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Abstract This paper addresses the identification of finite impulse response (FIR) systems with both quan-

tized and event-triggered observations. An event-triggered communication scheme for the binary-valued

output quantization is introduced to save communication resources. Combining the empirical-measure-based

identification technique and the weighted least-squares optimization, an algorithm is proposed to estimate

the unknown parameter by full use of the received data and the not-triggered condition. Under quantized

inputs, it is shown that the estimate can strongly converge to the real values and the estimator is asymptoti-

cally efficient in terms of the Cramér-Rao lower bound. Further, the limit of the average communication rate

is derived and the tradeoff between this limit and the estimation performance is discussed. Moreover, the

case of multi-threshold quantized observations is considered. Numerical examples are included to illustrate

the obtained main results.
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1 Introduction

Statistical methods are used in the field of system identification to build mathematical models of dynam-

ical systems based on the measured data. The steps include data acquisition, model structure selection,

model parameter estimation, and model validation. After the development during more than half a cen-

tury, significant achievements have been obtained. Their practical applications can be found in almost all

areas of science and technology. Many algorithms, such as least-squares algorithms, the maximum like-

lihood estimation and the minimum-mean-square error estimation, have been introduced and improved

gradually [1, 2].

Mathematically, for a given system input sequence, a parameter estimation algorithm can be seen as

a mapping from the observation sequence {zk : k ∈ K} to the set of possible values of the unknown

parameter (denoted by O), which can be described by

K ×Z → O,
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where Z represents the value domain of zk. In practice, the complexities of K and Z usually determine

resources such as the storage space, transmission bandwidth, and energy consumption. Within the allow-

able range of estimation accuracy, it is considerably interesting and important to select low complexities

of K and Z, to reduce the communication burden, the computation load, and the memory cost [3–7].

The event-triggered communication scheme is an effective and frequently used way for selecting the

desired measured data, which is sampled only when a designed “event” occurs. Because such scheme can

simplify the measurement index set K while guaranteeing a good system performance, it has been widely

used in the study of control theory [8–14]. In [8], it was shown that Lebesgue sampling (i.e., event-triggered

sampling) could achieve better performance than Riemann sampling (i.e., time-triggered sampling) in

case of some simple systems. Ref. [9] focused on the event-triggered gradient-based algorithm for a

distributed optimization problem in which the multi-agent system was subjected to the state consensus

constraint over directed networks. Ref. [10] investigated the set-valued Kalman filters with multiple

sensor measurements for linear time-invariant systems and their application to perform event-based state

estimation. Ref. [11] presented basic concepts and recent research directions with respect to the stability

of sampled-data systems with aperiodic sampling. Additionally, Ref. [12] used the adaptive dynamic

programming to study the event-driven optimal control for uncertain nonlinear systems with external

disturbance. Ref. [13] introduced an event-triggered scheme to address the synchronization problem of

complex networks with the random switching topologies, and Ref. [14] investigated the encirclement

control by employing the newly developed bearing rigidity theory and the event-triggered mechanism.

The quantization is a process from a large set (such as the set of all real numbers) to a smaller set (often

a finite set of discrete values); hence, it can substantially simplify the observation value domain Z. This

can be directly grasped from the case of binary-valued quantized observation in which Z = {0, 1} [15–17].

With the rapid advancement in micro-sensors, communication technologies and many frontier fields, the

system identification with quantized observations has received considerable research attention [16–23].

Ref. [16] studied the system identification with only binary-valued sensors, moreover, the optimal identifi-

cation errors, time complexity, optimal input design, and impact of disturbances and unmodeled dynamics

on identification accuracy and complexity were examined in both stochastic and deterministic information

frameworks. Ref. [17] discussed the asymptotically efficient non-truncated identification on finite impulse

response (FIR) systems with binary-valued outputs. Under quantized inputs and quantized output obser-

vations, the identification of FIR systems was investigated in [18], where estimation algorithms and their

convergence performance were established. Identification of Wiener systems with quantized observations

was studied in [19, 20]. Ref. [21] addressed the problem of set membership system identification with

quantized measurements. Ref. [22] considered linear system identification with batched binary-valued

observations, and constructed an iterative parameter estimation algorithm to achieve the maximum like-

lihood estimate. Ref. [23] used supervised learning algorithms, such as support vector machines, to deal

with the identification of systems based on the binary output measurements.

