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Abstract Let π = π1(M) for a compact 3-manifold M , and χ4, p and q∗ be the invariants of Hausmann

and Weinberger (1985), Kotschick (1994) and Hillman (2002), respectively. For a certain class of compact 3-

manifolds M , including all those not containing two-sided RP 2’s, we determine χ4(π). We address when p(π)

equals χ4(π) and when q∗(π) equals χ4(π), and answer a question raised by Hillman (2002).
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1 Introduction

For a cell complex X, we use Hi(X), Hi(X) and βi(X) (resp. Hi(X;Z2), H
i(X;Z2) and βi(X;Z2)) to

denote its i-th homology group, i-th cohomology group and i-th Betti number with real coefficients (resp.

Z2-coefficients). For a finitely presented group G, denote by βi(G) (βi(G;Z2)) the i-th Betti number of

K(G, 1), the classifying space of G. Denote by χ(X) the Euler characteristic of a finite CW complex X,

and by σ(X) the signature of a closed oriented 4-manifold X. In this paper, by 4-manifolds, we mean

topological 4-manifolds, although all the 4-manifolds we will construct are smooth manifolds.

In 1985, Hausmann and Weinberger [5] introduced the 4-manifold Euler characteristic for a finitely

presented group G, defined by

χ4(G) = inf{χ(X) | X is a closed orientable 4-manifold and π1(X) ∼= G}.

There are also some variations of χ4(G). In 1994, Kotschick [12] introduced

p(G) = inf{χ(X)− |σ(X)| | X is a closed orientable 4-manifold and π1(X) ∼= G}.

In 2002, Hillman [7] introduced

q∗(G) = inf{χ(X) | X is a closed 4-manifold and π1(X) ∼= G}.
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It is known that

χ4(G) > p(G), χ4(G) > q∗(G). (1.1)

Note both χ4(G) and q∗(G) were denoted by q(G) in their original definitions (see [5, 7]). Moreover,

q∗(G) was originally defined for PD4-complexes in [7].

Kotschick [12, Theorems 2.8 and 4.2] made a useful observation to estimate the lower bounds of χ4(G)

and p(G) when β4(G) = 0. This observation is crucial for our work in this article (see the approach in

Section 3).

More variations and generalizations of χ4(G) can be found in [1, 2, 7, 11,13].

An important family of finitely presented groups which can be classified are groups of compact 3-

manifolds, which include all the cyclic groups, free groups, surface groups and knot groups. Many studies

have been made for 4-manifolds with 3-manifold groups (see [7–9,11,12] and the references therein).

We survey known results on the above invariants of 3-manifold groups in the following theorem.

Theorem 1.1. Suppose that M is a compact 3-manifold and π1(M) = π.

(1) χ4(π) = p(π) = 2 if M is closed, orientable and aspherical (see [12, Proposition 5.6]).

(2) χ4(π) = 2− 2q if M is closed and orientable, where q is the maximal rank of the free groups in the

free product decomposition of π (see [7, pp. 61–62] and [11, Theorem 3.3]).

(3) χ4(π) = 0 if π is the group of a knot complement in the 3-sphere S3 (see [7, Corollary 3.12.3] and

[11, Theorem 3.4]).

(4) Suppose that M is a closed aspherical 3-manifold and π1(X) = π for a closed 4-manifold X. If

X and M have the same orientability, then χ(X) > 0 and q∗(π) ∈ {1, 2} (see [7, Theorem 3.13 and

Corollary 3.13.1]).

In [7, p. 63], Hillman asked whether the results in Theorem 1.1(4) can be extended to all the closed

3-manifold groups without torsions and without free Z-factors.
In this paper, we try to determine χ4(π) for fundamental groups of compact 3-manifolds. We also get

some results related to p(π) and q∗(π). It turns out that for non-orientable 3-manifolds, the problem

becomes more difficult, and some new approaches are needed.

For undefined terminologies, see [4,6] about 3-manifolds, see [10] about 4-manifolds, and see [3] about

algebraic topology.

The Kneser-Milnor theorem claims that each compact 3-manifold has a prime decomposition, whose

prime factors are unique up to homeomorphism (and up to possibly replacing S2 × S1 by S2 ×̃ S1) and

permutation (see [6]). So M has a prime decomposition

M = (#m
i=1Mi)# (#n

j=1Nj)# (#p
l=1Ql)# (#q

e=1Se). (1.2)

Here, each prime factor may or may not be orientable and belongs to one of the following categories:

(i) each Mi is a closed prime 3-manifold with |π1(Mi)| = ∞ and is not an S2- or RP 2-bundle over S1;

(ii) each Nj is a closed prime 3-manifold with |π1(Nj)| < ∞;

(iii) each Ql is a prime 3-manifold and ∂Ql is non-empty;

(iv) each Se is an S2- or RP 2-bundle over S1.

