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As the pantograph-catenary system provides electric energy for high-speed trains, it is vital to evaluate the contact force (CF)
between pantograph and catenary for stable energy supply. The magnitude and variation range of CF determines the quality
of current receiving and safe operation of the train. Therefore, a rapid and accurate prediction of CF is of great significance.
However, collecting CF data through experiments is challenging, and obtaining timely results using numerical simulations is not
always feasible. In this study, we propose an efficient simulation-based surrogate approach based on Gaussian process regression
(GPR), combined with meta-heuristic optimization, to predict key parameters of pantograph-catenary system, which are respon-
sible for the energy transfer quality. Firstly, a pantograph-catenary model is established and validated using finite element method
(FEM), which serves to generate training and test data. Secondly, Gaussian process regression is utilized for estimation. A new
developed meta-heuristic optimization, i.e., binary hunger game search (HGS), is applied on feature selection. To enhance the
performance of HGS, chaos mechanism is embedded, resulting in Chaos-HGS GPR (CHGS-GPR). Finally, the predictive results
of CHGS-GPR are evaluated. It is found that the proposed CHGS-GPR provides rather accurate prediction for the mean value of
CF, and can be extended to the preliminary design of railway lines, real-time evaluation, and control of train operations.
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1. Introduction

Given the deteriorating state of the environment due to global
warming, the transition to a low-carbon economy has become
an inevitable trajectory for the development of all nations.
Electricity, being a clean energy source, finds extensive ap-
plication across various industries. China’s electrified high-
speed railway sector has experienced rapid growth in recent
years, making a significant contribution to the global reduc-
tion of carbon emissions.
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As the speed of high-speed trains increases, so does the
demand for power units that provide the necessary traction.
It is widely recognized that the pantograph serves as the in-
terface for energy transfer from the overhead contact line.
Consequently, the quality of contact between the pantograph
and catenary assumes paramount importance in maintaining
a stable power supply.

The contact force (CF) is a significant parameter used to
evaluate the quality of the pantograph network [1]. On one
hand, an excessively high CF accelerates wear and tear on
the contact strip and pantograph network, leading to an un-
desirable reduction in its service life and increased mainte-
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nance costs. On the other hand, an insufficient CF results
in inadequate energy supply to the train and arcing between
pantographs, which severely impacts the transmission qual-
ity. Hence, maintaining a consistently proper CF is crucial
for pantograph-catenary system.

Measurement of the CF between the catenary and panto-
graph can be achieved through two primary methods: field
measurements and numerical simulations. Field tests tend to
be more expensive and challenging to carry out. Therefore,
numerical simulation methods have gained wider adoption
in recent decades. Finite element method (FEM) is primar-
ily employed to model the catenary, while lumped mass and
multi-body models are commonly utilized to represent pan-
tograph. However, there is a limit to improving the compu-
tational efficiency of numerical methods based on physical
models. They are unable to meet the requirements for rapid
design and prediction of the pantograph-catenary system.

In recent years, there has been a growing interest in
machine learning-based surrogate models, which are being
increasingly explored to address complex real-world phe-
nomena. In the field of railway engineering, researchers
have started employing these techniques to develop surrogate
models. Notable applications include the use of surrogate
models to predict track degradation [2-6], as well as the de-
terioration of bearings [7, 8] and suspensions [9, 10] in vehi-
cles. The utilization of digital twin technology in railway en-
gineering often involves starting with existing experimental
data, constructing surrogate models, and subsequently mak-
ing predictions or performing diagnostics. In the context of
the pantograph-catenary system, Huang et al. [11] were the
first to evaluate the energy transfer quality of the system us-
ing a combination of a tree-based surrogate model and eight
machine learning-based regression models. Their findings
indicated that the multi-layer feed-forward deep residual neu-
ral network (MLF-DNN) model demonstrated the best per-
formance.