The integrated usage of an event-triggered scheme and quantization is an intuitive methodology for

simplifying both K and Z. However, these complexity reducing methods bring difficulties to algorithm

designing. For example, the event-triggered communication scheme breaks the completeness of mea-

surements, and the quantization denotes a many-to-few mapping, which is an inherently nonlinear and

irreversible process. Furthermore, the design of the “event” inevitably depends on the quantized value

of the measurement, which causes the coupling between the event-triggered scheme and the quantization

process. Therefore, the strong correlation, the high quantization nonlinearity, and their coupling create

substantial study difficulties and lead to few results in literature on systems identification with both

quantized and event-triggered observations.

This paper focuses on FIR systems to investigate the identification with quantized and event-triggered

observations. An event-triggered communication scheme is introduced for the binary-valued output quan-

tization. Combining the empirical-measure-based identification technique and the weighted least-squares

optimization, an identification algorithm is proposed to estimate the unknown parameter by making the

most of the received data, the triggered indicator, the quantization threshold, and the statistical prop-

erty of the system noise. The algorithm is proved to be strongly convergent under quantized inputs. Its
 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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Figure 1 System setup.

mean-square convergence rate and asymptotic efficiency are also established in terms of the Cramér-Rao

lower bound. The limit of the average communication rate is derived, and some of its properties are

presented. Subsequently, the tradeoff between the communication cost and the estimation performance

is formulated as a constrained minimization problem and discussed. The method and results are extended

to the case of multi-threshold quantized observations as well.

Compared with the existing study on the system identification with quantized observations, the main

contributions of this paper can be given as follows. (i) With respect to the research purpose, majority

of the existing studies focuses on the design of the identification algorithm and the convergence analysis.

This paper intends to present event-triggered schemes not only for the parameter identification but

also for reducing communication resources. (ii) With respect to the algorithm structure, the available

information in this study is both event-triggered and quantized, which exhibits stronger correlation than

the data in the previous studies, which were only quantized. (iii) With respect to the research content,

the previous studies presented the identification algorithm and the convergence performance. This paper

not only establishes these, but also proposes a new event-triggered scheme, derives its communication

rate, and discusses how to balance the communication rate and the identification precision.

The remainder of the paper is arranged into the following sections. Section 2 describes the identifi-

cation problem with binary-valued quantized and event-triggered output observations under quantized

inputs. Section 3 designs the parameter estimation algorithm and establishes the strong convergence and

the asymptotic efficiency of the algorithm. Section 4 discusses the tradeoff between the communication

cost and the estimation performance. Section 5 considers the case of multi-threshold quantized observa-

tions. Section 6 simulates a numerical example to demonstrate the effectiveness of the algorithm and the

obtained main results. Section 7 discusses the findings of the paper as well as the future work.

2 Problem formulation

Consider a single-input-single-output FIR system

yk = a1uk + · · ·+ anuk−n+1 + dk = φT
k θ + dk, k = 1, 2, . . . , (1)

where φk = [uk, . . . , uk−n+1]
T is the regressor, θ = [a1, . . . , an]

T is the parameter vector to be identified,

and the superscript T indicates the transpose of a vector or a matrix.

As depicted in Figure 1, the input is finitely quantized with r possible values, i.e., uk ∈ U =

{µ1, . . . , µr}, resulting that the sequence {φT
k } can only take values in l = rn possible (row vector)

patterns denoted by

P = {π1, . . . , πl}.

