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Abstract This paper is devoted to the study of the asymptotic behavior of the principal eigenvalue and the

basic reproduction ratio associated with periodic population models in a patchy environment for small and large

dispersal rates. We first deal with the eigenspace corresponding to the zero eigenvalue of the connectivity matrix.

Then we investigate the limiting profile of the principal eigenvalue of an associated periodic eigenvalue problem

as the dispersal rate goes to zero and infinity, respectively. We further establish the asymptotic behavior of

the basic reproduction ratio in the case of small and large dispersal rates. Finally, we apply these results to a

periodic Ross-Macdonald patch model.
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1 Introduction

In 2007, Allen et al. [1] studied the following epidemic model in a patchy environment:

dSi

dt
= dS

n∑
j=1

lijSj − βi
SiIi

Si + Ii
+ γiIi, i = 1, . . . , n,

dIi
dt

= dI

n∑
j=1

lijIj + βi
SiIi

Si + Ii
− γiIi, i = 1, . . . , n.

(1.1)

Here n > 2 is the number of patches, and Si(t) and Ii(t) are the numbers of susceptible and infected

individuals in patch i at time t, respectively. The parameters dS and dI are the migration rates of
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susceptible and infected populations; lij is a nonnegative constant which denotes the degree of movement

from patch j to patch i for j ̸= i and lii = −
∑

j ̸=i lji is the degree of movement from patch i to all

other patches; βi > 0 and γi > 0 are disease transmission and recovery rates at patch i, respectively. Let

L = (lij)n×n, F = diag(β1, . . . , βn) and V = diag(γ1, . . . , γn). Following [9, 32], the basic reproduction

ratio of the system (1.1) is expressed as R0(dI) = r((V − dIL)
−1F ), dI > 0, where r((V − dIL)

−1F ) is

the spectral radius of (V − dIL)
−1F .

Recall that a square matrix is said to be cooperative if its off-diagonal elements are nonnegative, and

nonnegative if all the elements are nonnegative; a square matrix is said to be irreducible if it is not similar,

via a permutation, to a block lower triangular matrix, and reducible otherwise; the spectral bound (also

called the stability modulus) of a square matrix A is defined as s(A) = sup{Reλ : λ is an eigenvalue of A}.
Under the assumption that the migration matrix L of infected individuals is symmetric and irreducible,

Allen et al. [1] showed that

lim
dI→0+

s(dIL− V + F ) = max
16i6n

(βi − γi), lim
dI→+∞

s(dIL− V + F ) =
1

n

n∑
i=1

(βi − γi),

lim
dI→0+

R0(dI) = R0(0) = max
16i6n

βi

γi
and lim

dI→+∞
R0(dI) =

∑n
i=1 βi∑n
i=1 γi

.

Without assuming the symmetry of L, Gao and Dong [10, 11] and Chen et al. [6] recently proved the

same limiting properties for s(dIL−V +F ) and R0(dI) as dI → 0+, and generalized the other two limits

into

lim
dI→+∞

s(dIL− V + F ) =

n∑
i=1

(βi − γi)qi, lim
dI→+∞

R0(dI) =

∑n
i=1 βiqi∑n
i=1 γiqi

,

where q = (q1, . . . , qn)
T is a right eigenvector of L corresponding to the eigenvalue 0 such that

∑n
i=1 qi = 1.

Note that the connectivity matrix obtained from the linearization of the system (1.1) at the disease-free

equilibrium refers to the migration matrix of infected individuals. In many multi-population models in

a patchy environment, however, the connectivity matrix is reducible, although the migration matrix for

each population is irreducible (see, e.g., [12,13]). Thus, a natural question is how to further characterize

the above limiting profiles for s(dIL − V + F ) and R0(dI) without the irreducibility condition on the

connectivity matrix. Such problems have been explored for reaction-diffusion systems (see, e.g., [2, 5, 7,

21,24,35,38]). In the case where the connectivity matrix is symmetric, this question is much easier than

the associated problem for reaction-diffusion systems. It is worth pointing out that the limiting problem

for the large dispersal rate is highly nontrivial when the connectivity matrix is non-symmetric.

For time-periodic patch population models (see, e.g., [12, 37]), we may conjecture that the similar

limiting results on the principal eigenvalue and the basic reproduction ratio hold true. This conjecture

was confirmed for reaction-diffusion systems (see, e.g., [18, 26, 27, 36, 38]). However, it seems that these

methods and arguments may not be well adapted to such periodic patch models due to the lack of

irreducibility and symmetry for the connectivity matrix.

Our purpose of this paper is to address the afore-mentioned two questions for patch population models.

Motivated by [1, 11,13,33,37], we assume that the connectivity matrix L admits the property that

(H1) L = (lij)n×n is an n× n cooperative matrix with zero column sums.

Then we have the following elementary observation, which plays a key role in our analysis.

Theorem A (See Lemmas 2.2–2.4). Assume that (H1) holds. Let α0 be the algebraic multiplicity of

the zero eigenvalue of L. Then the following statements are valid:

(i) There exist nonnegative matrices P = (phj)α0×n and Q = (qil)n×α0 such that PL and LQ are zero

matrices and PQ is an α0 × α0 identity matrix.

(ii) If M is an n× n cooperative matrix, then PMQ is an α0 × α0 cooperative matrix.

(iii) Let P̂ = (p̂hj)α0×n and Q̂ = (q̂il)n×α0 be two nonnegative matrices such that P̂L and LQ̂ are zero

matrices and P̂ Q̂ is an α0 × α0 identity matrix. Then PMQ is similar to P̂MQ̂.

We remark that all the rows of P and columns of Q are the left and right eigenvectors of L, respec-

tively. Note that any autonomous system can be regarded as a periodic one with the period being any
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given positive number. As a straightforward consequence of our general result for periodic systems (see

Theorem C below), we have the following result on the limiting profiles of the spectral bound and the

basic reproduction ratio with small and large dispersal rates for autonomous patch models.

Theorem B. Assume that (H1) holds, −V is an n×n cooperative matrix, and F is an n×n nonnegative

matrix. Let P and Q be defined as in Theorem A, Ṽ := PV Q and F̃ := PFQ. Then the following

statements are valid:

(i) limd→0+ s(dL− V + F ) = s(−V + F ) and limd→+∞ s(dL− V + F ) = s(−Ṽ + F̃ ).