Recently, stochastic surrogate models incorporating prob-
abilistic analysis have exhibited impressive performance
across various engineering domains. For instance, Hejazi et
al. [12] utilized Gaussian process regression (GPR) to pre-
dict failure risks in steel catenary risers, yielding promising
outcomes. In another study, Alruqi et al. [13] employed a
GPR model to predict engine performance and exhaust emis-
sions, achieving convincing results. Gautam et al. [14] con-
ducted an experimental investigation on different geotechni-
cal properties and modeled them using artificial neural net-
work (ANN) and GPR models. Both machine learning meth-
ods demonstrated prediction errors within 10%, but the GPR-
based model outperformed the ANN-based model in terms of
percentage error. This is attributed to the fact that the ANN-
based model tends to converge to locally optimal solutions,

while the GPR-based model explores solutions across a wider
range of response normal distributions. GPR facilitates rapid
nonlinear regression prediction, enabling the estimation of
the relationship between training data and predicted values in
high-dimensional spaces [15]. Additionally, GPR provides
confidence intervals, a capability lacking in other machine
learning methods. The probabilistic nature of the GPR model
renders it suitable for probabilistic and risk-based engineer-
ing assessments.

Building upon the advantages of the GPR model discussed
earlier, we apply it to the pantograph-catenary system per-
formance prediction, which, to the best of our knowledge,
has not been attempted before. The objective of this paper
is to evaluate the feasibility of adapting GPR to quantita-
tively predict the CF between pantograph and catenary. If
the constructed approach is error-acceptable with affordable
computational cost, then they are promising alternatives to
traditional numerical simulation methods for pantograph and
catenary energy transfer evaluation. The findings presented
in this paper have implications for various railway engineer-
ing applications, including overall design, operation moni-
toring, and control of train operating. This work contributes
in the following aspects: (1) A physics-based model is es-
tablished and validated for training and testing data collec-
tion. (2) An attempt is made to use GPR combined with
a modern developed meta-heuristic optimization on feature
selection to predict the CF statistical results of pantograph-
catenary system. (3) Parameters that have the most influence
on the pantograph-catenary energy transfer performance can
be concluded through the adopted feature selection method.

2. Methods

2.1 Pantograph-catenary system modeling

FEM is a widely used method to simulate the pantograph-
catenary system, which has been well documented in many
literature [16-24]. In this paper, the finite element software
Abaqus [25] is used to build the model and simulate the sys-
tem. Details are as follows:

Catenary is mainly composed of message wire (MW) ,
contact wire (CW) , suspensions, steady arms, and drop-
pers. The sketch is shown in Fig. 1. MW and CW are mod-
eled by beam units. In order to approximate the real situ-
ation, droppers are designed as a non-linear spring that can
only be extended but not compressed. The structural damp-
ing of the contact network is modeled using a proportional
damping model with values of α = 0.0125 and β = 0.0001
[26]. To simplify the calculations, a commonly used three
lumped mass model is adopted to represent the pantograph.
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(a) (b)

Figure 1 Description of (a) the catenary model and (b) the three lumped mass model of pantograph.

The model parameters are chosen in line with those in the
workbench presented in Ref. [26]. The contact between pan-
tograph and CW is modeled using a penalty function and is
assumed to be frictionless. In this paper, a total of 10 spans
of catenary are selected. In order to eliminate the influence
of boundary effects, for the statistics of the results only the
data of spans 5 and 6 are adopted.

The FEM model established in this paper is validated.
Firstly, the accuracy of the model in predicting the initial sag
length of CW has been verified. Figure 2(a) compares the
results of present study with those of ten research institutes
in the workbench [26] and the results are consistent with the
reference. Secondly, the dynamic performance of the simu-
lation has been verified. Figure 2(b) shows the dynamic con-
tact forces and again the results agree very well with those
in benchmark [26]. The statistical results are shown in Table
1. The difference of the minimum value is caused by the dif-
ferent modeling methods of steady arms, which falls into the
acceptable range.

To further validate the accuracy of present FEM models,
the reference model from European Standard EN 50318 [27]
is used. The CF statistics are compared with the reference
shown in Table 2. It can be seen that the current results are
within the interval specified by the standard. Based on the
above validation results, it can be concluded that the FEM
models employed in this paper for simulating the pantograph-
catenary system exhibit a reliable level of accuracy.