Note that in (ii), each Nj is orientable, and in (iv), each RP 2-bundle over S1 is homeomorphic to

RP 2 × S1. Also each orientable 3-manifold contains no embedded 2-sided RP 2, and each 3-manifold

containing embedded RP 2’s has 2-torsions in its fundamental group.

We make the following conjecture about χ4(π) and p(π).

Conjecture 1.2. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv). Let π = π1(M). Then

χ4(π) = p(π) = 2− 2(p+ q) + χ(∂M).

If Conjecture 1.2 is true, it implies that any closed orientable 4-manifoldX realizing χ4(π) has signature

zero.
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We state our work on χ4(π) and related invariants in the following three theorems. Theorem 1.3 is

the main result of this paper and is more difficult to prove. Theorems 1.3 and 1.4 and Remark 1.6(1)

support Conjecture 1.2.

Theorem 1.3. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv). Let π = π1(M). If each Mi in (i) and Ql in (iii) contains no two-sided RP 2, then

χ4(π) = 2− 2(p+ q) + χ(∂M). (1.3)

In particular, (1.3) holds when M contains no two-sided RP 2.

Theorem 1.4. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv). Let π = π1(M). If each closed 3-manifold Mi in (i) is orientable, then

p(π) = χ4(π) = 2− 2(p+ q) + χ(∂M). (1.4)

In particular, (1.4) holds when M is orientable.

Theorem 1.4 confirms the question asked by Hillman [7] above, and in fact we prove a stronger result.

Theorem 1.5. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv). Let π = π1(M). If π contains no 2-torsion, then

q∗(π) = χ4(π) = 2− 2(p+ q) + χ(∂M). (1.5)

In particular, if p = q = 0, then q∗(π) = 2.

Remark 1.6. (1) Let M be a closed, irreducible and non-orientable 3-manifold and M ̸= RP 2 × S1.

Let r be the number of disjoint non-parallel 2-sided RP 2’s in M . Then χ4(π1(M)) = 2 if r = 0 by

Theorem 1.3, and

χ4(π1(M)) ∈ {0, 1, 2} if r > 0 (1.6)

by the proof of Theorem 1.4 (see Proposition 4.2) since p = q = χ(∂M) = 0 and the number of non-

orientable summands k is 1 in this case. (1.6) suggests that χ4(π1(M)) should be independent of the

number of 2-sided RP 2’s in M , and to determine whether χ4(π1(M)) = 2 holds is the first step to verify

the conjecture.

(2) By Theorem 1.5, if π1(M) contains no 2-torsion, then q∗(π) can be realized by closed orientable

4-manifolds. Note that q∗(Z2) = 1 is realized by the RP 4. So the equality q∗(π) = χ4(π) in Theorem 1.5

is not true for all 3-manifold groups (since χ4(Z2) = 2 by Theorem 1.3).

The rest of this paper is organized as follows. In Section 2, we first construct 4-manifolds that provide

an upper bound of χ4(π) and compute Betti numbers of 3-manifold groups. In Section 3, we provide

lower bounds of χ4(π), p(π) and q∗(π). In Section 4, we prove Theorems 1.3–1.5.

2 An upper bound of χ4(π) and computations of βi(π)

We first list several standard facts which will be repeatedly used in our proofs.

Lemma 2.1. Suppose that N1 and N2 are compact n-manifolds.

(i) π1(N1#N2) = π1(N1) ∗ π1(N2) for n > 3.

(ii) χ(N1#N2) = χ(N1) + χ(N2)− 2 for n = 4.

(iii) If p : N1 → N2 is a covering map of degree p, then χ(N1) = pχ(N2).

An upper bound of χ4(π) in Theorems 1.3–1.5 is given in the following proposition.

Proposition 2.2. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv). Let π = π1(M). Then

χ4(π) 6 2− 2(p+ q) + χ(∂M).
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For a compact 3-manifold M associated with the decomposition (1.2) and (i)–(iv), to prove

Proposition 2.2, we only need to construct a closed orientable 4-manifold M∗ with π1(M
∗) = π1(M)

and χ(M∗) = 2− 2(p+ q) + χ(∂M).

Construction of M∗. Suppose that M is a compact 3-manifold and ∂M has k components

{S1, . . . , Sk}.
Case 1. M is orientable and ∂M ̸= ∅. Let M∗ = (M × S1) ∪ (

∪
i Si × D2), where each component

Si × S1 of ∂(M × S1) is identified with ∂(Si ×D2) = Si × S1 canonically. By the van Kampen theorem,

we can verify that π1(M
∗) = π1(M).