(ii) If, in addition, s(dL − V ) < 0 for all d > 0 and s(Ṽ ) < 0, then limd→0+ R0(d) = R0(0) and

limd→+∞ R0(d) = R̃0, where

R0(d) := r((V − dL)−1F ), ∀ d > 0

and R̃0 := r(Ṽ −1F̃ ).

Note that the additional conditions s(dL−V ) < 0 for all d > 0 and s(Ṽ ) < 0 are used to guarantee that

the associated basic reproduction ratios R0(d) and R̃0 are well defined (see, e.g., [32]), and s(−Ṽ + F̃ ) is

independent of the choice of P and Q due to Theorem A. In the case where L is irreducible, the results

in Theorem B were established in [6, 10,11].

To present our main result for time-periodic systems, we use T > 0 to denote the period throughout

this paper. Let F (t) and V (t) be two continuous n× n matrix-valued functions of t ∈ R such that

(H2) F (t+ T ) = F (t), V (t+ T ) = V (t), F (t) is nonnegative, and −V (t) is cooperative for all t ∈ R.
For any t ∈ R, let F̃ (t) := PF (t)Q and Ṽ (t) := PV (t)Q, where P and Q are defined as in Theorem A.

For any d > 0, let {Φd(t, s) : t > s} be the evolution family on Rn of dv
dt = dLv − V (t)v, and let

{Φ̃(t, s) : t > s} be the evolution family on Rα0 of dv
dt = −Ṽ (t)v (see Definition 3.1), where α0 is the

algebraic multiplicity of the zero eigenvalue of L. Let ω(Φ) be the exponential growth bound of an

evolution family Φ (see Definition 3.1). We further assume that

(H3) ω(Φd) < 0 for all d > 0 and ω(Φ̃) < 0.

For any d > 0, let λ∗
d be the principal eigenvalue of the periodic eigenvalue problem (see Definition 3.3

and Theorem 3.4)
du

dt
= dLu− V (t)u+ F (t)u− λu.

According to [3, 34], the basic reproduction ratio R0(d) is well defined for the following periodic ODE

system (see Section 4):
dv

dt
= dLv − V (t)v + F (t)v. (1.2)

In view of Theorem A, we see that −Ṽ (t) is cooperative for any t ∈ R. Moreover, F̃ (t) is nonnegative for

any t ∈ R. Let λ̃∗ be the principal eigenvalue of the periodic eigenvalue problem

du

dt
= −Ṽ (t)u+ F̃ (t)u− λu,

and R̃0 be the basic reproduction ratio of the following periodic equation (see Section 4):

dv

dt
= −Ṽ (t)v + F̃ (t)v. (1.3)

Then we have the following result on the asymptotic behavior of λ∗
d and R0(d) for periodic patch models.

Theorem C (See Theorems 3.15 and 4.2). Assume that (H1)–(H3) hold. Then the following statements

are valid:

(i) limd→0+ λ∗
d = λ∗

0 and limd→+∞ λ∗
d = λ̃∗.

(ii) limd→0+ R0(d) = R0(0) and limd→+∞ R0(d) = R̃0.

We should point out that λ̃∗ is independent of the choice of P and Q (see Lemma 3.8). The state-

ments (i) and (ii) in Theorem C are straightforward consequences of Theorems 3.15 and 4.2, respectively.

In Theorem 4.2, we also introduce a metric space of parameters to discuss the continuity of the basic

reproduction ratio with respect to parameters.
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Since the Poincaré (period) map of the system (1.2), which is a square matrix, is continuous with respect

to the dispersal rate d ∈ [0,+∞), so is the principal eigenvalue due to the standard matrix perturbation

theory. To obtain the limiting profile of the principal eigenvalue as the dispersal rate goes to infinity,

we distinguish two cases. In the case where the Poincaré map (matrix) of (1.3) is irreducible, we use

some ideas inspired by [15–18,38], where the asymptotic behavior of the positive steady states or periodic

solutions was derived for large diffusion coefficients. In the case where such a matrix is reducible, we

combine the perturbation technique and the results for appropriate subsystems such that the Poincaré

maps of the associated limiting systems are irreducible. In our recent paper [38], we established the

continuity of the basic reproduction ratio with respect to parameters under the setting of Thieme [31],

which enables us to reduce the limiting profile of the basic reproduction ratio to the asymptotic behavior

of the principal eigenvalue of the associated periodic eigenvalue problem with parameters. In the current

paper, we give a more general result in this regard and then use it to prove Theorem C(ii).

The rest of this paper is organized as follows. In the next section, we present some basic properties of

cooperative matrices and prove a general result in order to study the continuity of the basic reproduc-

tion ratio with respect to parameters. In Section 3, we study the asymptotic behavior of the principal

eigenvalue for periodic cooperative ODE systems with large dispersal rates. In Section 4, we prove the

continuity of the basic reproduction ratio with respect to the dispersal rate and investigate the limiting

profile of the basic reproduction ratio as the dispersal rate goes to infinity. As an illustrative example,

we also apply these analytic results to a periodic Ross-Macdonald patch model.

2 Preliminaries

In this section, we present some properties of cooperative matrices and prove a general result in order to

study the continuity of the basic reproduction ratio with respect to parameters. Throughout the whole

paper, we define 0 = (0, . . . , 0)T in the case of any finite dimension. Moreover, without ambiguity, 0

refers to the zero matrix.

Lemma 2.1. Assume that (H1) holds and L can be split into a block lower triangular matrix

L =


L11 · · · L1α

...
. . .

...

Lα1 · · · Lαα


such that Lhh is an nh × nh irreducible matrix for 1 6 h 6 α with

∑α
l=1 nl = n, and Lhl = 0 for

1 6 h < l 6 α. Then for any fixed 1 6 l 6 α, s(Lll) = 0 if Lhl = 0 for all 1 6 l < h 6 α, and s(Lll) < 0

otherwise. Equivalently, Lhl = 0 for all 1 6 h ̸= l 6 α if s(Lll) = 0, and otherwise there is some h0 ̸= l

such that Lh0l is a nonzero matrix.

