scalability for the problems at large scales than the existing complete algorithm.

Keywords radio broadcast scheduling, branch-and-bound algorithm, constrained maximum weighted bi-

partite matching, Kuhn-Munkres algorithm, strategy combinations

Citation Wang S J, Wu T Y, Yao Y, et al. Constrained maximum weighted bipartite matching: a novel approach

to radio broadcast scheduling. Sci China Inf Sci, 2019, 62(7): 072102, https://doi.org/10.1007/s11432-017-9324-0

1 Introduction

According to the statistics of ITU1), near-Earth communication accounts for 99% of human communica-

tion, in which wireless communication is one of the main means. In wireless communication, short-wave

(the frequency ranges from 2 to 30 MHz) can effectively support long distance communication so that it

has been applied in a large number of areas, including radio broadcast of voice.

A central problem of the radio broadcast is how to schedule the programs and available resources

(transmitters) to achieve high sound quality. There are great differences in the quality of the programs

transmitted by different transmitters to different areas. The users can effectively receive the broadcast

programs only if the sound quality reaches some level. In general, this scheduling problem can be naturally

translated into a maximum weighted bipartite matching problem, for which a number of algorithms

(e.g., [1,2]) have been proposed. However, in the practical scenario, there are several extra constraints on

the programs and transmitters, for instance, the same transmitter with different antennas cannot work

at the same time (see Subsection 2.1).

*Corresponding author (email: caisw@ios.ac.cn)
1) About ITU. 2016. http://www.itu.int/.

 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9324-0&domain=pdf&date_stamp=2019-5-7
https://doi.org/10.1007/s11432-017-9324-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9324-0
https://doi.org/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:2

In this paper, we investigate the problem of constrained radio broadcast scheduling (CRBS). At first,

we introduce a new optimization problem called constrained maximum weighted bipartite matching

(CMBM), and reduce the CRBS problem to the CMBM problem. Then, we show that the deterministic

version of CMBM problem is NP-hard by reducing the 3SAT problem to it. We propose an algorithm

to solve the CMBM problem based on the branch-and-bound method (BnB), one of the foundational

method for optimization problems [3–5]. To make the BnB algorithm more efficient, we introduce three

new strategies, namely, the highest quality first, the least conflict first, and the more edges first. Our

experimental results show that the proposed algorithm is efficient in real-world applications.

In summary, our contributions in this paper are as follows:

• We propose the new problem of constrained maximum weighted bipartite matching, which well

characterizes CRBS problem.

• We formulate the radio scheduling problem to the constrained maximum weighted bipartite matching

problem.

• We propose a novel algorithm for the constrained maximum weighted bipartite matching.

• Experiments show that our algorithm is efficient and practical in solving real-world radio broadcast

scheduling problem.

The rest of this paper is organized as follows. Section 2 describes some backgrounds and related work of

the radio broadcast scheduling problem, as well as the maximum weighted matching on bipartite graphs

and pseudo-Boolean optimization. Section 3 introduces how we model the broadcast scheduling problem

by CMBM. Section 4 gives the proof that this problem is NP-hard. Sections 5 and 6 show the details

of the proposed approaches based on the PBO algorithm and branch-and-bound algorithm, respectively.

Our experimental results are shown in Section 7. Finally, we conclude this work and introduce some

future directions.

2 Backgrounds

In this section, we introduce the necessary backgrounds about the radio broadcast scheduling problem,

maximum weighted matching on bipartite graphs and pseudo-Boolean optimization.

2.1 Radio broadcast scheduling problem

The radio managers have a set of programs and a set of devices (transmitters and antennas) to broadcast

the programs. Each program is required to be transmitted to a specific area in a certain period of time.

A transmitter can work with several antennas to launch the programs and will have different transmitted

effects (sound quality) with different antennas. Note that the devices with the same transmitter (different

antennas) cannot work simultaneously, and we call such devices conflicted devices. The quality (like the

field strength) of the programs in the associated area must exceed a threshold (e.g., 55 decibels). Since it

is infeasible to probe the broadcast quality in all corners of the area, only a few stations are established in

each area for monitoring the quality of the program transmitted to the area. The numbers of the stations

in different areas are different.

Figure 1 shows a diagram to explain the inputs of the broadcast scheduling problem, where pi indicates

a program; ai is an area; sij denotes the jth station in ai; and di represents a device. The interval [ti1, ti2]

on the program pi indicates that the program is broadcasted from time ti1 to ti2. The edge from pi to

aj means the program pi is required to be transmitted to the area aj . The value of the edge from dk to

sij represents the quality of the signal transmitted by dk to the station sij . The rectangle surrounding a

pair of devices means that the devices in it share the same transmitter and cannot work simultaneously.

Radio broadcast scheduling problem is to allocate a device for each program and maximize the total

quality of the whole set of programs. The device allocation solution must satisfy the following three

requirements:

• Unique allocation. Each device can be allocated to transmit at most one program at each moment,

while each program must be transmitted by a unique device.
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:3

p1

p2

d1

…

a1

a2

60

57s12

s12

s13

d2

[t11, t12]

[t21, t22]

Figure 1 An example of radio broadcast scheduling problem.