2.2 Gaussian process regression

GPR is a non-parametric supervised machine learning tech-
nique that uses prior information to estimate the poste-
rior based on Bayesian inference. As an excellent kernel
function-based strategy, GPR is suitable for handling datasets
with many independent variables, small sample sizes, and a
high degree of non-linearity. In GPR, the output y is related

to the input x as follows:

yi = f (xi) + ϵi, (1)

where ϵ is the noise and f represents the unobservable poten-
tial function relationship. The noise is assumed to obey an
independent identical Gaussian distribution with mean zero
and variance is σn:

εi ∼ N(0, σ2
n). (2)

The key to GPR is the assumption that y obeys a joint
Gaussian distribution:

y ∼ N(m(x),K(x, x)), (3)

where m(x) and K(x, x) represent the mean and covariance
matrix of f (x), respectively. K(xi, xi) is the covariance kernel
function, representing the extent of correlation between two
arbitrary sampled points. For simplicity, the mean value is
usually set to 0. The goal of GPR is to infer the value of y∗ at
an unknown x∗, based on observations of x and y, which is,
p(y∗|y). By the assumptions of GPR, we know that y and y∗

satisfy the joint Gaussian distribution, similarly: y

y∗

 ∼ N

00

 ,
 K (K∗)T

K∗ K∗∗


 , (4)

where K is an n-dimensional matrix containing the covari-
ance coefficients between observations, K∗ is a vector con-
taining the covariance coefficients between yi and y∗, and K∗∗

is y∗’s own covariance coefficient. Since p(y∗˘y) is a Gaus-
sian distribution, the mean and variance of the estimate y∗

can be expressed as

(y∗)⊤ = K∗(K⊤)−1y, (5)

var(y∗) = K∗∗ − K∗K−1(K∗)⊤. (6)

Cause the parameters affect the prediction accuracy. The
Bayesian optimization method is applied to the selection of
hyper-parameters.
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Figure 2 Verification of the present model against the results from benchmark: (a) the CW pre-sag and (b) CF.

Table 1 Present statistical results against the benchmark

Benchmark Present Error

Fm (N) 169 168.6 0.2%

Std. (0-20 Hz) (N) 53.9 53.9 0%

Std. (0-2 Hz) (N) 38.3 38.9 1.6%

Std. (0-5 Hz) (N) 41.0 41.1 0.2%

Std. (5-20 Hz) (N) 34.8 35.0 0.5%

Max. (N) 313.2 299.4 4.4%

Min. (N) 60.4 67.7 12%

Table 2 Statistical results against EN 50318

EN 50318 Present

Speed (km/h) 250 300 250 300

Fm (N) 110-120 110-120 116.6 115.7

Std. (N) 26-31 32-40 28.3 34.2

Statistical max. (N) 190-210 210-230 201.5 218.5

Statistical min. (N) 20-40 –5-20 31.7 13.0

Actual max. (N) 175-210 190-225 182.2 190.0

Actual min. (N) 50-75 30-55 57.1 48.8

Max. uplift at support (mm) 48-55 55-65 53 55

Percentage of loss of contact (%) 0 0 0 0

3. Development of simulation based surrogates

Figure 3 illustrates the general framework of simulation
based surrogates used in this paper. The purpose of building
the simulation based surrogates in this paper is to make fast
predictions of the quality of the pantograph-catenary energy
transfer. Refer to the following sections for more details.

3.1 Problem description

The first thing that needs to be clarified for simulation based
surrogates is to identify the variables to be predicted. Here,

the objective of this paper is to predict the statistics of the dy-
namic contact forces between pantograph and catenary under
a given system. The pantograph-catenary model used in this
study and the outputs selected to evaluate the results are de-
scribed below.

Firstly, the selection of the catenary model has been de-
scribed in detail in Sect. 2.1. Then, the dynamic response
of the pantograph-catenary interaction, including the panto-
graph CF and the CW uplift displacement at the joint be-
tween spans 5 and 6, is obtained by FEM numerical simula-
tion. The two outputs have a significant impact on the quality
of energy transfer and the safety of train operation [27]. Ac-
cording to the recommendations of the standard [28], the five
basic parameters contain the mean CF (Fm), standard devia-
tion (σ), maximum value (Fmax), minimum value (Fmin) and
the uplift of the CW (Uplift) are the key indicators to judge
the performance of the system. Therefore, these five output
quantities are selected as the target parameters for determin-
ing the prediction accuracy of the prediction method.