Case 2. M is non-orientable and ∂M ̸= ∅. Let p : M̃ → M be the orientable double cover of M with a

fixed-point free orientation reversing involution τ : M̃ → M̃ such that M̃/τ = M . Let r : S1 → S1 be an

orientation reversing involution on S1. Now we have an orientation-preserving fixed-point free involution

τ × r : M̃ × S1 → M̃ × S1. Then M̃ × S1/τ × r is an orientable 4-manifold, which indeed is a twisted

product M ×̃ S1. Each boundary component of M ×̃ S1 is either Sj × S1 if Sj is orientable, or Sj ×̃ S1

otherwise. Then we close these components canonically by Sj ×D2 or Sj ×̃ D2, depending on whether

Sj is orientable or not. Again we get a closed orientable 4-manifold M∗ with π1(M
∗) = π1(M).

Case 3. M is closed. Let B3 be a 3-ball in M . We define M̆ = M \ intB3. Then ∂M̆ = S2 and M̆∗

is defined.

Final construction. For a compact 3-manifold M with a prime decomposition given in (1.2), denote

the connected sum of closed 3-manifold pieces in (i) and (ii) by P = (#m
i=1Mi)# (#n

j=1Nj). We suppose

that there are q1 prime factors that are S2-bundles and q2 prime factors that are RP 2-bundles with

q1 + q2 = q. Then we define

M∗ = P̆ ∗ #(#p
l=1Q

∗
l )# (#q1

e=1(S
3 × S1))# (#q2

f=1(RP 3 × S1)), (2.1)

which is a closed orientable 4-manifold.

By Lemma 2.1, it is easily shown that

π1(M
∗) ∼= π1(M) and χ(M∗) = 2− 2(p+ q) + χ(∂M).

Then Proposition 2.2 follows.

The proofs of Theorems 1.3–1.5 use the following proposition.

Proposition 2.3. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv). Let π = π1(M). Then we have

(1) β4(π) = 0;

(2) β2(π) =
∑m

i=1 β2(Mi) +
∑p

l=1 β2(Ql).

Moreover, if π contains no 2-torsion, then

(3) β4(π;Z2) = 0;

(4) β2(π;Z2) =
∑m

i=1 β2(Mi;Z2) +
∑p

l=1 β2(Ql;Z2).

The following result is used to prove Propositions 2.3 and 3.1.

Proposition 2.4 (See [3, Proposition 3G.1]). Let p : X̃ → X be a finite regular cover with a deck

transformation group Γ. Then

(1) p∗ : Hk(X) → Hk(X̃) is injective for each integer k;

(2) the image of p∗ is the subspace Hk(X̃)Γ consisting of elements fixed by all γ ∈ Γ.

To prove Proposition 2.3, we first work on prime 3-manifolds.

Proposition 2.5. Let M be a prime 3-manifold that is not an S2- or RP 2-bundle over S1, and

π = π1(M). Then we have β2(π) = β2(M).

Proof. Case I. M is an orientable 3-manifold.

If M has a finite fundamental group, since no boundary component of M is S2, M must be closed.

Then the result holds since β2(M) = 0 (by the Poincaré duality) and every finite group has zero Betti

numbers in all positive dimensions (see, for example, [14, Theorem 6.5.8]).
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If M has an infinite fundamental group, since M is not an S2-bundle, it is an irreducible 3-manifold. By

the sphere theorem and the Hurewicz theorem, M is aspherical and a model ofK(π, 1). So β2(π) = β2(M)

holds.

Case II. M is a non-orientable 3-manifold.

Let i : M → X = K(π, 1) be the inclusion that induces an isomorphism on π1. Let pM : M̃ → M be

the orientable double cover with π1(M̃) = π̃ < π, and pX : X̃ = K(π̃, 1) → X = K(π, 1) be the double

cover corresponding to π̃ < π. Let τM : M̃ → M̃ and τX : X̃ → X̃ be nontrivial deck transformations,

and ĩ : M̃ → X̃ be an inclusion. Then we have the following commutative diagrams:

M̃
ĩ //

pM

��

X̃

pX

��
M

i // X,

M̃
τM //

ĩ
��

M̃

ĩ
��

X̃
τX // X̃.