For example, π1 = [µ1, . . . , µ1, µ1], π2 = [µ1, . . . , µ1, µ2]. The output yk is measured by a binary-valued
 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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sensor with threshold C ∈ (−∞,+∞), which can be represented by

sk = I{yk6C} =

{
1, yk 6 C,

0, otherwise,
(2)

where I{yk∈A} is the indicator function for a given set A, i.e., I{yk∈A} = 1 if yk ∈ A; otherwise, I{yk∈A}

= 0.

Further, an event detector is employed to decide whether the binary-valued output observation sk is

transmitted to the estimator center (EC), and can also access θ̂k−1, which is either broadcasted by the EC

or computed by itself, where θ̂k−1 denotes the estimate of θ at time k−1. Let γk denote the transmission

indicator; i.e., γk = 1 indicates that the detector is triggered, and the sensor data sk are transmitted to

the EC at time k, whereas γk = 0 means the communication is denied. In this paper, γk is given by

γk =

{
1, sk 6= ŝk,

0, sk = ŝk,
(3)

where ŝk = I{φT

k
θ̂k−16C} can be considered as the prediction of sk based on the estimate θ̂k−1.

For the EC, the available information can be denoted as {φk}, {γk} and {γksk}, based on which an

estimation algorithm is constructed for θ and the convergence properties are established. Further more,

the limit of the average communication rate is obtained, and the tradeoff between it and the estimation

quantity is discussed.

Assumption 1. The system noise {dk} is a sequence of i.i.d. (independent and identically distributed)

random variables. The cumulative distribution function F (·) of d1 is invertible, and the inverse function

is twice continuously differentiable. The moment generating function of d1 exists.

Remark 1. (i) The model order is assumed to be known at this instance. It can be obtained through

parameter estimation method with quantized observations, together with the assistances such as cross-

validation, information criteria, the F -test. (ii) The cumulative distribution function of dk is supposed

to be known in Assumption 1. We can draw on the parameterization technique in [18] to deal with the

case in which F (·) is unknown. (iii) As can be observed from (3), the design idea of the event-triggered

condition is based on the difference between the observation and its prediction value. If the prediction is

right, the detector is not triggered, and the current observation is not transmitted to the EC. Otherwise,

the detector is triggered, and sk is transmitted.

3 Identification algorithm and convergence performance

For a given pattern πj ∈ P , let Kk,j denote the index set where φi = πT
j , i = 1, . . . , k. Therefore, Kk,j is

a subset of {1, 2 . . . , k}, given by

i ∈ Kk,j if and only if φi = πT
j , i = 1, . . . , k.

τk,j is used to denote the number of elements in Kk,j , which implies

τk,j =

k∑

i=1

I{φT

i
=πj}, j = 1, . . . , l. (4)

Thus, {φT
1 , . . . , φ

T
k } contains τk,j copies of the pattern πj and we have

∑l
j=1 τk,j = k.

Assumption 2 ([18]). The input sequence u is a deterministic signal, and there exists βj > 0 such

that limk→∞ τk,j/k = βj , j ∈ L = {1, . . . , l}. Without loss of generality, suppose that βj 6= 0 for

j ∈ L0 = {1, . . . , l0} and that βj = 0 for j = l0 + 1, . . . , l.

 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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Definition 1 ( [18]). The pattern πj is said to be persistent if βj > 0. The input u is said to be

persistently exciting if the matrix

Ψ =




π1

...

πl0


 ∈ R

l0×n (5)

is full column rank.

Define j0k =
∑l

j=1 jI{φT

k
=πj} and Ψk = [

√
τk,1π

T
1 , . . . ,

√
τk,lπ

T
l ]

T. Supposed that ΨT
kΛΨk is full rank

where Λ = diag(λ1, . . . , λl) > 0 is a weighting matrix; thus, an identification algorithm is introduced by

ηk = γksk + (1 − γk)ŝk, (6)

ξk,j =

{
ξk−1,j , j 6= j0k ,

(1 − 1
τk,j

)ξk−1,j +
1

τk,j
ηk, j = j0k ,

(7)

Ŵk =
[√

τk,1
(
C − F−1(ξk,1)

)
, . . . ,

√
τk,l

(
C − F−1(ξk,l)

)]T
, (8)

θ̂k =

(
1

k
ΨT

kΛΨk

)−1
1

k
ΨT

kΛŴk, (9)

where the initial value ξ0,j ∈ (0, 1) for j ∈ L, C is the threshold in (2) and the distribution function F (·)
is given by Assumption 1.