Proof. Let e = (1, . . . , 1)T and el = (1, . . . , 1)T be n- and nl-dimensional vectors for any 1 6 l 6 α,

respectively. It is easy to see that eTL = 0T. For a fixed 1 6 l0 6 α, an easy computation yields that

α∑
h=1

(eh)
TLhl0 =

α∑
h=l0

(eh)
TLhl0 = 0T.

If Lhl0 is a zero matrix for all 1 6 l0 < h 6 α, then (el0)
TLl0l0 = 0T. This implies that s(Ll0l0) = 0.

Otherwise, by the irreducibility of Ll0l0 , we conclude that s(Ll0l0) < 0 due to [4, Theorem II.1.11].

(H1′) L = (lij)n×n is an n×n cooperative matrix with s(L) = 0, and L can be split into a block lower

triangular matrix

L =


L11 · · · L1α

...
. . .

...

Lα1 · · · Lαα


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such that Lhh is an nh×nh irreducible matrix for 1 6 h 6 α with
∑α

l=1 nl = n, Lhl = 0 for 1 6 h < l 6 α,

and Lhl = 0 for all l ∈ Λ0 and 1 6 h 6 α with h ̸= l, where

Λ0 := {1 6 l 6 α : s(Lll) = 0} and Λc
0 := {1 6 l 6 α : s(Lll) < 0}.

Let α0 and αc
0 denote the numbers of all the elements in Λ0 and Λc

0, respectively.

Using Lemma 2.1, we choose α = 1 if L is irreducible, and write L as such a block lower triangular

matrix via a permutation if L is reducible. Accordingly, Lemma 2.1 implies that (H1) is sufficient for (H1′)

to hold.

Lemma 2.2. Assume that (H1′) holds. Let ν be an α0-dimensional vector defined by ν = (ν1, . . . , να0)
T

with νl = αc
0 + l, ∀ 1 6 l 6 α0. Then the following statements are valid:

(i) If Λc
0 ̸= ∅, then Λc

0 = {1, . . . , αc
0} and Λ0 = {αc

0 + 1, . . . , α} via a permutation.

(ii) The algebraic multiplicity of the zero eigenvalue of L is α0, and there exist α0 linearly independent

left positive eigenvectors (pl)
T := ((p1

l )
T, . . . , (pα

l )
T) (1 6 l 6 α0) of L and right positive eigenvectors

ql = ((q1
l )

T, . . . , (qα
l )

T)T (1 6 l 6 α0) of L corresponding to 0 such that (pl)
Tqh = δlh for 1 6 l, h 6 α0,

where pi
l and qi

l are ni-dimensional vectors and δlh denotes the Kronecker delta function (i.e., δlh = 1

if l = h and δlh = 0 otherwise). Moreover, pνl

l ≫ 0, qνl

l ≫ 0, Lνlνl
qνl

l = 0 and (pνl

l )TLνlνl
= 0T,

∀ 1 6 l 6 α0.

(iii) Define

P := (p1, . . . ,pα0
)T and Q := (q1, . . . , qα0

).

Then PQ is an α0 × α0 identity matrix. Moreover, PL = 0 and LQ = 0.

Proof. (i) can be derived by a permutation due to (H1′).

(ii) We only consider the case αc
0 > 0, since the case αc

0 = 0 can be obtained similarly. For any

1 6 l 6 α0, choose qνl ≫ 0 such that Lνlνl
qνl = 0, and define

ql := ((q1
l )

T, . . . , (qα
l )

T)T,

where qi
l is an ni-dimensional vector, qνl

l = qνl , and qi
l = 0 if i ̸= νl. This implies that Lql = 0 for any

1 6 l 6 α0.

For any 1 6 l 6 α0, choose pνl ≫ 0 such that (pνl)TLνlνl
= 0T with (pνl)Tqνl = 1. Define

pl := ((p1
l )

T, . . . , (pα
l )

T)T,

where pi
l is an ni-dimensional vector, pνl

l = pνl , pi
l = 0 if i ∈ Λ0 with i ̸= νl, and pi

l is solved by the

following equations if i ∈ Λc
0. It holds that

α∑
i=1

(pi
l)

TLih = 0T, 1 6 h 6 α. (2.1)

This is equivalent to ∑
i∈Λc

0

(pi
l)

TLih = −
∑
i∈Λ0

(pi
l)

TLih, 1 6 h 6 α.

Notice that the coefficient matrix

L̃ =


L11 · · · L1αc

0

...
. . .

...

Lαc
01

· · · Lαc
0α

c
0


of the above equations is a block lower triangular matrix whose diagonal elements are Lii for i ∈ Λc

0. It

then follows that

s(L̃) = max
i∈Λc

0

s(Lii) < 0,

and hence, (2.1) admits a unique solution. Moreover, pi
l is nonnegative for i ∈ Λc

0 since L̃ is cooperative.

Thus, pT
l L = 0T, ∀ 1 6 l 6 α0.
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In view of the above arguments, it easily follows that the algebraic multiplicity of the zero eigenvalue

of L is no less than α0. To obtain the converse statement, it suffices to prove the following two claims.

Claim 1. If Lq = 0 with q = ((q1)T, . . . , (qα)T)T, where ql is an nl-dimensional vector, then ql = 0

for l ∈ Λc
0 and Lllq

l = 0 for l ∈ Λ0.

Claim 2. If Lmq = 0 for some m > 1 with q = ((q1)T, . . . , (qα)T)T, where ql is an nl-dimensional

vector, then ql = 0 for l ∈ Λc
0 and Lllq

l = 0 for l ∈ Λ0.

Let us postpone the proof of these claims, and complete the proof in a few lines. By the irreducibility

of Lll, it then follows from Claim 1 that q is a linear combination of {ql}16l6α for any q with Lq = 0,

and hence, the geometric multiplicity of the zero eigenvalue of L is no more than α0. Similarly, it follows

from Claim 2 that the algebraic multiplicity of the zero eigenvalue of L is no more than α0. Thus, the

desired conclusion holds.

We now return to the proof of Claim 1, and first show that ql = 0 for all l ∈ Λc
0 by the induction

method. It is easy to see that L11q
1 = 0. Thus, s(L11) < 0 implies that q1 = 0. Assume that ql = 0 for

1 6 l 6 l0 with l0 ∈ Λc
0, and it suffices to prove ql0+1 = 0 if l0 + 1 ∈ Λc

0. In view of Lq = 0, we have

L(l0+1)(l0+1)q
l0+1 =

α∑
i=1

L(l0+1)iq
i = 0,

due to L(l0+1)i = 0 if i > l0 + 1, and qi = 0 if i < l0 + 1. Thus, ql = 0 for all l ∈ Λc
0. By (H1′), Lhl = 0

if h, l ∈ Λ0 with h ̸= l. It then follows that

Lllq
l =

α∑
i=1

Lliq
i = 0, l ∈ Λ0.