• Area cover. If the device di is allocated to transmit the program pj that is required to be presented

in area ak, then di must cover the area ak.

• Device conflict. If the device di is allocated to transmit some program pj , then the other devices

that share the same transmitter of di cannot be allocated to transmit the program whose interval of

broadcast time overlaps with that of program pj .

2.2 Maximum weighted bipartite matching problem

A bipartite graph G = 〈V,E〉 is a graph whose vertices can be categorized into two disjoint sets such

that every edge crosses over from one to the other. A weighted bipartite graph is extended by attaching

a weight to each edge.

A matching of a graph is a set of edges that no two edges share a common end. In addition, a vertex

is matched (or saturated) if it is an endpoint of an edge in the matching. The maximum weighted

bipartite matching problem is to find in a given weighted bipartite graph a matching whose total weight

is maximized. There are several algorithms [2, 6, 7] to solve this problem in polynomial time. In this

paper, we use the Kuhn-Munkres algorithm [6, 7].

2.3 Pseudo-Boolean optimization

The pseudo-Boolean optimization (PBO) problem [8] consists of a pseudo-Boolean formula and an objec-

tive function. The pseudo-Boolean formula is a conjunction of pseudo-Boolean constraints, each of which

is an inequality with Boolean variables. The objective function is a linear arithmetic expression over the

Boolean variables in the pseudo-Boolean formula. A PBO problem can be expressed in the following

form, where xi is a Boolean variable and wi, cij and bi are positive integers.

Maximize :
n
∑

i=1

wixi,

such that
n
∑

i=1

cijxi 6 bj , for each 1 6 j 6 m.

2.4 Related work

Ma et al. [9] proposed a local search algorithm, by using swap and substitute two operators. They

calculated the approximate solution in less time, but local search would be impossible to guarantee optimal

solutions. Pan et al. [10] developed, with additional consideration of radio frequency, this algorithm by

integrating ILP and SMT solving into the local search approach. However, both these algorithms [9, 10]

are based on local search, and thus no optimal solution can be guaranteed.

Zhan et al. [5] proposed a wireless broadcast real-time scheduling model, focusing on real-time schedul-

ing and coding processing. Beale [3] proposed a branch-and-bound algorithm on constraint satisfaction

optimization (CSP) problem, and did not deal with wireless broadcast scheduling. Li et al. [11] proposed

a branch-and-bound algorithm on max-sat for the maximum clique problem, without involving wireless

broadcast scheduling. In this paper, we have reduced the wireless broadcast scheduling problem to a
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:4

constrained maximum weighted bipartite matching problem and then proposed a new BnB algorithm.

The experimental results confirm the advantages of the new approach.

3 Constrained maximum weighted bipartite matching

In this section, we formally describe the radio broadcast scheduling problem as our proposed model

CMBM. Before giving the detailed formal descriptions, we introduce several notations.

Let P = {p1, p2, . . . , pm} denote the set of programs, D = {d1, d2, . . . , dn} denote the set of devices,

T = {t1, t2, . . . , tk} denote the set of time intervals of the programs, A = {a1, a2, . . . , al} denote the set of

areas, and Dc ⊂ D×D denote all the pairs of conflicted devices that cannot work at the same time. The

item time(pi) ∈ T denotes the broadcast time interval of program pi. Let area(pi) ∈ A be the area that

program pi is required to be transmitted to, Si = stat(ai) be the station set of area ai and S =
⋃l

i=1 Si

be the set of all stations. The function qual : D× S → N
+ gives the quality of the signal transmitted by

the devices to the stations. L denotes the necessary transmitted quality of a program for users.

With the above notations, we define the function sc : D × S → {0, 1} and ac : D × A → {0, 1} to

represent whether a device cover a station or an area as follows:

sc(d, s) =

{

1, qual(d, s) > L,

0, otherwise,

ac(d, a) =

{

1, |CS|
|stat(a)| > 0.8,

0, otherwise,

where d ∈ D, s ∈ S, a ∈ A, and CS = {s |s ∈ stat(a) ∧ sc(d, s) = 1}. Finally, we define the function

f : P ×D → N to denote the quality of a program transmitted by a device as follows:

f(p, d) =

{

0, ac(d, area(p)) = 0,

avg(p, d), otherwise,

where p denotes a program, d indicates a device, and avg(p, d) = Avg{qual(d, s)|s ∈ area(p)∧sc(d, s) = 1}

calculates the average value of the quality of program p transmitted by device d.