Represent the covariance matrix of the estimation error by Σk, i.e., Σk = E(θ̂k − θ)(θ̂k − θ)T, and let

H∗ = diag
(
β1ρ

−2
1 , . . . , βl0ρ

−2
l0

)
, where ρ2j = ̺(C − πjθ) for j ∈ L, ̺(z) = F (z)(1−F (z))

f2(z) for z ∈ R, and f(·)
is the density function of the system noise, that is, f(z) = dF (z)/dz.

Theorem 1. Consider system (1) with binary-valued observations (2) and triggering mechanism (3) un-

der Assumptions 1 and 2. If the input u is persistently exciting, then

(i) θ̂k from the algorithm (6)–(9) converges strongly to the true value θ, i.e., θ̂k → θ, w.p.1 (with

probability 1) as k → ∞;

(ii) kΣk → (ΨTH1Ψ)−1ΨTH2Ψ(ΨTH1Ψ)−1 as k → ∞, where H1 = diag(λ1β1, . . . , λl0βl0) and H2 =

diag(β1λ
2
1ρ

2
1, . . . , βl0λ

2
l0
ρ2l0).

Proof. If γk = 1, then by (6) it follows that ηk = γksk + (1 − γk)ŝk = sk. If γk = 0, then from (3) it

is known that ŝk = sk, and then ηk = γksk + (1 − γk)ŝk = sk. In conclusion, we always have ηk = sk,

which together with (7) indicates that

ξk,j =
1

τk,j

∑

i∈Kk,j

si.

This implies that (6)–(9) is just the identification algorithm in [18] for the single threshold case, and the

proof can be obtained by virtue of Theorems 5 and 7 of [18].

Lemma 1. The Cramér-Rao lower bound for estimating θ based on {s1, . . . , sk} is

ΣCR
k =




l∑

j=1

τk,jπ
T
j πjρ

−2
j




−1

,

where τk,j is given by (4) for j ∈ L.

Proof. The lemma follows from setting m = 1 in Theorem 9 of [18].

Theorem 2. Under the condition of Theorem 1, if the weighting matrix Λ in (9) is selected as

diag(ρ−2
1 , . . . , ρ−2

l0
, λl0+1, . . . , λl),

then the estimate θ̂k is asymptotically efficient in the sense that

k
(
Σk − ΣCR

k

)
→ 0 as k → ∞.

 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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Proof. Note that H1 = diag(λ1β1, . . . , λl0βl0) and H2 = diag(β1λ
2
1ρ

2
1, . . . , βl0λ

2
l0
ρ2l0). Because λj = ρ−2

j

for j ∈ L0, it can be verified that H1 = H2 = H∗ and (ΨTH1Ψ)−1ΨTH2Ψ(ΨTH1Ψ)−1 = (ΨTH∗Ψ)−1.

By virtue of Theorem 1 and (10), we have

kΣk →
(
ΨTH∗Ψ

)−1
as k → ∞. (10)

By Assumption 2, it is known that βj = 0 for j = l0 + 1, . . . , l. According to Lemma 1, it can be seen

that

kΣCR
k =




l∑

j=1

τk,j
k

πT
j πjρ

−2
j




−1

→




l∑

j=1

βjπ
T
j πjρ

−2
j




−1

=




l0∑

j=1

βjπ
T
j πjρ

−2
j




−1

=
(
ΨTH∗Ψ

)−1
, as k → ∞,

which together with (10) completes the proof.

4 Tradeoff between the estimation performance and the communication cost

Because limk→∞ kΣk = limk→∞ kΣCR
k = (ΨTH∗Ψ)−1 by Theorem 2, we can use

(
ΨTH∗Ψ

)−1
as the

estimation performance index. By the definition of H∗, it can be seen that

H∗ = diag
(
β1̺

−1(C − π1θ), . . . , βl0̺
−1(C − πl0θ)

)
,

which indicates that H∗ is a function of C and H∗ = H∗(C).