We next verify Claim 2. Since L is a block lower triangular matrix, diag(Lm
11, . . . , L

m
αα) is the block

diagonal of Lm. In view of Claim 1, we have ql = 0 for l ∈ Λc
0 and Lm

ll q
l = 0 for l ∈ Λ0. Thus, the

irreducibility of Lll implies that Lllq
l = 0.

In view of Lemma 2.2, we observe that α0 is not only the number of the elements in Λ0, but also the

algebraic multiplicity of the zero eigenvalue of L. In the rest of this paper, we use the same notations ν,

pl, ql, P and Q as in Lemma 2.2.

Lemma 2.3. Assume that (H1′) holds, Λc
0 = {1, . . . , αc

0} and Λ0 = {αc
0 + 1, . . . , α} whenever Λc

0 ̸= ∅.
Let M be a cooperative matrix such that

M =


M11 · · · M1α

...
. . .

...

Mα1 · · · Mαα

 ,

where Mhl is an nh × nl matrix for 1 6 h, l 6 α. Then the following statements are valid:

(i) PMQ is cooperative.

(ii) Let b be an α0-dimensional vector defined by b = (b1, . . . , bα0
)T with 1 6 bi 6 α0 and bi ̸= bj

for i ̸= j. Define a matrix M̃ := (m̃hl)α0×α0 by m̃hl = pT
bh
Mqbl . Then M̃ is similar to PMQ via a

permutation. If M̃ is reducible, then M̃ , by exchanging the order of the components of b, can be split into

M̃ =


M̃11 · · · M̃1ñ

...
. . .

...

M̃ñ1 · · · M̃ññ

 ,

where M̃ii is an αi × αi irreducible matrix for all 1 6 i 6 ñ with
∑ñ

i=1 αi = α0, and M̃ij = 0 for all

1 6 i < j 6 ñ.
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(iii) Let b = ((b1)T, . . . , (bñ)T)T = (b1, . . . , bα0)
T, where bi = (bi1, . . . , b

i
αi
)T. Then M̃ii is still an

αi × αi irreducible matrix for all 1 6 i 6 ñ with
∑ñ

i=1 αi = α0, and M̃ij = 0 for all 1 6 i < j 6 ñ by

exchanging the order of the components of bi such that bi1 < · · · < biαi
.

(iv) For any 1 6 i 6 ñ, let

ν̃ij :=

{
j, 1 6 j 6 αc

0,

αc
0 + bij−αc

0
, 1 + αc

0 6 j 6 αc
0 + αi,

if αc
0 > 0 and ν̃ij := bij−αc

0
, 1 6 j 6 αi, if α

c
0 = 0, and define

pl,i := ((p1
l,i)

T, . . . , (pαi

l,i)
T)T, ql,i := ((q1

l,i)
T, . . . , (qαi

l,i )
T)T,

Li := (Li
hl)(αc

0+αi)×(αc
0+αi), M i := (M i

hl)(αc
0+αi)×(αc

0+αi)

and M̃ i := (m̃i
hl)αi×αi by

pj
l,i = p

ν̃i
j

bil
, qj

l,i = q
ν̃i
j

bil
, 1 6 j 6 αc

0 + αi, 1 6 l 6 αi,

Li
hl = Lν̃i

hν̃
i
l
, M i

hl = Mν̃i
hν̃

i
l
, 1 6 h, l 6 αc

0 + αi

and

m̃i
hl = pT

h,iM
iql,i, 1 6 h, l 6 αi.

Then for any 1 6 i 6 ñ, we have M̃ii = M̃ i, and for any 1 6 l 6 αi,

pT
l,iql,i = 1, pT

l,iqh,i = 0, h ̸= l, Liql,i = 0 and pT
l,iL

i = 0T.

Proof. We only consider the case αc
0 > 0, since the case αc

0 = 0 can be addressed in a similar way.

(i) For any 1 6 l 6 α0, q
νl

l ̸= 0 and qj
l = 0, j ̸= νl, and pνl

l ̸= 0 and pj
l = 0, j ̸= νl with j > αc

0. An

easy computation yields that

pT
hMql =

αc
0∑

j=1

(pj
h)

TMjνl
qνl

l + (pνh

h )TMνhνl
qνl

l , 1 6 h, l 6 α0. (2.2)

Since Mjνl
is nonnegative for all 1 6 j 6 αc

0 and Mνhνl
is nonnegative for h ̸= l, it follows that PMQ is

cooperative.

Note that exchanging the order of the components of b is equivalent to exchanging the row and column

simultaneously. Thus, the statements (ii) and (iii) follow from [4, Subsection 2.3].

(iv) It is easy to see that ν̃i1 < · · · < ν̃iαi+αc
0
and ν̃il+αc

0
= bil + αc

0 = νbil , ∀ 1 < l < αi. Thus, for any

1 6 i 6 ñ and 1 6 l 6 αi,

qνl

l,i = q
αc

0+l
l,i = q

ν̃i
αc
0+l

bil
= q

ν
bi
l

bil
̸= 0, qj

l,i = q
ν̃i
j

bil
= 0, ∀ j ̸= νl,

pνl

l,i = p
αc

0+l
l,i = p

ν̃i
αc
0+l

bil
= p

ν
bi
l

bil
̸= 0, pj

l,i = p
ν̃i
j

bil
= 0, ∀ j ̸= νl with j > αc

0,

M i
jνl

= M i
j(l+αc

0)
= Mν̃i

j ν̃
i
l+αc

0

= Mjν̃i
l+αc

0

= Mjν
bi
l

, ∀ 1 6 j 6 αc
0

and

M i
νhνl

= M i
(h+αc

0)(l+αc
0)

= Mν̃i
h+αc

0
ν̃i
l+αc

0

= Mν
bi
h
ν
bi
l

, ∀ 1 6 h 6 αi.