3.2 Input parameters and sampling domain

The choice of input parameters and the calibration of their
ranges have a great impact on the predictive and generaliza-
tion capabilities of the surrogate models. In this study, inde-
pendent variables (CW tension Tc, MW tension Tm, and train
running speed v) are chosen to be input parameters. Also, the
lifting force (Fuplift) applied to the pantograph is also taken
into account. It is important to note that the range of values
of Fuplift is related to the train speed [29], as shown in the
following:

Fm,min = 0.00047v2 + 60, (7)

Fm,max =

0.00047v2 + 90, if v ≤ 200 km/h,

0.00097v2 + 70, if v > 200 km/h.
(8)
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Figure 3 Framework of developing the simulation based surrogates.

According to some preliminary descriptions in the liter-
ature [30, 31], the key parameters responsible for the influ-
ence of CF may be the coefficients related to the reflection
and transmission at the steady arms and dropper structures.
With that under considered, this study derivates the CW re-
flection coefficient (Ccr), CW transmission coefficient (Cct),
MW transmission and reflection coefficient (Cmr) through the
spectral analysis, and considers them as input parameters as
well. The detailed derivation process is in Appendix A. In
addition, the wave speed utilisation ratio of CW (defined as
η = v/c, c =

√
T/ρ, c is the CW wave speed, T and ρ are

CW tension and line density, respectively) is also added to in-
put parameters. It should be noted that the three coefficients
and η are related to the catenary inherent characteristics and
the train operating conditions, therefore they are not indepen-
dent variables here. In summary, the vector of input param-
eters used as an initial pre-selection for the training model is
X⃗ = Tc, Tm, v, Fuplift,Ccr,Cct,Cmr, η.

Data plays a crucial role in the construction of surrogate
models. The optimal Latin hypercube sampling (OLHS)
strategy is used to reduce the effort and cost. Compared to
traditional experimental design methods, the Latin hypercube
design allows for a smaller number of test points to be used
to fill the entire design space. However, the problem of un-
even distribution of design points remains. Moreover, as the
number of layers increases, it is easy to lose some areas in the
design space. So the concept of OLHS was proposed. OLHS

improves the homogeneity of the stochastic Latin hypercube
design and makes the fitting of input and output variables
more accurate and realistic [32]. OLHS allows for a uniform
distribution of all test points with good space filling and bal-
ance. More information on OLHS can be checked in Ref.
[33].

As can be seen from the above, in present study, Tc,Tm, v,
and Fuplift are chosen as independent input parameters. Ccr,
Cct, Cmr, and η are associated with at least two of the vari-
ables mentioned above. The value ranges that are determined
according to the actual operations which may be encountered
are shown in Table 3.

A total of 17 sampling sets are generated by OLHS strat-
egy. Each sampling set is calculated through FEM. The cal-
culations take approximately 1.5 h per case on a PC (Intelr
CoreTM i7-8700 CPU @3.2GHz with 64GB RAM and Win-
dows 10 64-bit system). Then, outputs of the CF in time
series are obtained. After applying a 20 Hz low-pass filter
advised by the standard [34] to CF, the mean value (Fm), vari-
ance (σ), maximum (Fmax) and minimum (Fmin) values are
obtained. Also does the uplift displacement (Uplift) of CW.

3.3 Input features extraction and selection

The input features are called feature indicators (FIs). The ex-
traction and selection of FIs form the fundamental basis for
the prediction model [35]. The purpose of this step is to ex-
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Table 3 Value range of independent input values

Input Tc (kN) Tm (kN) v (km/h) Fuplift (N)

Range 10-30 10-30 50-400 70-90

tract the key input features needed in the prediction model to
reduce the intricacy of the regression and optimize the model.
Due to the low initial training data size and high dimension
of the input variables for the training model, this does not fa-
cilitate the accurate prediction of the GPR [12]. In this study,
a wrapper method is used to implement feature selections.

Wrapper method uses specific learning algorithms to as-
sess the quality of the selected FIs. The predictive perfor-
mance is utilized to evaluate feature subsets. Typically, a
predefined search process is conducted within the space of
potential feature subsets, generating and evaluating various
subsets. The general procedure involves selecting a subset,
evaluating it based on predictive performance, selecting a
new subset, and continuing the evaluation process until the
desired quality is achieved. Incorporating cross-validation
strategies in wrapper-based models can enhance the accu-
racy of the model, but it also leads to increased computa-
tional complexity and a higher risk of overfitting. The hunger
games search (HGS) algorithm, proposed by Yang et al. [36],
is a novel and robust meta-heuristic optimization method.
Original HGS is used for continuous optimization. In this
study, two modifications are implemented so that they can
be applied to the FIs selection process. First is to modify
the structure to deal with binary decision parameters, which
details can be found in Ref. [37]. Two is to insert chaos
mechanism to avert the local entrapment. The chaotic maps
used in present work are shown in Table 4. In the follow-
ing sections, the results obtained by this wrapper method is
abbreviated as Chaos-HGS GPR (CHGS-GPR). The results
with and without FIs selection are discussed in detail in the
following paper.