Let P be a maximal collection of disjoint non-parallel two-sided RP 2’s in M (which exists by an exercise

in [4, p. 12]). Let S be the preimage of P in M̃ . Then each component of S is a 2-sphere. Moreover, for

each component K of M̃ \ S, if we cap off each S2 boundary component of K by a 3-ball to obtain K̂, a

classical argument in 3-manifold topology implies that K̂ is irreducible. So if we pinch each component

of S to a point, we get a space X̃(3) homotopy-equivalent to a one-point union of orientable irreducible

3-manifolds and S1. Then we can add cells of dimension at least 4 to X̃(3) to obtain X̃, which is a model

of K(π̃, 1). Since adding cells of dimension at least 4 does not affect H2, we have an exact sequence

0 = H1(S) → H2(X̃) = H2(X̃(3)) → H2(M̃) → H2(S),

which is Z2-equivariant (induced by the action τX). Since Z2 acts on H2(S) as multiplied by −1, by

applying Proposition 2.4 twice, we have

β2(π) = β2(X) = dimH2(X̃)τ
∗
X = dimH2(M̃)τ

∗
M = β2(M).

This completes the proof.

Proof of Proposition 2.3. Suppose that the 3-manifold M has a prime decomposition

M = (#m
i=1Mi)# (#n

j=1Nj)# (#p
l=1Ql)# (#q

e=1Se)

as in (1.2). Here, each Mi is a closed prime 3-manifold with |π1(Mi)| = ∞ and is not an S2- or RP 2-

bundle, each Nj is closed and has a finite fundamental group, each Ql is prime and has non-empty ∂Ql,

and each Se is an S2- or RP 2-bundle over S1.

Among the q prime factors of M that are S2- or RP 2-bundles, we suppose that q1 of them are S2-

bundles and q2 of them are RP 2-bundles. Then a K(π1(M), 1) space can be taken to be

(∨m
i=1K(π1(Mi), 1)) ∨ (∨n

j=1K(π1(Nj), 1)) ∨ (∨p
l=1K(π1(Ql), 1)) ∨ (∨q1S1) ∨ (∨q2RP∞ × S1).

We have

β2(π1(M)) =
m∑
i=1

β2(π1(Mi)) +
n∑

j=1

β2(π1(Nj)) +

p∑
l=1

β2(π1(Ql))

=
m∑
i=1

β2(Mi) +
n∑

j=1

β2(Nj) +

p∑
l=1

β2(Ql) =
m∑
i=1

β2(Mi) +

p∑
l=1

β2(Ql).

Here, the second equality follows from Proposition 2.5, and the third equality follows from the fact that

π1(Nj) is finite.

We can always find an orientable finite cover M̃ of M such that each prime factor M̃ is either aspherical

or S2 × S1 or has finite π1. Then by the argument we used above, it is easy to see that β4(π1(M̃)) = 0.

Then by Proposition 2.4(1), β4(π1(M)) = 0. We have proved (1) and (2) of Proposition 2.3.
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Suppose that π contains no 2-torsion. We conclude that each Mi and Ql contains no 2-sided projective

plane, each Se is an S2-bundle over S1, and the fundamental group of each Nj has an odd order. As we

discussed in the proof of Proposition 2.5, each Mi and Ql is aspherical and

K(π1(M), 1) = (∨m
i=1Mi) ∨ (∨n

j=1K(π1(Nj), 1)) ∨ (∨p
l=1Ql) ∨ (∨qS1).

Since π1(Nj) is odd, βk(π1(Nj);Z2) = 0 for all k > 1 (see, for example [14, Theorem 6.5.8]). Then (3)

and (4) of Proposition 2.3 follow.

3 Obstructions for lower bounds of χ4(π), p(π) and q∗(π)

Propositions 3.1, 3.4 and 3.5, the three obstruction results in this section, are for lower bounds of χ4(π),

p(π) and q∗(π), respectively. Both Proposition 3.1 and its proof are new, Proposition 3.4 is known, and

both Proposition 3.5 and its proof are Z2-versions of known results.

Proposition 3.1. Let G be a finitely presented group, and G̃ < G be an index-2 subgroup such that

β4(G̃) = 0. Then we have

χ4(G) > 1− β1(G̃) + β2(G̃) + |2(β1(G)− β2(G))− (β1(G̃)− β2(G̃))− 1|.

Proof. Let X be a closed orientable 4-manifold with π1(X) ∼= G. Then we have a map i : X → K(G, 1)

that induces an isomorphism on π1 (where we use the fact that any compact manifold is homotopy-

equivalent to a CW-complex [3, Corollary A.12]).

Let p : X̃ → X and q : K(G̃, 1) → K(G, 1) be the double covers of X and K(G, 1) corresponding to

G̃ < G, respectively. We get the following commutative diagram:

X̃
j //

p

��

K(G̃, 1)

q

��
X

i // K(G, 1).