Now we model the input of the broadcast scheduling problem with a constrained weighted bipartite

graph G = 〈V1, V2, E, C〉, which is constructed by the following steps. Each element v1 ∈ V1 corresponds

an element p ∈ P as defined above (denoted by g(v1) = p). Each element v2 ∈ V2 corresponds to

a tuple 〈d, t〉 ∈ D × T (denoted by h(v2) = 〈d, t〉), which means using the device d to broadcast the

program in the time interval t. The edge set E consists of pairs of the elements in V1 and V2, i.e.,

E = {〈v1, v2〉|v1 ∈ V1 ∧ v2 ∈ V2 ∧ g(v1) = p ∧ h(v2) = 〈d, t〉 ∧ time(p) = t ∧ f(p, d) > 0}. The

weight of each edge e = 〈v1, v2〉 ∈ E is denoted by w(e) = f(p, d). The set C = C1 ∪ C2 denotes the

conflicted device pairs, where C1 = {〈v, v′〉|v, v′ ∈ V2 ∧ ∃d, t, t′(h(v) = 〈d, t〉 ∧ h(v′) = 〈d, t′〉 ∧ t ∩ t′ 6= ∅)}

indicates the conflictions of the same device with overlapped time intervals and C2 = {〈v, v′〉|v, v′ ∈

V2 ∧ ∃d, d′, t, t′(h(v) = 〈d, t〉 ∧ h(v′) = 〈d′, t′〉 ∧ 〈d, d′〉 ∈ Dc ∧ t ∩ t′ 6= ∅)} represents the conflicted devices

with overlapped time intervals. The scale of the graph G is shown as follows:

• |V1| = |P |;

• |V2| = |D| · |T | 6 |D| · |P |;

• |E| 6 |D| · |P |;

• |C| 6 (|Dc|+ |D|) · |T |2 6 (|Dc|+ |D|) · |P |2.

Then the broadcast scheduling problem can be translated to a CMBM problem, i.e., to find a subset

E′ ⊂ E in the graph G that satisfies the following properties.

• P1: E′ is a matching.

• P2: |E′| = |V1|.

• P3: For any two edges e1 = 〈v1, v2〉, e2 = 〈v′1, v
′
2〉 ∈ E′, the condition 〈v2, v′2〉 /∈ C always holds.

 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:5

P D

2

5

3

5

[2, 4]

[3, 5]

p1

p2

d1

d2

d3

p1

p2

d11

V2

2

5

3

V1

d12

d22d21

d31 d32

[2, 4]

[2, 4]

[2, 4]

[3, 5]

[3, 5]

[3, 5]

5

Figure 2 Example CBRS problem. Figure 3 CMBM model for CBRS problem.

• P4: The weight sum of E′ is maximized.

Example 1. An instance of radio broadcast scheduling problem is shown in Figure 2, where a solid

line with a weight represents an edge between a program and a device, while a dashed line describes two

conflicted devices, and the intervals above the P nodes denote the broadcasting time.

Figure 3 demonstrates a CMBM model of the above radio broadcast scheduling problem. We translate

the programs clashing in the broadcasting time to the confliction of devices. Specifically, we split each

device into two new devices with different time intervals of the programs, and add the corresponding

edges.

4 Complexity analysis

We prove that the CMBM problem is NP-hard by reducing from 3SAT problem. The 3SAT problem

is described as follows: for a given collection of clauses c1, c2, . . . , cm, each of which is a disjunction of

exactly three literals, decides whether there is an assignment that can evaluate all the clauses true.

Theorem 1. The CMBM problem is NP-hard.

Proof. For a 3SAT instance, for example, the variables are x1, x2, . . . , xn and the clauses are c1, c2, . . .,

cm, we construct a constrained weighted bipartite graph G = 〈V1, V2, E, C〉 by the following steps. First,

we construct m nodes in V1 to represent m clauses. Then we construct a node in V2 for each literal in a

clause, that is, we totally construct 3m nodes in V2. Note that the different nodes in V2 may correspond

to the same literal, if the literal occurs multiple times in the clauses. And we construct 3m edges between

the nodes in V1 and V2, where each node v in V1 has three edges to three nodes in V2 that represent

the literals of the corresponding clause of v. All the weights of edges are set as 1. The conflicted pairs

of nodes in C are set as the nodes in V2 that corresponds to the complementary variables (e.g., x1

and x̄1). Figure 4 shows the constructed constrained weighted bipartite graph for the 3SAT instance

(x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x3).

On the one hand, if the 3SAT instance has a solution (denoted by A), then there is at least one

literal is evaluated true under the assignment A in each clause. We can construct an edge set E′ by

the following method. For each node v1 ∈ V1, we can always find an edge 〈v1, v2〉 ∈ E such that the

corresponding literal of v2 is evaluated true under A, and add the edge to E′. Then we need to prove

E′ satisfies the four properties in the previous section. We can easily observe E′ satisfies the properties

P1 and P2. Assume that E′ does not satisfy P3, that is, there exists v1, v
′
1 ∈ V1, 〈v2, v′2〉 ∈ C such that

〈v1, v2〉, 〈v′1, v
′
2〉 ∈ E′. According to the construction of C, we can get that the corresponding literals of v2

and v′2 are complementary literals. According to the construction of E′, we can get that the corresponding

literals of v2 and v′2 are both evaluated true under A, that is contradiction. It is obvious that the number

of edges in a match of G is no more than m, and the weight sum of a match is no more than m. Since

the weight sum of E′ is m, E′ satisfies the property P4.
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:6

c1

c2

c1−x1

V2

1

1

V1

1

1

1

−

1

c2−x1
−c2−x2 c2−x3

c1−x3c1−x2

Figure 4 CMBM model for 3SAT problem.