3.4 Data preparation for training, validation and test

The purpose of this step is to normalize the input data and
determine the dataset allocation for training, validation, and
testing. Given the limited number of training samples used
in this study, the leave-one-out cross-validation (LOO-CV)

method is deemed suitable for validation. LOO-CV is a spe-
cific form of cross-validation where, in this case, one set of
data is withheld as the validation reference for each training
session, while the remaining 16 data sets are employed as
the training datasets. In total, 17 validations are conducted.
LOO-CV is particularly well-suited for datasets with a small
number of samples. Furthermore, to mitigate prediction bias
and enhance algorithmic stability during the learning process
[39], the min-max normalization method is employed in this
study. The min-max normalisation method is used here:

x′ =
x − xmin

xmax − xmin
, (9)

where x is the original parameter and x′ is the normalized
parameter.

Once the regression model has been optimized for FIs se-
lection and LOO-CV validation, additional test datasets are
implemented to test the model. The input parameters of the
test datasets vary within the range of the training data but
avoid the same value as the training data. It aims to assess the
generalization and predictive capability of the trained model
on unseen data points.

3.5 Validation of the approach

The purpose of this step is to check the accuracy of predic-
tions. We perform the validation by comparing the FEM re-
sults with the GPR results. Visualising the output is challeng-
ing due to the high dimensionality of the inputs. Therefore,
we diagnose the prediction results using statistical measures,
which are R2, the root mean squared error (RMSE), and the
mean absolute error (MAE). The definitions are shown be-
low:

R2 = 1 −
∑

(yi − ŷi)2∑
(yi − ȳ)2 , (10)

RMSE =

√∑
(yi − ŷi)2

n
, (11)

MAE =

∑ ∣∣∣∣ yi−ŷi
yi

∣∣∣∣
n
, (12)

where n is the number of data points, yi is the true value, ŷ is
the predicted value, and ȳ is the mean value. In simple terms,

Table 4 Chaotic maps used in the present study [38]

Definition Range

Circle map xk+1 = mod(xk + b − (a − 2π) sin(2πxk), 1), a = 0.5, b = 0.2 (0,1)

Sinusoidal map xk+1 = ax2
k sin(πxk) (0,1)

Tent map xk+1 =

 xk
0.7 , xk < 0.7
10
3 (1 − xk), xk ≥ 0.7

(0,1)
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R2 is expected to be close to 1, while RMSE and MAE are re-
quired to be as small as possible, which means the approach
does a good prediction.

4. Results and discussion

4.1 Model training results

Firstly, a comparison of the convergence capabilities of
CHGS-GPR assembled with different chaotic maps is pre-
sented, as shown in Fig. 4. The black line represents the orig-
inal random mechanism of HSG. It can be observed CHGS-
GPR with tent chaotic map yields the best search perfor-
mance. The optimal solution is found after five iterations.
Therefore, tent map is adopted in this paper. In the follow-
ing discussion, when referring to CHGS-GPR, it specifically
refers to the CHGS-GPR with tent chaotic map.

Table 5 provides a comparison of the results CHGS-GPR
and GPR without feature selection. From the results of R2,
RMSE, and MAE, it can be concluded that the prediction re-
sults of CHGS-GPR are better than that of the original model.

It should be noted that, as to the Fmin, the proposed predic-
tion method does not achieve satisfactory results. Its R2 is
close to zero, which means that there is almost no correlation
between the input FIs and the outputs. Therefore, these re-
sults of Fmin are not presented here. Analyzing the reason,
it is not difficult to find from the time history curve of CF in
Fig. 2(b) that the minimum value of the CF generally occurs
when the train passes through the middle of each span of the
railway, which is the position where the stiffness of the CW
is the smallest. The factors that affect the stiffness of CW are
probability related to the materials and configurations of CW
and droppers, which is not involved in the FIs selected in the
present study. In addition, small sample size may be another
factor. Therefore, in the following discussion, the results re-
lated to Fmin will not be discussed.