Since π1(X̃) ∼= G̃, we have β1(X̃) = β1(G̃). By the Poincaré duality, we have β3(X̃) = β1(X̃) = β1(G̃).

So we get

χ(X̃) = 2− 2β1(G̃) + β2(X̃), χ(X) = 1− β1(G̃) +
1

2
β2(X̃). (3.1)

To prove this proposition, we only need to bound β2(X̃) from below.

Since j : X̃ → K(G̃, 1) induces an isomorphism on π1, j
∗ : H1(K(G̃, 1)) → H1(X̃) is an isomorphism.

Since K(G̃, 1) can be obtained (up to homotopy equivalence) by attaching cells to X̃ of dimension at

least 3, j∗ : H2(K(G̃, 1)) → H2(X̃) is injective.

Let τX : X̃ → X̃ and τK : K(G̃, 1) → K(G̃, 1) be the nontrivial deck transformations of p : X̃ → X and

q : K(G̃, 1) → K(G, 1), respectively. By Proposition 2.4, for each n, q∗ : Hn(K(G, 1)) → Hn(K(G̃, 1)) is

injective, and we have

q∗(Hn(K(G, 1))) = (Hn(K(G̃, 1)))τ
∗
K .

Since τ∗K : Hn(K(G̃, 1)) → Hn(K(G̃, 1)) gives a Z2-action, we have

Hn(K(G̃, 1)) = Hn(K(G̃, 1))+ ⊕Hn(K(G̃, 1))−,

where Hn(K(G̃, 1))+ and Hn(K(G̃, 1))− denote the eigenspaces of τ∗K corresponding to eigenvalues 1

and −1, respectively. Similarly, by considering the Z2-action on Hn(X̃) given by τ∗X and the eigenspaces

corresponding to 1 and −1, we have

Hn(X̃) = Hn(X̃)+ ⊕Hn(X̃)−.
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Then we have

Hn(K(G̃, 1))+ = Hn(K(G̃, 1))τ
∗
K = q∗(Hn(K(G, 1))).

Since q∗ : Hn(K(G, 1)) → Hn(K(G̃, 1)) is injective, we have

dimHn(K(G̃, 1))+ = dimq∗(Hn(K(G, 1))) = dimHn(K(G, 1)) = βn(G)

and

dimHn(K(G̃, 1))− = dimHn(K(G̃, 1))− dimHn(K(G̃, 1))+ = βn(G̃)− βn(G).

Since j∗ : H1(K(G̃, 1)) → H1(X̃) is an isomorphism and commutes with the action of the deck

transformation, we have

dimH1(X̃)+ = dimj∗(H1(K(G̃, 1))+) = dimH1(K(G̃, 1))+ = β1(G)

and

dimH1(X̃)− = dimj∗(H1(K(G̃, 1))−) = dimH1(K(G̃, 1))− = β1(G̃)− β1(G).

So we get

tr(τ∗X : H1(X̃) → H1(X̃)) = 2β1(G)− β1(G̃). (3.2)

Since τX : X̃ → X̃ is an orientation-preserving homeomorphism, for any α ∈ H1(X̃) and β ∈ H3(X̃),

we have α ∪ β = τ∗X(α) ∪ τ∗X(β) ∈ H4(X̃) ∼= R. By the Poincaré duality, we have dimH3(X̃)+
= dimH1(X̃)+ = β1(G) and dimH3(X̃)− = dimH1(X̃)− = β1(G̃)− β1(G), so we get

tr(τ∗X : H3(X̃) → H3(X̃)) = 2β1(G)− β1(G̃). (3.3)

By the Poincaré duality, the cup product H2(X) × H2(X) → H4(X) ∼= R is a non-singular bilinear

form.

Now we need two lemmas, and the first one is well known.

Lemma 3.2. Let V be a vector space of dimension n over a field F and q be a non-degenerate symmetric

bilinear form on V . If q vanishes on a subspace W of dimension m, then n > 2m.

Lemma 3.3. (1) The restrictions of the cup product of H∗(X̃) on both H2(X̃)+ × H2(X̃)+ and

H2(X̃)− ×H2(X̃)− are non-degenerate.

(2) The restrictions of the cup product of H∗(X̃) on both j∗(H2(K(G̃, 1))+)× j∗(H2(K(G̃, 1))+) and

j∗(H2(K(G̃, 1))−)× j∗(H2(K(G̃, 1))−) are trivial.

Proof. (1) For any non-zero elements α ∈ H2(X̃)+ and β ∈ H2(X̃)−, then τ∗X(α) = α and τ∗X(β) = −β,

and hence

τ∗X(α ∪ β) = −α ∪ β.