It then follows that for any 1 6 i 6 ñ and 1 6 l, h 6 αi,

m̃i
hl = pT

h,iM
iql,i =

αc
0∑

j=1

(pj
h,i)

TM i
jνl

qνl

l,i + (pνh

h,i)
TM i

νhνl
qνl

l,i

=

αc
0∑

j=1

(pj
bih
)TMjν

bi
l

q
ν
bi
l

bil
+ (p

ν
bi
h

bih
)TMν

bi
h
ν
bi
l

q
ν
bi
l

bil
.
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We also have

m̃hl = pT
bh
Mqbl =

αc
0∑

j=1

(pj
bh
)TMjνbl

q
νbl

bl
+ (p

νbh

bh
)TMνbh

νbl
q
νbl

bl
, 1 6 h, l 6 α0.

Since bih = bh if i = 1 and bih = bh+
∑i−1

j=1 αj
if i > 2, we obtain that m̃i

hl = m̃hl for all 1 6 h, l 6 αi if i = 1

and m̃i
hl = m̃(h+

∑i−1
j=1 αj)(l+

∑i−1
j=1 αj)

for all 1 6 h, l 6 αi if i > 2. This yields that M̃ i = M̃ii, ∀ 1 6 i 6 ñ.

Similarly, we can show that

pT
l,iql,i = 1, pT

l,iqh,i = 0, h ̸= l, Liql,i = 0 and pT
l,iL

i = 0T

hold for any 1 6 i 6 ñ and 1 6 l 6 αi.

Note that we define M i by choosing all the indexes {ν̃ij : 1 6 j 6 αc
0 + αi} from M , and define Li,

pl,i and ql,i by using the same indexes of L, pl and ql, respectively. Thus, the analysis of a reducible

matrix M̃ can be transferred into that of its irreducible block.

Lemma 2.4. Assume that (H1′) holds. Let P̂ = (p̂lj)α0×n and Q̂ = (q̂ih)n×α0 be two nonnegative

matrices such that P̂L = 0, LQ̂ = 0 and P̂ Q̂ = I, where I is an α0 × α0 identity matrix. If M is an

n× n matrix, then PMQ is similar to P̂MQ̂.

Proof. For any 1 6 l 6 α0, let p̂l := (P̂l1, . . . , P̂ln)
T. It is easy to see that p̂T

l is a left eigenvector

of L corresponding to the zero eigenvalue. Since PQ = I and P̂ Q̂ = I, the matrices P , Q, P̂ and Q̂

share the same rank α0. This implies that {pT
i : 1 6 i 6 α0} and {p̂T

i : 1 6 i 6 α0} are two bases of

the left eigenspace of L corresponding to the zero eigenvalue due to Lemma 2.2. Thus, there exists an

α0 × α0 invertible matrix A such that AP = P̂ . Similarly, there exists an α0 × α0 invertible matrix B

such that QB = Q̂. It then follows that AB = APQB = P̂ Q̂ = I, and hence, A = B−1. Therefore,

P̂MQ̂ = APMQA−1.

In order to study the continuity of the basic reproduction ratio with respect to parameters, we next

generalize the results in [38, Theorems 2.1 and 2.2]. Let (Θ, ρΘ) be a metric space with the metric ρΘ
and let H(µ, θ) be a mapping from R+ × Θ → R. Assume that for any θ ∈ Θ, one of the following two

properties holds:

(P1) There exists a unique µ(θ) > 0 such that H(µ(θ), θ) = 0, H(µ, θ) < 0 for all µ > µ(θ) and

H(µ, θ) > 0 for all µ < µ(θ).

(P2) H(µ, θ) < 0 for all µ > 0.

For convenience, we define µ(θ) = 0 in the case (P2). Then we have the following observation.

Lemma 2.5. Assume that for any θ ∈ Θ, either (P1) or (P2) holds. Let θ0 ∈ Θ be given. If H(µ, θ)

converges to H(µ, θ0) as θ → θ0 for any µ > 0, then limθ→θ0 µ(θ) = µ(θ0).

Proof. We proceed according to two cases:

Case 1. (P1) holds for θ0. For any ϵ ∈ (0, µ(θ0)), it follows from (P1) that

H(µ(θ0)− ϵ, θ0) > 0 and H(µ(θ0) + ϵ, θ0) < 0.

Thus, there exists δ > 0 such that if ρΘ(θ, θ0) < δ, then

H(µ(θ0)− ϵ, θ) > 0 and H(µ(θ0) + ϵ, θ) < 0.

Assumption (P1) implies that

µ(θ0)− ϵ < µ(θ) < µ(θ0) + ϵ

provided that ρΘ(θ, θ0) < δ, i.e., limθ→θ0 µ(θ) = µ(θ0).

Case 2. (P2) holds for θ0. It suffices to show that limθ→θ0 µ(θ) = 0 = µ(θ0). For any given ϵ > 0, the

assumption (P2) implies that H(ϵ, θ0) < 0. Then there exists δ > 0 such that H(ϵ, θ) < 0 if ρΘ(θ, θ0) < δ.

In view of (P1) or (P2), we conclude that 0 6 µ(θ) < ϵ provided that ρΘ(θ, θ0) < δ.
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3 The principal eigenvalue

In this section, we investigate the asymptotic behavior of the principal eigenvalue for periodic cooperative

patch models with large dispersal rates. We first recall some properties of time-periodic evolution families.

Definition 3.1. A family of bounded linear operators Υ (t, s), t, s ∈ R with t > s on a Banach space E

is called a T -periodic evolution family provided that

Υ (s, s) = I, Υ (t, r)Υ (r, s) = Υ (t, s), Υ (t+ T, s+ T ) = Υ (t, s)

for all t, s, r ∈ R with t > r > s, and for each e ∈ E, Υ (t, s)e is a continuous function of (t, s) with t > s.

The exponential growth bound of the evolution family {Υ (t, s) : t > s} is defined as

ω(Υ ) = inf{ω̃ ∈ R : ∃M > 1, ∀ t, s ∈ R, t > s : ∥Υ (t, s)∥E 6 Meω̃(t−s)}.

Lemma 3.2 (See [31, Proposition A.2]). Let {Υ (t, s) : t > s} be a T -periodic evolution family on a

Banach space E. Then

ω(Υ ) =
ln r(Υ (T, 0))

T
=

ln r(Υ (T + τ, τ))

T
, ∀ τ ∈ [0, T ].