Define the average communication rate of the event trigger (3):

γk =
1

k

k∑

i=1

γi, k = 1, 2, . . . . (11)

To a certain extent, the limit of γk can reveal the ability of (3) in saving the communication resource,

and be employed as the communication cost index. These will be provided further. For convenience, let

F̃ (z) = I{z<0}F (z) + Iz>0(1− F (z)), z ∈ R, (12)

where the function F (·) comes from Assumption 1.

Lemma 2. Consider an MDS (martingale difference sequence) {χk,Fk, k > 1}. If E(
∑k

i=1 χi)
2 < ∞

and
∑∞

k=1
Eχ2

k

k2 < ∞, then

1

k

k∑

i=1

χi → 0, w.p.1 as k → ∞.

Proof. The argument of Corollary 2 on Page 397 of [24] carries over verbatim.

Theorem 3. Under the condition of Theorem 1, the average communication rate from the event trigger

(3) is convergent, i.e.,

γk → γ(C) =

l0∑

j=1

βjF̃ (C − πjθ) , w.p.1 as k → ∞. (13)

Proof. Let Fk−1 be the σ-algebra generated by d1, . . . , dk−1, i.e., Fk−1 = σ(di : 1 6 i 6 k − 1). Owing

to (3), it can be seen that

γ̂k = Pr(γk = 1|Fk−1)
 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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= Pr(sk 6= ŝk|Fk−1)

= Pr(ŝk 6= 1|Fk−1) Pr(sk = 1) + Pr(ŝk 6= 0|Fk−1) Pr(sk = 0)

= I{φT

k
θ̂k−1>C}F (C − φT

k θ) + I{φT

k
θ̂k−16C}(1− F (C − φT

k θ)).

This implies that E{γk − γ̂k|Fk−1} = 0. Therefore, {γk − γ̂k,Fk, k > 1} is an MDS.

Note that γk 6 1, γ̂k 6 1 and then
∑∞

k=1
E(γk−γ̂k)

2

k2 6 4
∑∞

k=1
1
k2 < ∞. By Lemma 2, we have

∑k
i=1 (γi − γ̂i)

k
→ 0, w.p.1 as k → ∞. (14)

By virtue of Theorem 1 and with γ̂0
k = I{φT

k
θ>C}F (C −φT

k θ) + I{φT

k
θ6C}(1−F (C − φT

k θ)) = F̃ (C − φT
k θ)

by (12), one can have γ̂k − γ̂0
k → 0 as k → ∞, which together with Eq. (14) gives that

∑k
i=1

(
γi − γ̂0

i

)

k
→ 0, w.p.1 as k → ∞. (15)

In view of (4), it can be seen that

k∑

i=1

γ̂0
i =

k∑

i=1

l∑

j=1

I{φT

i
=πj}F̃ (C − πjθ)

=

l∑

j=1

(
k∑

i=1

I{φT

i
=πj}

)
F̃ (C − πjθ)

=

l∑

j=1

τk,j F̃ (C − πjθ).

By Assumption 2, it follows that
∑

k
i=1

γ̂0

i

k =
∑l

j=1
τk,j

k F̃ (C − πjθ) → ∑l
j=1 βjF̃ (C − πjθ) as k → ∞.

From (11) and (15), the proof can be obtained.

Proposition 1. Under the condition of Theorem 1, γ(C) is monotonically increasing on (−∞,

min16j6l0 πjθ] and monotonically decreasing on [max16j6l0 πjθ,∞) with respect to C.

Proof. Because F (z) is the cumulative distribution function of d1, F (z) is monotonically increasing on

(−∞,∞). In view of (12), it is known that

F̃ (z) =

{
F (z), z < 0,

1− F (z), z > 0,
(16)

and hence from (13) one can have

γ(C) =





l0∑
j=1

βjF (C − πjθ), C 6 min16j6l0 πjθ,

l0∑
j=1

βj(1− F (C − πjθ)), C > max16j6l0 πjθ.