However, since τX is orientation-preserving, we have

τ∗X(α ∪ β) = α ∪ β,

which implies that α ∪ β = 0.

Since the cup product H2(X̃)×H2(X̃) → H4(X̃) ∼= R is a non-singular bilinear form, for any non-zero

α ∈ H2(X̃)+, there must be a non-zero element γ ∈ H2(X̃)+ such that γ ∪ α ̸= 0. So the restriction

of the cup product of H∗(X̃) on H2(X̃)+ × H2(X̃)+ is non-degenerate. The same argument works for

H2(X̃)−.

(2) Since β4(G̃) = 0, the restrictions of the cup product of H∗(K(G̃, 1)) on H2(K(G̃, 1))+
× H2(K(G̃, 1))+ and H2(K(G̃, 1))− × H2(K(G̃, 1))− are trivial. Since j∗(H2(K(G̃, 1))+) ⊂ H2(X̃)+
and j∗(H2(K(G̃, 1))−) ⊂ H2(X̃)−, the conclusion follows.
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By Lemmas 3.2 and 3.3, we have

dimH2(X̃)+ > 2dimj∗(H2(K(G̃, 1))+) = 2dimH2(K(G̃, 1))+ = 2β2(G) (3.4)

and

dimH2(X̃)− > 2dimH2(K(G̃, 1))− = 2β2(G̃)− 2β2(G). (3.5)

The above inequalities imply that

dimH2(X̃)+ = 2β2(G) + ∆+, dimH2(X̃)− = 2β2(G̃)− 2β2(G) + ∆− (3.6)

for some non-negative integers ∆+ and ∆−. So we have

tr(τ∗X : H2(X̃) → H2(X̃)) = 4β2(G)− 2β2(G̃) + (∆+ −∆−). (3.7)

Since τX : X̃ → X̃ has no fixed point, by the Lefschetz fixed-point theorem, (3.2), (3.3) and (3.7), we

have

0 =

4∑
i=0

(−1)itr(τ∗X : Hi(X̃) → Hi(X̃))

= 1− (2β1(G)− β1(G̃)) + (4β2(G)− 2β2(G̃) + (∆+ −∆−))− (2β1(G)− β1(G̃)) + 1

= 2− 4(β1(G)− β2(G)) + 2(β1(G̃)− β2(G̃)) + (∆+ −∆−).

Thus

∆+ −∆− = 4(β1(G)− β2(G))− 2(β1(G̃)− β2(G̃))− 2. (3.8)

By (3.1), we have

χ(X) = 1− β1(G̃) +
1

2
(dimH2(X̃)+ + dimH2(X̃)−)

= 1− β1(G̃) + β2(G̃) +
1

2
(∆+ +∆−) (by (3.6))

> 1− β1(G̃) + β2(G̃) +
1

2
|∆+ −∆−|

= 1− β1(G̃) + β2(G̃) + |2(β1(G)− β2(G))− (β1(G̃)− β2(G̃))− 1| (by (3.8)).

This completes the proof.

Proposition 3.4 (See [12, Theorem 4.2]). If β4(π) = 0, then

p(π) > 2− 2β1(π) + 2β2(π).

Proposition 3.5. Let M be a compact 3-manifold whose fundamental group π contains no 2-torsion,

and X be a closed 4-manifold with π1(X) = π. Then we have

β2(X;Z2) > 2β2(π;Z2).

Since the group π of M contains no 2-torsion, H4(π;Z2) is trivial by Proposition 2.3(3). Then the proof

of Proposition 3.5 is analogous to that of Proposition 3.4 (or directly see the proof of the inequality (3.4)

above) by Lemma 3.2 for F = Z2.
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4 Proofs of theorems

We introduce some notions and conventions to simplify computations in our proofs. For each finitely

presented group G, define

b(G) = β2(G)− β1(G), b(G;Z2) = β2(G;Z2)− β1(G;Z2).

The verification of the following fact is routine.

Lemma 4.1. For finitely presented groups G1 and G2,

b(G1 ∗G2) = b(G1) + b(G2), b(G1 ∗G2;Z2) = b(G1;Z2) + b(G2;Z2).

Convention (∗). Suppose that M is a compact 3-manifold with π = π1(M) and with a prime

decomposition described as in (1.2) and (i)–(iv).

Note that capping off each S2 boundary component of ∂M by a 3-ball and swapping each S2-bundle

factor by D2 × S1 do not affect either the group or the right-hand sides of the formulas (1.3)–(1.5) in

Theorems 1.3–1.5. So below we assume that M has neither S2 boundary component nor S2-bundle factor.