On the other hand, assume the CMBM instance has a solution (denoted by E′). Since E′ satisfies the

properties P1 and P2, we can get that for each node in P , there exists a unique edge in E′ that connects

the node. We can construct an assignment A by the following steps. For each edge 〈v1, v2〉 ∈ E′, if the

corresponding literal of v2 is the negation of the variable, we assign this variable false, otherwise, we assign

this variable true. We need to prove that each variable is not assigned true and false simultaneously for

two different edges 〈v1, v2〉, 〈v′1, v
′
2〉 ∈ E′. If the above situation occurs, we can get that the corresponding

literals of v2 and v′2 are complementary literals, and 〈v2, v′2〉 ∈ C. So E′ does not satisfies the property

P3, that is contradiction. If some variables are not assigned in the above process, we can assign them

either true or false. Assignment A make all the clause true, since for each clause there exists at least one

literal that is true.

This shows that the CMBM problem is NP-hard.

5 A method based on PBO

In this section, we introduce a baseline algorithm to solve the broadcast scheduling problem, which is

designed based on PBO technique.

As mentioned in Subsection 2.3, a PBO instance consists of an optimization function and a pseudo-

Boolean formula over a number of Boolean variables. In the weighted bipartite graph (Section 3), for

each edge 〈pi, dj〉 ∈ E, we define a Boolean variable xij . If xij equals 1, it indicates the edge is selected

in the targeted matching, otherwise, it is not selected. Then we can easily get the optimization function

as follows:

Maximize :
∑

〈pi,dj〉∈E

wijxij ,

where wij is the weight of the edge 〈pi, dj〉.

Next, let us consider the pseudo-Boolean formula that includes a series of constraints. For the property

P1, according to the definition of matching, we have two constraints shown as follows:

∑

〈pi,dj〉∈E

xij 6 1, for each pi ∈ P,

∑

〈pi,dj〉∈E

xij 6 1, for each dj ∈ D,

where the 1st constraint indicates that there is at most one edge in the selected edge set that contains

pi, and the 2nd one indicates that there is at most one edge in the selected edge set that contains dj .

The property P2 can be represented by the following formula:

∑

〈pi,dj〉∈E

xij = m.

 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:7

Finally let us consider the property P3. Assume 〈du, dv〉 ∈ C, then this property can be expressed by

the following formula:
∑

〈pi,du〉∈E

xiu +
∑

〈pi,dv〉∈E

xiv 6 1.

To sum up, the broadcast scheduling problem can be transformed to a PBO instance shown as follows:

Maximize :
∑

〈pi,dj〉∈E

wijxij

s.t.

m
∧

i=1

∑

〈pi,dj〉∈E

xij 6 1

 ,

n
∧

j=1

∑

〈pi,dj〉∈E

xij 6 1

 ,

∑

〈pi,dj〉∈E

xij = m,

∧

〈du,dv〉∈C

∑

〈pi,du〉∈E

xiu +
∑

〈pi,dv〉∈E

xiv 6 1

 .

6 An algorithm for constrained maximum weighted bipartite matching

In this section, we propose a new algorithm for the problem of constrained maximum weighted bipartite

matching. Our algorithm is based on the branch-and-bound method, which exploits a number of obser-

vations the structure of the solution space of the constrained maximum weighted bipartite matchings.

Our overall idea is to divide the problem into a number of maximum weighted matching problems that

can be solved by the Kuhn-Munkres algorithm [6,7]. Then we leverage the branch-and-bound technique

to decide the exploration order of these sub-problems and prune some of the unnecessary sub-problems.

The following two subsections illustrate these two steps in detail.

6.1 Formulation

We first define several notations. Given a constrained weighted bipartite graph G = 〈V1, V2, E, C〉, let M

denote the maximum weight of the edges in G, i.e., M = max{w(e)|e ∈ E}. We introduce a notation,

called maximal non-conflict device set, to represent the subset V ′ ⊂ V2 that satisfies the properties:

(1) for two different nodes v, v′ ∈ V ′, 〈v, v′〉 /∈ C; (2) for each v ∈ V2 \ V ′, there always exists v′ ∈ V ′

such that 〈v, v′〉 ∈ C. The set V = {V 1, V 2, . . . , V r} is composed of all the maximal non-conflict device

set. Then we translate the graph G to a series of weighted bipartite graphs G = {G1, G2, . . . , Gr}, where

Gi = 〈V1, V
i, Ei〉. The edge set Ei = {〈v1, v2〉|v1 ∈ V1 ∧ v2 ∈ V i}, and for each edge e ∈ Ei, the weight

wi(e) is defined with the following formula:

wi(e) =

{

w(e), if e ∈ E,

(−M) · |V1|, otherwise.

We can perform the Kuhn-Munkres algorithm on the graph Gi to get the maximum weight sum of the

matching that is denoted by KM(Gi) = (opti,matchi) , where opti denotes the maximum weight sum and

matchi denotes the corresponding matching. Let G∗ ∈ G denote a graph, and KM(G∗) = (opt∗,match∗).