Due to βj > 0 for j ∈ L0, the proof follows.

Example 1. Suppose θ = [−2, 5]T. The noise is normally distribution with zero mean and standard

deviation σ = 5. The quantized input is taken as π1 = [−1,−1], π2 = [−1, 2], π3 = [2,−1], π4 = [2, 2]

and β1 = 0.1, β2 = 0.3, β3 = 0.3, β4 = 0.3 with l0 = 4, which implies that max16j6l0 πjθ = 12,

min16j6l0 πjθ = −9. By (13), we have

γ(C) = 0.1F̃ (C + 3) + 0.3F̃ (C − 12) + 0.3F̃ (C + 9) + 0.3F̃ (C − 6) ,

whose graph is given by Figure 2. One can see that γ(C) is indeed monotonically decreasing on [12,∞)

and monotonically increasing on (−∞,−9].
 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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Figure 2 (Color online) The graph of γ(C) with respect

to C.

Figure 3 (Color online) The graph of ‖(ΨTH∗(C)Ψ)−1‖

with respect to C.

In Example 1, we have seen that γ(C) → 0 as C → ∞ or C → −∞. With

Ψ =




−1 −1

−1 2

2 −1

2 2



,

Figure 3 shows the graph of ‖(ΨTH∗(C)Ψ)−1‖, where ‖ · ‖ denotes the Frobenius Norm and one can see

that ‖(ΨTH∗(C)Ψ)−1‖ → ∞ as C → ∞ or C → −∞.

Then, how to balance the estimation performance and the communication cost is an interesting issue.

This can be considered as a constrained minimization problem

minC γ(C) s.t. (ΨTH∗(C)Ψ)−1 6 ∆. (17)

Thus, for a given estimation accuracy ∆, Eq. (17) aims to solve the minimum communication cost.

Generally, it is hard to obtain an explicit solution.

Let Ω∆ = {C : (ΨTH∗(C)Ψ)−1 6 ∆}, C∆ = infC∈Ω∆
C and C∆ = supC∈Ω∆

C. Then we have the

following proposition.

Proposition 2. Under the condition of Theorem 1, the following assertions hold.

(i) If C∆ > max16j6l0 πjθ, then infC∈Ω∆
γ(C) =

∑l0
j=1 βjF̃

(
C∆ − πjθ

)
;

(ii) If C∆ 6 min16j6l0 πjθ, then infC∈Ω∆
γ(C) =

∑l0
j=1 βjF̃ (C∆ − πjθ);

(iii) In general, we have infC∈Ω∆
γ(C) >

∑l0
j=1 βj min {F̃ (C∆ − πjθ) , F̃

(
C∆ − πjθ

)
}.

Proof. (i) If C∆ > max16j6l0 πjθ, then, according to Proposition 1, it is known that γ(C) is monotoni-

cally decreasing on [C∆, C∆], which gives the desired result.

(ii) The proof is similar to the one of (i).

(iii) By (13), it is known that

inf
C∈Ω∆

γ(C) >

l0∑

j=1

βj inf
C∈Ω∆

F̃ (C − πjθ) . (18)

On account of (16), we have infC∈Ω∆
F̃ (C − πjθ) = min{F̃ (C∆ − πjθ) , F̃

(
C∆ − πjθ

)
}, which together

with Eq. (18) completes the proof.