4.1 p(π) = χ4(π) when closed prime factors of M are orientable

Proof of Theorem 1.4. Suppose that M is a compact 3-manifold with a prime decomposition described

as in (1.2) and (i)–(iv). We have

2− 2(p+ q) + χ(∂M) > χ4(π) > p(π) > 2− 2β1(π) + 2β2(π) = 2 + 2b(π). (4.1)

Here, the first inequality follows from Proposition 2.2, the second inequality follows from (1.1), and the

third inequality follows from Propositions 3.4 and 2.3(1).

Theorem 1.4 follows from (4.1) and Proposition 4.2 which gives the explicit value of 2b(π) in terms of

the presentation (1.2) with k = 0.

Proposition 4.2. Suppose that M is a compact 3-manifold with a prime decomposition described as

in (1.2) and (i)–(iv) and let π = π1(M). Suppose that the number of closed non-orientable 3-manifolds

Mi’s in (i) is k. Then

2− 2β1(π) + 2β2(π) = 2− 2(k + p+ q) + χ(∂M).

Proof. By Convention (∗), we can rewrite M as M = P#N#Q#S satisfying the following:

(i) P = #m+n−k
i=1 Mi and each Mi is closed orientable and irreducible with either a finite or an infinite

fundamental group;

(ii) W = #k
j=1Wj , and each Wj is a closed non-orientable 3-manifold and Wj ̸= RP 2 × S1;

(iii) Q = #p
l=1Ql and each Ql is a prime 3-manifold with non-empty ∂Ql;

(iv) S = #q
e=1Se and each Se is homeomorphic to RP 2 × S1.

For each Mi, we have

b(π1(Mi)) = β2(π1(Mi))− β1(π1(Mi)) = β2(Mi)− β1(Mi) = 0. (4.2)

The second equality follows from Proposition 2.5, and the last equality follows from the Poincaré duality

for closed orientable 3-manifolds.

For each Wj , we have

b(π1(Wj)) = β2(π1(Wj))− β1(π1(Wj)) = β2(Wj)− β1(Wj) = −1. (4.3)

The second equality follows from Proposition 2.5, and the last equality follows from the Euler-Poincaré

formula for closed non-orientable 3-manifolds.

For each Ql, we have

b(π1(Ql)) = β2(π1(Ql))− β1(π1(Ql)) = β2(Ql)− β1(Ql) = χ(Ql)− 1 =
χ(∂Ql)

2
− 1. (4.4)
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The second equality follows from Proposition 2.5, and the third equality follows from the Euler-Poincaré

formula for compact 3-manifolds with boundaries.

Since H∗(RP∞ × S1) = H∗(S1), we have

b(π1(RP 2 × S1)) = −1. (4.5)

Since b(∗) is additive, by (4.2)–(4.5), we have

b(π) =

m∑
i=1

b(π1(Mi)) +

k∑
j=1

b(π1(Wj)) +

p∑
l=1

b(π1(Ql)) +

q∑
e=1

b(π1(Se))

=
m∑
i=1

0 +
k∑

j=1

(−1) +

p∑
l=1

(
χ(∂Ql)

2
− 1

)
+

q∑
e=1

(−1) =
χ(∂M)

2
− k − p− q.

So 2b(π) = −2(k + p+ q) + χ(∂M).

4.2 q∗(π) = χ4(π) for π containing no 2-torsion

Proof of Theorem 1.5. By Proposition 2.2 and (1.1), we have

2− 2(p+ q) + χ(∂M) > χ4(π) > q∗(π).

To prove Theorem 1.5, we need only to prove that

q∗(π) > 2− 2(p+ q) + χ(∂M). (4.6)

The condition where π1(M) contains no 2-torsion implies that all the prime factors of M with finite

fundamental groups are lens spaces L(p, q) with odd p. Moreover, M contains no 2-sided RP 2, so each

prime factor with an infinite fundamental group is aspherical. By Convention (∗), we can rewrite M as

M = (#m
i=1Mi)# (#n

j=1Nj)# (#p
l=1Ql)

such that each Mi is a closed aspherical 3-manifold, each Nj is a lens space with groups of odd orders,

and each Ql is an aspherical 3-manifold with ∂Ql ̸= ∅. In particular, q = 0 holds here.