Let M(t) = (mij(t))n×n be a continuous n× n matrix-valued function of t ∈ R such that

(H4) M(t) = M(t+ T ) and M(t) is cooperative for all t ∈ R.
Motivated by population models in a patchy environment, we consider the following periodic ODE

system:
dv

dt
= dLv +M(t)v (3.1)

and the associated eigenvalue problem

du

dt
= dLu+M(t)u− λu. (3.2)

Definition 3.3. λ∗ is called the principal eigenvalue of (3.2) if it is a real eigenvalue with a nonnegative

eigenfunction and the real parts of all the other eigenvalues are not greater than λ∗.

For any d > 0, according to [20, Subsection 7.3] or [25, Chapter 5], the system (3.1) admits a unique

evolution family {Od(t, s) : t > s} on Rn with Od(t, s)ϕ = u(t, s;ϕ), ∀ t > s and ϕ ∈ Rn, where u(t, s;ϕ)

is the unique solution at time t of (3.1) with initial data ϕ at time s. In view of [20, Theorem 7.17] and

Lemma 3.2, we have the following result (see also [22, Theorem 2.7]).

Theorem 3.4. Assume that (H1) and (H4) hold. Then the eigenvalue problem (3.2) admits the prin-

cipal eigenvalue λ∗
d = ω(Od) =

ln r(Od(T,0))
T for all d > 0.

The subsequent result is a consequence of the standard comparison arguments.

Lemma 3.5. Assume that (H4) holds. Let M̂(t) = (m̂ij(t))n×n be a continuous n × n matrix-valued

function of t ∈ R with M̂(t) = M̂(t+ T ) such that M̂(t) is cooperative for all t ∈ R. Let λ∗
M and λ∗

M̂
be

the principal eigenvalues of du
dt = M(t)u − λu and du

dt = M̂(t)u − λu, respectively. If mij(t) > m̂ij(t),

∀ 1 6 i, j 6 n and t ∈ R, then λ∗
M > λ∗

M̂
. Furthermore, if M(t) can be split into

M(t) =

(
M11(t) M12(t)

M21(t) M22(t)

)
,

then λ∗
M > λ∗

M11
, where λ∗

M11
is the principal eigenvalue of du

dt = M11(t)u− λu.

From now on, we let λ∗
d be the principal eigenvalue of (3.2) and ud = (ud,1, . . . , ud,n)

T be a non-

negative eigenvector corresponding to λ∗
d for any given d > 0. For convenience, we normalize ud by

max16i6n maxt∈R ud,i(t) = 1.

Lemma 3.6. Assume that (H1) and (H4) hold. Then there exists a real number C > 0 independent of

d such that |λ∗
d| 6 C.
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Proof. Let M := max16i,j6n{maxt∈R mij(t)} and M := min16i,j6n{mint∈R mij(t)}, and define two

n×n matrices M1 := (m1
ij)n×n with m1

ij = M and M2 := diag(M, . . . ,M). Let λ and λ be the principal

eigenvalues of dL +M1 and dL +M2, respectively. We use e = (1, . . . , 1)T to define an n-dimensional

vector. By the Perron-Frobenius theorem (see, e.g., [29, Theorem 4.3.1]), it then follows from eT(dL+M1)

= nMeT and eT(dL + M2) = MeT that λ = nM and λ = M . In view of Lemma 3.5, we have

λ 6 λ 6 λ.

For any d > 0, we define

ũl
d(t) := pT

l ud(t), ∀ 1 6 l 6 α0, ũd(t) :=

α0∑
l=1

ũl
d(t)ql and ûd(t) := ud(t)− ũd(t).

Lemma 3.7. Assume that (H1) and (H4) hold. Then supt∈R ∥ûd(t)∥Rn → 0 as d → +∞.

Proof. Our arguments are motivated by [15–18,38]. Define

X1 := Span{ql}16l6α0 and X2 := {q ∈ Rn : pT
l q = 0, 1 6 l 6 α0}.

It then follows that

Rn = X1 ⊕X2.

Let Sd(t) be the semigroup generated by dL, i.e., Sd(t) = edLt. It is easy to see that Sd(t)X1 ⊆ X1 and

Sd(t)X2 ⊆ X2. According to [8, Theorem 7.3], we then have

∥Sd(t)ϕ∥Rn 6 C1e
−γ0dt∥ϕ∥Rn , ∀ϕ ∈ X2

for some γ0 > 0 and C1 > 0 independent of t and d. We multiply (3.2) from left by pT
l to obtain

d

dt
ũl
d = pT

l M(t)ud − λ∗
dũ

l
d, ∀ 1 6 l 6 α0,

and then multiply the above equation by ql to obtain

d

dt
(ũl

dql) = [pT
l M(t)ud]ql − λ∗

dũ
l
dql, ∀ 1 6 l 6 α0.

Adding them together yields

d

dt
ũd =

α0∑
l=1

[pT
l M(t)ud]ql − λ∗

dũd. (3.3)

Subtracting (3.3) from (3.2), we have

d

dt
ûd = dLûd +M(t)ud −

α0∑
l=1

[pT
l M(t)ud]ql − λ∗

dûd.

Clearly, for any 1 6 l 6 α0,

pT
l Lûd = 0, pT

l ûd = pT
l (ud − ũd) = ũl

d − ũl
d(p

T
l ql) = 0

and

pT
l

(
M(t)ud −

α0∑
l=1

[pT
l M(t)ud]ql

)
= pT

l M(t)ud − pT
l M(t)ud(p

T
l ql) = 0,

i.e., Lûd ∈ X2, ûd ∈ X2 and M(t)ud −
∑α0

l=1(p
T
l M(t)ud)ql ∈ X2. By Lemma 3.6, there exists a C2 > 0

independent of d and t such that∥∥∥∥M(t)ud −
α0∑
l=1

[pT
l M(t)ud]ql

∥∥∥∥
Rn

6 C2 and |λ∗
d| 6 C2.
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In view of the constant-variation formula, we obtain

ûd(t) = Sd(t)ûd(0) +

∫ t

0

Sd(t− s)

{
M(s)ud(s)−

α0∑
l=1

[pT
l M(s)ud(s)]ql − λ∗

dûd(s)

}
ds

for all t > 0. An easy computation gives rise to

∥ûd(t)∥Rn 6 C1e
−γ0dt∥ûd(0)∥Rn + C2

∫ t

0

e−γ0d(t−s)ds+ C2

∫ t

0

e−γ0d(t−s)∥ûd(s)∥Rnds.