5 Multi-threshold quantized observations

This section considers the case of multi-threshold quantized output observations, where yk is measured by

a sensor of m thresholds −∞ < C1 < · · · < Cm < ∞. With C0 = −∞ and Cm+1 = ∞, the observation
 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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sensor can be represented by

sk =

m+1∑

q=1

qI{yk∈(Cq−1,Cq]}. (19)

Hence, sk = q implies that yk ∈ (Cq−1, Cq] for q = 1, . . . ,m + 1. An alternative representation of (19)

is to view the multi-threshold quantized observation as a vector-valued binary observation in which each

vector component represents the output of one threshold, by defining

s̃k = [s1k, . . . , s
m
k ]T, where sqk = I{−∞<yk6Cq}, q = 1, . . . ,m. (20)

The triggering condition γk is given by

γk =

{
1, sk 6= ŝk,

0, sk = ŝk,
(21)

ŝk =

m+1∑

q=1

qI{φT

k
θ̂k−1∈(Cq−1,Cq ]}

. (22)

Let γksk + (1− γk)ŝk = ηk, which is available for the following algorithm design:

ηqk =

{
1, ηk 6 q,

0, otherwise,
q = 1, . . . ,m.

Then it can be seen that [η1k, . . . , η
m
k ]T = s̃k by (20)–(22). As a result, we can use η1k, . . . , η

m
k to construct

m algorithms as (6)–(9), and obtain m estimators of θ, denoted by θ̂1k, . . . , θ̂
m
k . Define ν = [ν1, . . . , νm]T

such that ν1 + · · ·+ νm = 1. One can construct an estimator of θ by

θ̂k =

m∑

q=1

νqθ̂
q
k,

which is the QCCE (quasi-convex combination estimator) proposed by [25]. Under quantized inputs, the

corresponding convergence performance and the asymptotic efficiency can be given as in [18]. We omit

them to avoid unnecessary duplication.

The limit of the average communication rate from (21) is established by the following theorem.

Theorem 4. Consider system (1) with quantized observations (19) and triggering mechanism (21)

under Assumptions 1 and 2. If the input u is persistently exciting, then γk from (21) converges to

γ =

l0∑

j=1

βj

m+1∑

q=1

(
I{πjθ/∈(Cq−1,Cq]} (F (Cq − πjθ)− F (Cq−1 − πjθ))

)
, w.p.1.

Proof. Define γ̂0
k =

∑m+1
q=1 I{φT

k
θ/∈(Cq−1,Cq ]}(F (Cq −φT

k θ)− F (Cq−1 − φT
k θ)). By (4), one can have

k∑

i=1

γ̂0
i =

k∑

i=1

l∑

j=1

I{φT

k
=πj}

m+1∑

q=1

(
I{πjθ/∈(Cq−1,Cq]} (F (Cq − πjθ)− F (Cq−1 − πjθ))

)

=

l∑

j=1

τk,j

m+1∑

q=1

(
I{πjθ/∈(Cq−1,Cq ]} (F (Cq − πjθ)− F (Cq−1 − πjθ))

)
,

which together with Assumption 2 yields that

1

k

k∑

i=1

γ̂0
i =

l∑

j=1

τk,j
k

m+1∑

q=1

(
I{πjθ/∈(Cq−1,Cq]} (F (Cq − πjθ)− F (Cq−1 − πjθ))

)

 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6
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→
l0∑

j=1

βj

m+1∑

q=1

(
I{πjθ/∈(Cq−1,Cq]} (F (Cq − πjθ)− F (Cq−1 − πjθ))

)
, w.p.1 as k → ∞. (23)

By (1) and Assumption 1, we have

Pr (sk = q) = Pr (Cq−1 < yk 6 Cq)

= Pr
(
Cq−1 < φT

k θ + dk 6 Cq

)

= F (Cq − φT
k θ)− F (Cq−1 − φT

k θ).

Noticing that ŝk 6= q if and only if φT
k θ̂k−1 /∈ (Cq−1, Cq] by (22), it is known that

γ̂k = E[γk|Fk−1]

= Pr(sk 6= ŝk|Fk−1)

=

m∑

q=0

Pr (ŝk 6= q|Fk−1) Pr (sk = q)

=
m+1∑

q=1

I{ŝk 6=q}

(
F (Cq − φT

k θ)− F (Cq−1 − φT
k θ)
)

=

m+1∑

q=1

(
I{φT

k
θ̂k−1 /∈(Cq−1,Cq]}

(
F (Cq − φT

k θ)− F (Cq−1 − φT
k θ)
) )

and E{rk − r̂k|Fk−1} = 0. Therefore, {rk − r̂k,Fk, k > 1} is an MDS. Recalling Lemma 2, we have

∑k
i=1 (ri − r̂i)

k
→ 0, w.p.1 as k → ∞. (24)

By the convergence of θ̂k, it can be obtained that r̂k − r̂0k → 0 w.p.1 as k → ∞, which together with (23)

and (24) can complete the proof.