Then, prediction intervals are utilized to identify the po-
tential structures in prediction errors, such as overestimat-
ing or underestimating. Figure 5 shows the relationship be-
tween LOO-CV results of CHGS-GPR and the values ob-
tained through FEM simulations. The vertical bar represents
a 95% confidence interval. The smaller the bar, the higher

Tent map

Circle map

Sinusoidal map

Random

Tent map

Circle map

Sinusoidal map

Random

Tent map

Circle map

Sinusoidal map

Random

Tent map

Circle map

Sinusoidal map

Random

(a) (b)

(c) (d)

Figure 4 RMSE convergence curve for CHGS-GPR assembled with different chaotic maps. (a) Fm; (b) σ; (c) Fmax; (d) Uplift.
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Table 5 Value range for independent input values

FIs R2 RMSE MAE

Fm
Origin Tc,Tm, v, Fuplift,Ccr ,Cct ,Cmr , η 0.984 5.38 0.029

CHGS-GPR Tc, Fuplift,Cmr , η 0.988 4.61 0.023

σ
Origin Tc,Tm, v, Fuplift,Ccr ,Cct ,Cmr , η 0.851 13.45 0.21

CHGS-GPR Tm, Fuplift,Ccr ,Cmr , η 0.961 0.677 0.209

Fmax
Origin Tc,Tm, v, Fuplift,Ccr ,Cct ,Cmr , η 0.930 40.11 0.21

CHGS-GPR Tm, Fuplift,Cmr , η 0.957 30.36 0.140

Uplift
Origin Tc,Tm, v, Fuplift,Ccr ,Cct ,Cmr , η 0.902 0.012 0.396

CHGS-GPR Tc, Fuplift, η 0.918 0.011 0.323

True values True values

True valuesTrue values

(a) (b)

(c) (d)

Figure 5 LOO-CV tests credible intervals results on four evaluation values of CF by CHGS-GPR. Red line is the 1:1 line, blue points are the LOO-CV results,
and the bar presents 95% confidence interval. (a) Fm; (b) σ; (c) Fmax; (d) Uplift.

the confidence in CHGS-GPR prediction. Ideally, the mid-
points of all bars would align precisely with the identifica-
tion line, while having shorter bar lengths. It can be seen
that the predicted values are relatively evenly distributed on
both sides of the identification line (red line 1:1 in Fig. 5),
indicating that there is no systematic overestimation or un-
derestimation. Notably, the CHGS-GPR predictions of Fm

exhibit the most consistent agreement with the results ob-
tained from FEM simulations. There are some points that

the CHGS-GPR returns with higher intervals, such as in Fig.
5(a) where Fm = 158 N, in Fig. 5(b) where σ = 42 N, in
Fig. 5(c) where Fmax = 253 N, and in Fig. 5(d) where Uplift

= 0.1016 m. These points are all from the same case. Such
larger prediction intervals are likely associated with the con-
dition in this case (v = 400 km/h and η = 91%), which ex-
ceeds the commonly recommended threshold for the railway
(η < 70%) [40]. Therefore, when do the LOO-CV on this set
of data, the prediction intervals become larger. In summary,
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the results show that CHGS-GPR does not have systematic
error.

4.2 Validation and analysis

Finally, CHGS-GPR is used to predict test sample sets. R2,
RMSE, and MAE results of the test results are shown in Fig.
6. Predictions of Fm and σ perform better compared with
Fmax, and Uplift.

Pantograph-catenary system is non-linear [41], and the de-
fault assumptions (such as the Gaussian distribution output
used in GPR) may not hold, resulting in differences between
FEM results and predictions. Nevertheless, as shown in Ta-
ble 6, the absolute prediction error of CHGS-GPR is accept-
able, especially as for the prediction of Fm performs the best.
Therefore, CHGS-GPR for CF prediction used physics out-
puts trained proposed in this paper can be considered feasi-
ble. Considering that present results are obtained just through
such a few training data sets (17 sets), it is entirely possible to
obtain more accurate CHGS-GPR if the time and calculation
costs increase.