Assume that opt∗ = max{opti|1 6 i 6 |G|∧|matchi| = |V1|}, and the solution of CMBM on G is denoted

by (opt,match). Then we prove match∗ satisfies the four properties. It is obvious that match∗ satisfies

the properties P1 and P2. Through the construction of G∗, we can also see that match∗ satisfies the

property P3. So we only need to prove that match∗ satisfies the last property, that is, opt∗ = opt. To

prove that, we first introduce and prove several propositions as follows.
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:8

d14

5

d2

d3

d4

3

2

5p1

p2

4

35

−10

4

3−10

5

−10

25

−10

−10

2−10

5

p1

G1 G2

G4G3

d1

d3

d3

d2

d1

d4

d3

d2

p2

p1

p2

p1

p2

p1

p2

Figure 5 Example to illustrate the translating process. Figure 6 Translated graphs without constraints.

Start

Kuhn-Munkres algorithm

G1 G2 G4G3

d1 d3d2
d4

d3 d4 d3 d4
d1 d2d1 d2

Figure 7 Tree structure of translated graphs.

Proposition 1. opt∗ > opt.

Proof. Let V † = {v2|∃v1 ∈ V1(〈v1, v2〉 ∈ match)} denote the vertexes in V2 that are covered by match.

Sine match satisfies the property P3, for any v, v′ ∈ D†, 〈v, v′〉 /∈ C holds. So there must exists V k ∈ V

such that V † ⊂ V k holds. Then match must be a matching in the graph Gk, and so opt∗ > optk > opt

holds.

Proposition 2. For any Gi ∈ G, if opti > 0, then matchi is a matching in the graph G.

Proof. To prove this proposition, we only need to prove that all edges in matchi belong to E. Assume

that there exists an edge in matchi that does not belong to E. Then we can get that opti 6 (m − 1) ·

M −M ·m = −M < 0. This comes to a contradiction.

With Proposition 2, we have opt∗ 6 opt. Then with Proposition 1, we further infer that opt∗ = opt,

that is, match∗ satisfies the property P4.

Example 2. Figure 5 shows an example of a constrained weighted bipartite graph G = 〈V1, V2, E, C〉,

which contains two vertices in V1 and four vertices in V2. The value in each edge indicates the weight of

the edge. The conflict device set C has four elements, 〈d1, d2〉, 〈d2, d1〉, 〈d3, d4〉, 〈d4, d3〉. The solution of

this instance is (〈p1, d1〉, 〈p2, d4〉), and the maximum weight sum is 9.

Figure 6 shows the translated graph G1, G2, G3 and G4 of the graph G in Figure 5. We can perform

the Kuhn-Munkres algorithm [6, 7] to calculate and compare the maximum weight sum for these graph,

and find the optimal solution in G2 that is also the solution on the graph G.

We can organize the search space of device combination as a tree, where each leaf of the tree indicates

a maximal non-conflict device set. Figure 7 shows the tree structure of the graph in Figure 5.
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:9

6.2 Branch-and-bound algorithm

Before describing our algorithm, we introduce three new strategies for determining which device is ex-

plored in the searching process.

• Highest quality first. We prefer to choose the device that has higher quality to transmit some

program.

• More edge first. We prefer to choose the device that is able to transmit more programs with

acceptable quality.

• Least conflict first. We prefer to choose the device that is conflicted with the least number of

devices. Extremely, if a device has no conflict with other devices, it is obvious that this device must be

in any maximal non-conflict device set, and we should select it preferentially.

We also estimate the upper bound of a given node in the search tree for pruning. The bound is estimated

by summing up the maximum weights of selected devices and the devices that are not conflicted with the

selected devices.

Algorithm 1 gives the details of our approach. It accepts the constrained weighted bipartite graph

G = 〈V1, V2, E, C〉 and outputs the maximum weighted bipartite matching M and the optimal value opt.

We make use of a priority queue to perform the process. In the algorithm, each searching state contains

two attributes, including sv and pri. The set sv stores the current selected vertices in V2, while the pri

indicates the search priority of the current state. If the current state is not a leaf node in the search tree

(not maximal non-conflict device set), then we estimate the upper bound in line 7. If the upper bound ub

is less than the current value of opt, we discard this state, otherwise, we extend this state and calculate

the priority of the new state with the above strategies. If the current state is a leaf node, we construct

the translated graph with the set sv of the current state, and perform Kuhn-Munkres algorithm [6, 7] to

solve the maximum weighted matching.

Algorithm 1 BnB algorithm for the constrained maximum weighted graph matching problem (CMGM)

Input: Constrained weighted bipartite graph G;

Output: AmatchingM and its weight sum opt such thatM satisfies the constraints and opt is maximum.

1: Priority queue q = ∅, opt = 0;

2: Create a new state n such that n.sv = ∅, n.pri = 0;

3: q.push(n);

4: while q is not empty do

5: n = q.front(), q.pop();

6: if n.sv in not a maximal non-conflict device set then

7: ub = estimate upper bound (n, G);

8: if ub > opt then

9: for each unvisited and non-conflicted vertex v ∈ V2 do

10: Create a new state n′ such that n′.sv = n.sv ∪ {v}, n′.pri = cal priority(v);

11: q.push(n);

12: end for

13: end if

14: else

15: G∗ = translate graph(G,n);

16: (m, val) = KM(G∗);

17: if val > opt then

18: M = m, opt = val;

19: end if

20: end if

21: end while

 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:10

6.3 Strategies for reducing search space

The search space (or the times of calling KM algorithm) in our algorithm is equal to the number of

maximal non-conflict device set. Assume the average number of the elements in a non-conflict device set

is nc, then the search space scale is Cnc
|D|. In this subsection, we discuss how to reduce the search space

in some specific input data.