Choose γ1 ∈ (0, γ0), and define ζd(t) := eγ1dt∥ûd(t)∥Rn , ζd(t) := sup{ζd(s) : 0 6 s 6 t} and

C3 :=

∫ ∞

0

e−s[1−γ1(γ0)
−1]ds.

It then follows that

ζd(t) 6 C1e
−(γ0−γ1)dtζd(0) + C2C3(γ0d)

−1eγ1dt + C2C3(γ0d)
−1ζd(t), t > 0,

and hence,

ζd(t) 6 C1e
−(γ0−γ1)dtζd(0) + C2C3(γ0d)

−1eγ1dt + C2C3(γ0d)
−1ζd(t), t > 0.

For any d > 0, let ξ(d) := C2C3(γ0d)
−1. Notice that ξ(d) → 0 as d → +∞. From now on, we assume

that d is large enough such that ξ(d) < 1
2 , which implies that (1− ξ(d))−1 6 2. This leads to

ζd(t) 6 (1− ξ(d))−1[C1e
−(γ0−γ1)dtζd(0) + C2C3(γ0d)

−1eγ1dt]

6 2[C1e
−(γ0−γ1)dtζd(0) + C2C3(γ0d)

−1eγ1dt],

and hence,

∥ûd(t)∥Rn 6 e−γ1dtζd(t) 6 2[C1e
−(γ0−γ1)dtζd(0)e

−γ1dt + C2C3(γ0d)
−1].

Letting t → +∞, we obtain

lim sup
t→+∞

∥ûd(t)∥Rn 6 2C2C3(γ0d)
−1.

Since û(t) is periodic in t ∈ R, it follows that

∥ûd(t)∥Rn 6 2C2C3(γ0d)
−1.

This yields the desired conclusion.

Define M̃(t) = (m̃hl(t))α0×α0 by m̃hl(t) = pT
hM(t)ql, i.e., M̃(t) = PM(t)Q. Let {Õ(t, s) : t > s} be

the evolution family on Rα0 of
dv

dt
= M̃(t)v,

and let λ̃∗ be the principal eigenvalue of

du

dt
= M̃(t)u− λu.

It is easy to see that ω(Õ) = λ̃∗ due to Theorem 3.4. The following result indicates that λ̃∗ is independent

of the choice of P and Q.

Lemma 3.8. Assume that (H1′) holds. Let P̂ = (p̂lj)α0×n and Q̂ = (q̂ih)n×α0 be two nonnegative

matrices such that P̂L = 0, LQ̂ = 0 and P̂ Q̂ = I, where I is an α0 × α0 identity matrix. Let M̂(t) :=

P̂M(t)Q̂ and {Ô(t, s) : t > s} be the evolution family on Rα0 of dv
dt = M̂(t)v. Then Ô(T, 0) is similar to

Õ(T, 0). Moreover, ω(Ô) = ω(Õ).
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Proof. According to Lemma 2.4, there exists an α0 × α0 invertible matrix A such that AP = P̂ and

QA−1 = Q̂. By a change of variables w = A−1v, we then transfer dv
dt = M̂(t)v into dw

dt = M̃(t)w. Thus,

we have Ô(T, 0) = A[Õ(T, 0)]A−1.

Lemma 3.9. Assume that (H1) and (H4) hold. If Õ(T, 0) is irreducible, then limd→+∞ λ∗
d = λ̃∗.

Proof. For any 1 6 h 6 α0, we multiply (3.2) from left by pT
h to obtain

d

dt
ũh
d = pT

hM(t)ud − λ∗
dũ

h
d . (3.4)

Then there exists C1 > 0 such that ∣∣∣∣ ddt ũh
d

∣∣∣∣ 6 C1, ∀ 1 6 h 6 α0.

By the Arzelà-Ascoli theorem (see, e.g., [28, Theorem I.28]), it follows that there exists a sequence

dm → +∞ such that λdm → λ∞ and |ũh
dm

(t)− ũh
∞(t)| → 0 uniformly for t ∈ R, 1 6 h 6 α0, as m → +∞,

for some λ∞ and ũh
∞ ∈ C(R,R+) with ũh

∞(t + T ) = ũh
∞(t), ∀ t ∈ R, 1 6 h 6 α0. We integrate (3.4)

from 0 to t to obtain

ũh
d(t)− ũh

d(0) =

∫ t

0

[pT
hM(s)ũd(s) + pT

hM(s)ûd(s)− λ∗
dũ

h
d(s)]ds.

By Lemma 3.7, letting dm → +∞, for any 1 6 h 6 α0, we have

ũh
∞(t)− ũh

∞(0) =

∫ t

0

[
pT
hM(s)

( α0∑
l=1

ũl
∞(s)ql

)
− λ∞ũh

∞(s)

]
ds,

and hence,

d

dt
ũh
∞(t) =

α0∑
l=1

[pT
hM(t)ql]ũ

l
∞(t)− λ∞ũh

∞(t).

Letting ϕ = (ũ1
∞(0), . . . , ũα0

∞ (0))T, we see that

ϕ = e−λ∞T Õ(T, 0)ϕ.

With the irreducibility of Õ(T, 0), the Perron-Frobenius theorem (see, e.g., [29, Theorem 4.3.1]) then

leads to λ∞ = λ̃∗.

To remove the irreducibility condition on Õ(T, 0) in Lemma 3.9, we prove the same conclusion as in

Lemma 3.6 under weaker conditions.

Lemma 3.10. Assume that (H1′) and (H4) hold. Then there exists some C > 0 such that |λ∗
d| 6 C.

Proof. We proceed according to two cases:

Case 1. Λc
0 = ∅. The proof is motivated by the arguments for Lemma 3.6. Define

M := max
16i,j6n

{
max
t∈R

mij(t)
}

and M := min
16i,j6n

{
min
t∈R

mij(t)
}
.

For any 1 6 i 6 α0, choose pi ≫ 0 such that (pi)TLii = 0T. Let

p = ((p1)T, . . . , (pα0)T)T = (p1, . . . , pn)
T.