5. Practical significance and prospect

The innovation and scientificity of this research lies in the
application of the surrogate model based on GPR combined
the optimization strategy to the prediction of CF of railway
pantograph-catenary system. Unlike other machine learning
models, the Gaussian process method does not require a high
number of sample sets for training. At the same time, Gau-
tam et al. [14] proved that the GPR-based machine learning
model performs slightly better than the ANN-based machine
learning model under the same sample size. Meanwhile,
Gaussian processes can also provide a quantitative measure
of the uncertainty associated with the predicted value, which
is valuable in engineering applications. In the future work,
more design parameters can be taken into consideration, such
as pantograph operating status (knee-upstream orientation or
knee-downstream orientation), railway line status (straight

line, curved section or overlap), high-speed train operating
environment (through tunnel, suffering horizontal wind, etc.).
Increase the dimension of the input parameters to improve
the integrity of the prediction model. A thorough CHGS-
GPR can be integrated into computer programs to quickly es-
tablish a mapping relationship between input parameters and
pantograph-catenary dynamic performance, greatly speeding
up the design process. This work provides a new way of
thinking for the energy transmission of high-speed railway
pantograph-catenary system.

6. Conclusion

In this paper, GPR combined with meta-heuristic optimiza-
tion on feature selection is used to predict the CF of the
pantograph-catenary system, and its feasibility is discussed.
To improve the regression, chaotic mechanism, tent map,
is added to the search algorithm. FEM simulations of the
pantograph-catenary system are established to generate train-
ing and testing data sets. The input variables relate to eight
design parameters of the pantograph-catenary system. The
output includes various statistics of CF and lifting displace-
ment of CW. The results show that CHGS-GPR predicts well
on Fm, σ, Fmax, and Uplift, especially Fm. However, Fmin can-
not be accurately predicted. This may be due to the fact that
none of the current input parameters is the key factor affect-
ing the minimum CF. Among them, among the input param-
eters, Fuplift and η are the most important parameters affect-
ing pantograph-catenary transmission quality, compared with
other parameters.

Among the obtained CHGS-GPR, the prediction for the
Fm is the best, with R2 = 0.997, RMSE = 2.793, and MAE
= 0.0145. The outcomes obtained from CHGS-GPR using
only 17 sets of training samples offer considerable reassur-
ance. These results not only validate the feasibility of the
proposed method but also demonstrate its effectiveness. This
work shows the potential and viability of the approach.

The GPR model, distinguished by its probabilistic nature,
exhibits remarkable suitability for probability and risk-based

(a) (b) (c)

R
2

Fm
Fσ Uplift Fm

σ σFm
FF Uplift Uplift

Figure 6 Model evaluation: (a) R2, (b) RMSE, (c) MAE.
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Table 6 Individual prediction error with test data set

Fm σ Fmax Fuplift

Absolute value of error (%) 1.45 9.93 12.2 9.02

engineering assessments, offering notable advantages in en-
gineering prediction tasks. To the best of our knowledge,
for the first time, GPR is introduced into the pantograph-
catenary system, and its feasibility is discussed. The es-
tablished method demonstrates acceptable accuracy and effi-
ciency, surpassing FEM methods and potentially even replac-
ing costly field tests for evaluating the pantograph-catenary
interaction. These findings contribute to the advancement of
engineering practices and offer new possibilities for enhanc-
ing system evaluation methodologies.

Appendix A.

Appendix A shows the derivation of the key dimensionless
coefficients (Ccr,Cct, and Cmr) related to the catenary struc-
ture around the dropper as shown in Fig. A1. The excitation
is assumed to be the incident wave D. When D meets the
dropper, the reflection wave A and transmission wave B will
be generated on the CW. Meanwhile, the wave will be trans-
mitted to MW through the dropper and separated into two
directions, which is reflection wave E and F. Hence, the re-
flection and transmission coefficients are defined as the am-
plitude ratios between the generated wave and incident wave,
which reflect the natural properties of the special segment of
the catenary structure.

For catenary CW and MW, they are modelled as tensioned
cables, the governing equations are as follows:

ρ
∂2w(x, t)
∂t2 − T

∂2w(x, t)
∂x2 = 0, (a1)

where ρ is the linear density, T is the tension, and w(x, t) is
the vertical deflection.