6.3.1 Reduce the non-conflict device set

The first strategy for reducing search space is to reduce the elements in non-conflict device set. When

the input satisfies the property: nc ≫ |P |, i.e., the number of elements in a maximal non-conflict device

set is much greater than that of programs, we do not need to enumerate all the maximal non-conflict

device set. Instead, we can only traverse all the non-conflict device sets, each of which has exactly |P |

elements. If we do that, the search space is reduced to C
|P |
|D|. The correctness is easily to be proved as

follows. Since the match in the solution has at most |P | device nodes, which must be enumerated in the

above step.

6.3.2 Delete dominated device

Before giving the second strategy, we first introduce a definition. Assume d, d′ ∈ D denote two device

nodes. The sets Cd, Cd′ are the sets of the conflicted device nodes of d and d′. We call a device d dominate

d′ if and only if the following properties holds.

• 〈d, d′〉 ∈ C;

• Cd ⊂ Cd′ ;

• For any p ∈ P , w(p, d) > w(p, d′).

With this definition, we can reduce the device set: for each d′ ∈ D, if there exists a device node d such

that d dominate d′, then we can delete d′ from D. The correctness is also easily to be proved. Assume

that the match in the solution contains d′. Then the device node d must not be in the solution. We can

replace it with d and the weight sum must not decrease, and d must not be conflicted with the rest device

nodes in the solution.

6.3.3 Merge devices in a clique

We can construct a undirected graph GD = 〈D,C〉 by regarding the device set and conflicted device set

as the vertex set and edge set. If a subset D′ ⊂ D satisfies the following properties, then we can merge

the devices into one.

• D′ is a clique in GD;

• For a device d ∈ D, assume Dc(d) = {d′|d′ /∈ D′ ∧ (d, d′) ∈ C}. For any two devices d, d′ ∈ D′,

Dc(d) = Dc(d′).

Assume we merge the devices in D′ into a new node d†, then we construct new edges in the following

way:

w(p, d†) = max{w(p, d′)|d′ ∈ D′}.

7 Experiments

To evaluate the effectiveness of our approaches, we implement our algorithms in C++ language. The

experiments are conducted on a machine with Intel Core 3.6 GHz (4 cores) and 8 GB memory, Windows

10 operating system.

7.1 Design of the experiments

To evaluate the effectiveness of our approach, we raise two research questions as follows.
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:11

Q1. Can our new strategies improve the BnB algorithm to find better quality solutions? Which

combination of these strategies perform best?

Q2. What is the effectiveness of our approach, compared with existing approaches?

To answer the above questions, we carried out on two benchmarks, including real-world application

instances and random instances.

The real-world data is taken from [9]. According to the longitude and latitude, the earth is divided

into 85 regions and 911 stations, and the quality of signal launched by a device to a station is calculated

according to the transmitter, antenna information and the distance between the device and area. If the

quality exceeds the threshold, we call the device cover the station. In addition, if a device can cover more

than 80% of stations in an area, we call the device cover the area.

For Q1, we configure our algorithm with different combinations of the strategies (including without

any strategy), and apply them to the real-world application instances. Through comparing the best

found quality solution, we conclude the best combination of our strategies. For Q2, we configure our

algorithm with the best combination to find the quality solution, and compare the results generated by

our approach with that of CLASP, CPLEX, and the local search (LS) solver shown in [9].

7.2 Effectiveness of strategy combinations

First of all, we investigate the effectiveness and efficiency of our new strategies. Clearly, there are four

arrangements for the priority of the three strategies. To determine which one is best, we have tried

all of them and conclude that the order “highest quality, more edge, least conflict” performs best. We

evaluate our approach on a benchmark of application instances in the work of Ma et al. [9], and set the

time limit as 180 s. The results are shown in Table 1. The first two columns indicate the number of

programs and devices. It can be observed that the incremental strategy combinations improve the best

found quality solution (#QS) incrementally, and for most cases, the time at which #QS is found decreases

a lot, especially for large data sets. The summary results in Table 2, which includes the comparisons

“Weight vs. None”, “Weight+Edge vs. Weight” and “Weight+Edge+Conflict vs. Weight”. The table

compares three strategies and their results. “Improving”, “equal” and “worse” indicate that the former

strategy outperforms, keeps and underperforms the latter one, respectively.

7.3 Comparison with other methods

In this section, we compare our method with other methods on application benchmark and random

benchmark. This includes the comparisons to the results of CLASP, CPLEX and the local search (LS)

solver.

7.3.1 Results on application benchmark

Table 3 shows the comparative experimental results. For each method, we list the best found quality

solution (#QS) and the time to get it. Note that the local search solver invokes a randomized construction

phase and the solution is also random. So we list the #QS column for the local search solver both the best

solution quality, and the average solution quality in parentheses. In contrast, our method is deterministic,

and also achieves the results as qualitative as theirs. Therefore, it is not convictive to summarize the

best solutions directly for comparison.