6 Numerical simulation

Consider a gain system yk = ukθ + dk, where the true value θ = 3 and {dk} is a sequence of i.i.d.

normal random variables with zero mean and standard deviation σ = 6. The output is measured by

a binary-valued sensor with the threshold C = 2, and the input is quantized and takes value from

U = {π1, π2, π3} = {−1.5, 2, 1}. Because θ ∈ R, we have P = U . At k, assume that

τk,1 = k − τk,2 − τk,3, τk,2 = ⌈0.6(k − τk,3)⌉, τk,3 = min{110, |⌈logk⌉|}.

Thus, it is known that β1 = 0.4, β2 = 0.6, π1 = −1.5 and π2 = 2 are persistent, and then Ψ = [−1.5, 2]T.

The event-triggered communication scheme (3) and the algorithm (6)–(9) are used to estimate θ with

Λ = diag(0.0114, 0.015, 0.001) and ξ0,j = 1/2 for j ∈ L. The convergence is shown by Figure 4. The

average of 20 trajectories of k(θ̂k−θ)(θ̂k−θ)T is employed to approximate kΣk, and the difference between

it and kΣCR
k gradually decreases in Figure 5, illustrating the asymptotic efficiency of the algorithm.

The transmission during the time interval [200, 250] is depicted in Figure 6, where only 12 measurements

are transmitted to the EC. It can be calculated that γ =
∑l0

j=1 βjF̃ (C − πjθ) = 0.2072. In Figure 7, we

can see that γk → 0.2072 as k → ∞, which is in accord with Theorem 3 by (11).

Figure 8 shows the graphs of γ(C) and (ΨTH∗(C)Ψ)−1 with respect to C, where the left and right

vertical axes denote γ(C) and (ΨTH∗(C)Ψ)−1, respectively. Let the estimation accuracy requirement

∆ = 30. Then one can see that Ω∆ = [−3.1, 11.1], and the minimum value of γ(C) on Ω∆ is 0.1205.
 https://engine.scichina.com/doi/10.1007/s11432-018-9845-6



Guo J, et al. Sci China Inf Sci January 2020 Vol. 63 112201:11

0 1000 2000 3000 4000 5000
k

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Estimates of θ
Real value

θ
k^

0 1000 2000 3000 4000 5000

k

5

10

15

20

25

30

35

40

kΣ
k

kΣ
k

CR

Figure 4 (Color online) Convergence of θ̂k. Figure 5 (Color online) Asymptotic efficiency of θ̂k.
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Figure 6 (Color online) Transmission during the time interval [200, 250].
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Figure 7 (Color online) Convergence of the average com-

munication rate.

Figure 8 (Color online) Tradeoff between the com-

munication cost γ(C) and the estimation performance

(ΨTH∗(C)Ψ)−1.

7 Concluding remarks

The conservation of communication resources is indispensable in the current era of information networks,

and it is interesting to consider the lowest measurement complexity to obtain the desired system per-

formance. This paper introduced event-triggered communication schemes for the identification of FIR

systems with quantized inputs and quantized output observations to reduce the communication burden.

Beginning with the binary-valued quantization, an identification algorithm was proposed to estimate the

unknown parameter, and the convergence performance of the algorithm was established. The tradeoff

between the estimation quality and the communication cost was also discussed. Finally, the case of

multi-threshold quantized observations was considered.

Future studies can further develop more effective event-triggered communication schemes and identifi-

cation algorithms for obtaining an extensive variety of system models as well as noise characterizations.
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