As for the section around dropper, the equilibrium equa-
tion of MW and CW is as follows:

wml = wmr,

Tm

(
∂wmr

∂x
− ∂wml

∂x

)
− k(wmr − wcr) = 0,

wcl = wcr,

Tc

(
∂wcr

∂x
− ∂wcl

∂x

)
+ k(wmr − wcr) = 0,

(a2)

where the subscript m presents for MW and c for CW, l for
the left and r for the right, and k is the spring stiffness of the
dropper. The Fourier transform of the solu-tion of Eq. (a1) is
as follows:

w(x, t) =
∑

n

[wn(x, ωn)eiωnt], (a3)

E F

A

D

B

Dropper
Message

Contact

Figure A1 Schematic diagram of wave propagation around the dropper of
the catenary, which A, B, D, E, and F mean the amplitude of the wave.

where ω is angular frequency. For short, Eq. (a3) can be writ-
ten as

w(x, t) = ŵ(x, ω)eiωt, (a4)

w(x, t)⇒ ŵ(x, ω). (a5)

The form of solution of Eq. (a2) is as follows:
ŵml = Eeiωx/cm ,

ŵmr = Fe–iωx/cm ,

ŵcl = Aeiωx/cc + De−iωx/cc ,

ŵcr = Be–iωx/cc .

(a6)

Substituting Eq. (a6) into Eq. (a2), then get

A
D
= − γc

γc + γm + i
, (a7)

B
D
=

γm + i
γc + γm + i

, (a8)

E
D
=

γm

γc + γm + i
. (a9)

Modulo the above results as follows:

ccr =

∣∣∣∣∣ A
D

∣∣∣∣∣ = γc√
(γc + γm)2 + 1

, (a10)

cct =

∣∣∣∣∣ B
D

∣∣∣∣∣ =
√

(γ2
m + γmγc + 1)2 + γ2

c

(γc + γm)2 + 1
, (a11)

cmr =

∣∣∣∣∣ ED
∣∣∣∣∣ = cmt =

γm√
(γc + γm)2 + 1

, (a12)

where γm and γc are defined as

γm =
k

2ω
√
ρmTm

, (a13)

γc =
k

2ω
√
ρcTc
. (a14)

As can been seen, Ccr,Cct, and Cmr are the reflection co-
efficients of CW, transmission coefficients of CW and reflec-
tion coefficient of MW, respectively.
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应应应用用用元元元启启启发发发式式式优优优化化化和和和高高高斯斯斯过过过程程程回回回归归归预预预测测测受受受电电电弓弓弓-接接接触触触网网网系系系统统统性性性能能能
的的的可可可行行行性性性研研研究究究

张莫晗,银波,孙振旭,白夜,杨国伟
摘要 受电弓接触网系统为高速列车提供电能,正确评估受电弓与接触网之间的接触力(CF)对于稳定供电至关重要. CF的大小和变

化范围决定了列车受流质量和安全运行. 因此,快速、准确地预测CF具有重要意义.然而,通过实验收集CF数据具有挑战性,并且通过

数值模拟获得及时结果并不总是可行的. 在本研究中,我们提出了一种结合元启发式优化和高斯过程回归的高效的代理模型方法,来

预测受电弓接触网系统接触力统计量. 首先,使用有限元法(FEM)建立并验证受电弓接触网模型,用于生成训练和测试数据集. 其次,

利用高斯过程回归(GPR)进行对接触力的预测. 将一种新开发的元启发式优化,即二元饥饿游戏搜索(HGS),应用于特征选择.为了增

强BHGS的性能,嵌入了混沌机制,产生了Chaos-HGS GPR(CHGS-GPR).最后,对CHGS-GPR的预测结果进行了评估. 结果发现,所提出

的CHGS-GPR对CF的平均值提供了相当准确的预测,并且可以扩展到铁路线路的初步设计、列车运行的实时评估和控制.

https://doi.org/10.1016/j.jsv.2008.02.024

	A feasibility study on applying meta-heuristic optimization and Gaussian process regression for predicting the performance of  pantograph-catenary system
	Introduction
	Methods
	Pantograph-catenary system modeling
	Gaussian process regression

	Development of simulation based surrogates
	Problem description
	Input parameters and sampling domain
	Input features extraction and selection
	Data preparation for training, validation and test
	Validation of the approach

	Results and discussion
	Model training results
	Validation and analysis

	Practical significance and prospect
	Conclusion
	