From the results, we have the following observations. For small sized instances, CPLEX is the best.

Both CPLEX and CLASP become futile when the instance size becomes large, e.g., |P | > 4000 and |D| >

50. Our approach and local search survive through the whole benchmark, and they show competitive

performance. For medium sized instances, the local search method performs the best, slightly better than

our approach. However, for two largest instances (the last two rows), our approach is the best. This

might seem a little odd for BnB methods outperforming local search on very large instances. The reason

why our approach performs better is below. The local search method used in [9] picks a starting point in

search space randomly. However, we choose the starting point of the depth first searching process by the

three strategies listed in Subsection 6.3. Moreover, the strategies focus on picking the potential devices
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:12

Table 1 Results of different versions of our method on application benchmarka)

P D
None Weight Weight+Edge Weight+Edge+Conflict

#QS Time (s) #QS Time (s) #QS Time (s) #QS Time (s)

2 50 94* <0.04 94* <0.05 94* <0.01 94* <0.001

5 50 103* 3.92 103* 5.14 103* 5.11 103* 0.141

2 100 94* 0.012 94* 0.011 94* 0.01 94* <0.001

5 100 103* 9.43 103* 5 103* 11.45 103* 0.23

2 200 121* 0.016 121* 0.013 121* 0.016 121* <0.001

5 200 206 13.5 238* 5 238* 2.03 238* 2.04

10 200 393 180 645 40.6 645 40.2 645 42.9

2 400 187* 0.017 187* 0.16 187* 0.016 187* <0.001

5 400 406 142 438* 20.8 438* 21 438 20.8

10 400 416 85.2 845 46.1 845 46.2 845 46.7

20 400 588 84.9 761 175 761 169 761 160

2 800 212* 0.448 212* 0.434 212* 0.427 212* <0.001

5 800 408 140 447 0.22 447 0.222 447 0.222

50 4000 2837 129 4471 0.043 4471 0.045 4471 0.049

60 4000 3073 103 5143 0.239 5143 0.24 5143 0.238

70 4000 3780 25.2 6057 0.306 6057 0.35 6057 0.326

87 4000 4776 160 6824 0.144 6824 0.138 6824 0.141

50 5000 2802 54.7 4613 0.223 4612 0.22 4612 0.22

60 5000 3073 151 5313 0.284 5313 0.286 5313 0.278

70 5000 3780 37.3 6277 0.143 6280 0.294 6280 0.3

87 5000 4771 96.2 7099 0.19 7099 0.18 7099 0.18

50 6000 2826 72.5 4989 2.6 4989 2.63 4989 2.59

60 6000 3054 158 5784 2.18 5784 2.18 5784 0.189

70 6000 3804 51.4 6861 49.4 6861 49.3 6861 49

87 6000 4795 136 7745 165 7742 0.748 7742 0.754

50 7061 2826 76 5006 5.33 5006 5.43 5006 5.24

60 7061 3054 167 5821 53.1 5821 53.1 5820 0.554

70 7061 3804 54.2 6948 0.189 6948 0.181 6948 0.182

87 7061 4795 144 7893 1.81 7902 0.633 7902 0.619

a) * denotes the optimal value.

Table 2 Summary on comparisons between different versions

Strategy Improving Equal Worse

Weight vs. None 29 0 0

Weight+Edge vs. Weight 18 3 8

Weight+Edge+Conflict vs. Weight 25 2 2

that could be matched to the programs, rather than a concrete matching itself as the local search in [9]

does. This idea works since Kuhn-Munkres algorithm finds efficiently the best matching among all the

available solutions using these devices.

7.3.2 Results on random benchmark

To further evaluate the effectiveness of our branch-and-bound algorithm, we randomly generate 100

instances and apply our two algorithms to calculate the optimal matching solution. Since the PBO

algorithm (CLASP) may cost a lot of time to get the optimal solution, we set a time limit (1000 s).

Figure 8 shows the experimental results of these 100 instances. From Figure 8, we can see that the

PBO algorithm fails to give the solution within the time limit on a quart of these instances, while the

branch-and-bound algorithm can give the best solution within 200 s, and 27 s on average.
 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:13

Table 3 Experimental results on application benchmarka)

P D
CLASP CPLEX LS Ours

#QS Time (s) #QS Time (s) #QS Time (s) #QS Time (s)