Using the Poincaré duality and the Euler-Poincaré formula in Z2-coefficients and Proposition 2.5, and

doing the same computation as in the proof of Theorem 1.4, we have

b(π1(Mi);Z2) = 0 (4.7)

and

b(π1(Ql);Z2) = χ(∂Ql)/2− 1. (4.8)

Since each π1(Nj) = Zkj with odd kj , we have H̃∗(K(π1(Nj), 1);Z2) = 0, and it follows immediately

that

b(π1(Nj);Z2) = 0. (4.9)

Since b(∗;Z2) is additive, by (4.7)–(4.9) we have

b(π;Z2) =
m∑
i=1

b(π1(Mi);Z2) +
n∑

j=1

b(π1(Nj);Z2) +

p∑
l=1

b(π1(Ql);Z2)

=
m∑
i=1

0 +
n∑

j=1

0 +

p∑
l=1

(χ(∂Ql)/2− 1) = χ(∂M)/2− p.
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So

β2(π;Z2) = b(π;Z2) + β1(π;Z2) = χ(∂M)/2− p+ β1(π;Z2).

Suppose that X is a closed 4-manifold such that π1(X) ∼= π. By Proposition 3.5 and Proposition 2.3(3),

we have

β2(X;Z2) > 2β2(π;Z2) = χ(∂M)− 2p+ 2β1(π;Z2).

Then

χ(X) = 2− 2β1(X;Z2) + β2(X;Z2) = 2− 2β1(π;Z2) + β2(X;Z2) > 2− 2p+ χ(∂M).

So q∗(π) > 2− 2p+ χ(∂M).

4.3 The proof of Theorem 1.3

We may assume that M is non-orientable, and otherwise it is proved in Theorem 1.4. Suppose that

M = P#N, where P is orientable and each prime factor W of N is non-orientable and contains no

2-sided RP 2 unless W = RP 2 × S1.

Let M̃ be the orientable double cover of M , G = π1(M) and G̃ = π1(M̃). By Proposition 3.1 and

Proposition 2.3(1), we have

χ4(G) > 1− β1(G̃) + β2(G̃) + |2(β1(G)− β2(G))− (β1(G̃)− β2(G̃))− 1|
= 1 + b(G̃) + | − 2b(G) + b(G̃)− 1|. (4.10)

Let Ñ be the orientable double cover of N , and P̄ be the orientation reversal of P . Then

M̃ = P#Ñ#P̄

and

G = π1(P ) ∗ π1(N), G̃ = π1(P ) ∗ π1(Ñ) ∗ π1(P ).

By the additivity of b(∗), we have

b(G) = b(π1(P )) + b(π1(N)), b(G̃) = 2b(π1(P )) + b(π1(Ñ)).

Substituting them into (4.10), we have

χ4(G) > 1 + 2b(π1(P )) + b(π1(Ñ)) + | − 2b(π1(N)) + b(π1(Ñ))− 1|. (4.11)

Suppose that P has p1 prime factors with a boundary. Since P is orientable, by Proposition 4.2, we

have

2b(π1(P )) = −2p1 + χ(∂P ). (4.12)

Suppose that the prime decomposition of N is

N = (#v
i=1Vi)# (#p2

j=1Qj)# (#q
e=1RP 2 × S1),

where each Vi is closed and aspherical, and each Qj is aspherical with a boundary. Let Ṽi and Q̃j be the

orientable double covers of Vi and Qj , respectively. Then

Ñ = (#v
i=1Ṽi)# (#p2

j=1Q̃j)# (#v+p2+2q−1
e=1 S2 × S1).

Since Ñ is orientable and χ(∂Ñ)/2 = χ(∂N), by Proposition 4.2, we have

b(π1(Ñ)) = −p2 − (v + p2 + 2q − 1) + χ(∂Ñ)/2 = −(v + 2p2 + 2q − 1) + χ(∂N). (4.13)
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By (4.3)–(4.5), we have

b(π1(N)) =
v∑

i=1

b(Vi) +

p2∑
j=1

b(Qj) +

q∑
e=1

b(RP 2 × S1) = −(v + p2 + q) + χ(∂N)/2. (4.14)

By (4.13) and (4.14), we have

| − 2b(π1(N)) + b(π1(Ñ))− 1|
= |2(v + p2 + q)− χ(∂N)− (v + 2p2 + 2q − 1) + χ(∂N)− 1| = v. (4.15)

Substituting (4.12), (4.13) and (4.15) into (4.10), we have

χ4(G) > 1 + (−2p1 + χ(∂P )) + (−(v + 2p2 + 2q − 1) + χ(∂N)) + v

= 2− 2(p1 + p2)− 2q + χ(∂P ) + χ(∂N) = 2− 2(p+ q) + χ(∂M). (4.16)

Then by Proposition 2.2, we have χ4(G) = 2− (p+ q) + χ(∂M).
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