2 50 94* <0.01 94* <0.01 94(94) <0.01 94* <0.001

5 50 103* 0.171 103* 0.19 103(103) <0.01 103* 0.141

2 100 94* 0.016 94* <0.01 94(94) <0.01 94* <0.001

5 100 103* 0.171 103* 0.14 103(103) <0.01 103* 0.23

2 200 121* 0.078 121* 0.14 121(121) <0.01 121* <0.001

5 200 238 7.269 238* 0.16 238(238) <0.01 238* 2.04

10 200 762 273.995 762* 0.27 762(762) 0.014 654 42.9

2 400 187* 0.577 187* 0.13 187(187) <0.01 187* <0.001

5 400 438 25.569 438* 0.09 438(438) 0.015 438 20.8

10 400 965 473.975 965* 0.19 965(965) 0.047 845 46.7

20 400 1228 3200.502 1232* 0.28 1232(1231.9) 3.411 761 160

2 800 212* 6.209 212* 0.16 212(212) 0.026 212* <0.001

5 800 501 1589.128 501* 0.14 501(501) 0.127 447 0.222

50 4000 1060 3004.924 – – 4577(4541.7) 8.500 4471 0.049

60 4000 – – – – 5387(5329.4) 9.884 5143 0.238

70 4000 – – – – 6284(6249.9) 9.806 6057 0.326

87 4000 – – – – 7029(6986) 9.824 6824 0.141

50 5000 927 2892.373 – – 4708(4681.5) 9.845 4612 0.22

60 5000 – – – – 5496(5416.4) 9.912 5143 0.238

70 5000 – – – – 6373(6318) 9.795 6280 0.3

87 5000 – – – – 7186(7142.9) 9.712 7099 0.18

50 6000 – – – – 5030(4990.4) 9.803 4989 2.59

60 6000 – – – – 5856(5788.9) 9.826 5784 0.189

70 6000 – – – – 6878(6797.5) 9.842 6861 49

87 6000 – – – – 7854(7667) 9.687 7742 0.754

50 7061 – – – – 5068(5045.9) 9.828 5006 5.24

60 7061 – – – – 5883(5805.7) 9.909 5820 0.554

70 7061 – – – – 6860(6800.0) 9.779 6948 0.182

87 7061 – – – – 7739(7629.6) 9.620 7902 0.619

a) * denotes the optimal value.

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

X: experimental cases

Y
:

ex
ec

u
ti

o
n
 t

im
e

Constrained maximum graph matching
Pseudo-Boolean optimization

Figure 8 Experimental results of random data.

 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

Wang S J, et al. Sci China Inf Sci July 2019 Vol. 62 072102:14

8 Conclusion

We propose an effective algorithm based on branch-and-bound to solve the resource allocation problem in

wireless communication. Specifically, we model the problem to constrained maximum weighted bipartite

matching problem. To quickly find the best matching pair, we introduce three rules for selecting the next

exploration devices and an upper bound estimation function. Our experimental results show that these

techniques can greatly reduce the searching space and decrease the execution time. In future, we will try

to apply this to more applications, such as subway scheduling.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 61772503)

and National Basic Research Program of China (Grant No. 2014CB340302).

References

1 Li Y, Nie F, Huang H, et al. Large-scale multi-view spectral clustering via bipartite graph. In: Proceedings of the

29th AAAI Conference on Artificial Intelligence, Austin, 2015. 2750–2756

2 Gu T L, Chang L, Xu Z B. A novel symbolic algorithm for maximum weighted matching in bipartite graphs. Int J

Commun Netw Syst Sci, 2011, 4: 111–121

3 Beale S. Using branch-and-bound with constraint satisfaction in optimization problems. In: Proceedings of the 14th

National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence Conference,

Providence, 1997. 209–214

4 Lelis L H S, Otten L, Dechter R. Predicting the size of depth-first branch and bound search trees. In: Proceedings of

the 23rd International Joint Conference on Artificial Intelligence, Beijing, 2013

5 Zhan C, Xiao F. Coding based wireless broadcast scheduling in real time applications. J Network Comput Appl, 2016,

64: 194–203

6 Kuhn H W. The Hungarian method for the assignment problem. Naval Res Log, 1955, 2: 83–97

7 Munkres J. Algorithms for the assignment and transportation problems. J Soc Industrial Appl Math, 1957, 5: 32–38

8 Mitchell D G. A sat solver primer. Bull EATCS, 2005, 85: 112–132

9 Ma F, Gao X, Yin M, et al. Optimizing shortwave radio broadcast resource allocation via pseudo-boolean constraint

solving and local search. In: Proceedings of the 22nd International Conference on Principles and Practice of Constraint

Programming, Toulouse, 2016. 650–665

10 Pan L, Jin J, Gao X, et al. Integrating ILP and SMT for shortwave radio broadcast resource allocation and fre-

quency assignment. In: Proceedings of the 23rd International Conference on Principles and Practice of Constraint

Programming, Melbourne, 2017. 405–413

11 Li C M, Quan Z. An efficient branch-and-bound algorithm based on maxsat for the maximum clique problem. In:

Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, 2010

 https://engine.scichina.com/doi/10.1007/s11432-017-9324-0

https://doi.org/10.1016/j.jnca.2016.02.004
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1137/0105003

	Introduction
	Backgrounds
	Radio broadcast scheduling problem
	Maximum weighted bipartite matching problem
	Pseudo-Boolean optimization
	Related work

	Constrained maximum weighted bipartite matching
	Complexity analysis
	A method based on PBO
	An algorithm for constrained maximum weighted bipartite matching
	Formulation
	Branch-and-bound algorithm
	Strategies for reducing search space
	Reduce the non-conflict device set
	Delete dominated device
	Merge devices in a clique

	Experiments
	Design of the experiments
	Effectiveness of strategy combinations
	Comparison with other methods
	Results on application benchmark
	Results on random benchmark

	Conclusion