Thus, pTL = 0T. Without loss of generality, we assume that min16j6n pj = 1. Define two n×n matrices

M1 := (m1
ij)n×n with m1

ij = Mpj , ∀ 1 6 i, j 6 n and M2 := diag(M, . . . ,M). Let λ and λ be the

principal eigenvalues of dL+M1 and dL+M2, respectively. In view of pT(dL+M1) = (
∑n

j=1 pj)MpT

and pT(dL + M2) = MpT, the Perron-Frobenius theorem (see, e.g., [29, Theorem 4.3.1]) implies that

λ = (
∑n

j=1 pj)M and λ = M . By Lemma 3.5, it easily follows that λ 6 λ 6 λ.
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Case 2. Λc
0 ̸= ∅. Without loss of generality, in view of (H1′), we assume that Λc

0 = {1, . . . , αc
0} and

Λ0 = {αc
0 + 1, . . . , α}, and still write νl := αc

0 + l (1 6 l 6 α0), as in Lemma 2.2. Let us first prove

that λ∗
d has a lower bound independent of d. We split the matrix-valued function M(t) into a block form

as follows:

M(t) =


M11(t) · · · M1α(t)

...
. . .

...

Mα1(t) · · · Mαα(t)

 ,

where Mhl is an nh × nl matrix for 1 6 h, l 6 α. Define a matrix L̂ = diag(Lν1ν1 , . . . , Lαα) and a

matrix-valued function M̂(t) by

M̂(t) =


Mν1ν1(t) · · · Mν1α(t)

...
. . .

...

Mαν1(t) · · · Mαα(t)

 .

Let λ̂∗
d be the principal eigenvalue of

du

dt
= dL̂u+ M̂(t)u− λu.

Since s(Lll) = 0 for all ν1 6 l 6 α, and M̂(t) is cooperative for any t ∈ R, it then follows from Lemma 3.5

that λ̂∗
d 6 λ∗

d. By the proof of Case 1, λ̂∗
d has a lower bound independent of d, so does λ∗

d.

We next show that λ∗
d has an upper bound independent of d. Define a matrix L by

L =


L11 · · · L1α

...
. . .

...

Lα1 · · · Lαα

 ,

where Lhl = Lhl for 1 6 h 6 αc
0, 1 6 l 6 α and ν1 6 h, l 6 α, and Lhl = Lhl + enh

eTnl
for ν1 6 h 6 α,

1 6 l 6 αc
0. Here enh

= (1, . . . , 1)T is an nh-dimensional vector. For any 1 6 l 6 α0, choose pνl ≫ 0

such that (pνl)TLνlνl
= 0T. Since all the elements of Lhl are positive for ν1 6 h 6 α, 1 6 l 6 αc

0

and Lll is irreducible for 1 6 l 6 αc
0, by the arguments similar to those for (2.1), there exist pi ≫ 0

(1 6 i 6 αc
0) such that

∑α
i=1(p

i)TLih = 0T (1 6 h 6 αc
0). Define p := ((p1)T, . . . , (pα)T)T, where pi

is an ni-dimensional vector. By repeating the arguments for the upper bound in Case 1, we obtain the

desired conclusion.

Remark 3.11. Assume that (H1′) and (H4) hold. If Õ(T, 0) is irreducible, then limd→+∞ λ∗
d = λ̃∗.

The following result provides a powerful tool to analyze the matrix Õ(T, 0) in the case where it is

reducible.

Lemma 3.12. For any α0-dimensional vector b = (b1, . . . , bα0)
T with 1 6 bi 6 α0 and bi ̸= bj for

i ̸= j, define M̂(t) = (m̂hl(t))α0×α0 by m̂hl(t) = pT
bh
M(t)qbl . Let {Ô(t, s) : t > s} be the evolution family

of dv
dt = M̂(t)v on Rα0 . Then the matrix Õ(T, 0) is similar to the matrix Ô(T, 0). If, in addition, Õ(T, 0)

is reducible, then Ô(T, 0) is a block lower triangular matrix after a suitable b is chosen.

The following two results are straightforward consequences of [38, Lemmas 3.5 and 3.7].

Lemma 3.13. Write A := Õ(T, 0) = (aij)α0×α0 and let

A =


A11 · · · A1ñ

...
. . .

...

Añ1 · · · Aññ

 and M̃(t) =


M̃11(t) · · · M̃1ñ(t)

...
. . .

...

M̃ñ1(t) · · · M̃ññ(t)

 ,
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where Aii is an αi × αi matrix with
∑ñ

i=1 αi = α0, and M̃ii(t) is an αi × αi matrix-valued function of

t ∈ R. If Aij are zero matrices for all 1 6 i < j 6 ñ, then so are M̃ij(t) for any t ∈ R. Moreover, let λ̃∗
i

be the principal eigenvalue of du
dt = M̃ii(t)u− λu, t > 0, then λ̃∗

i = ln r(Aii)
T and λ̃∗ = max16i6ñ λ̃

∗
i .

Lemma 3.14. Let g be a continuous function on (a, b) and write g+ = lim supx→b g(x) and g− =

lim infx→b g(x). Then for any c ∈ [g−, g+], there exists a sequence xk → b as k → ∞ with xk ∈ (a, b)

such that limk→∞ g(xk) = c.

Now we are in a position to prove the main result of this section.

Theorem 3.15. Assume that (H1) and (H4) hold. Then the following statements are valid:

(i) limd→0+ λ∗
d = λ∗

0 and limd→d̂ λ
∗
d = λ∗

d̂
for any d̂ > 0.

(ii) limd→+∞ λ∗
d = λ̃∗.

Proof. (i) We only prove that limd→0+ λ∗
d = λ∗

0, since limd→d̂ λ
∗
d = λ∗

d̂
can be derived for any d̂ > 0

in a similar way. Since the solutions of (3.1) depend continuously upon parameters (see, e.g., [14,

Subsection I.3]), it follows that Od(T, 0) converges to O0(T, 0) in the matrix norm as d → 0+. For the

definition of the matrix norm, we refer to [30, Subsection II.2]. Therefore, the desired statement (i)

follows from the perturbation theory of matrices (see, e.g., [19, 30]).

(ii) Our proof is motivated by the arguments for [38, Theorem 3.3]. Since the conclusion has been

proved in the case where Õ(T, 0) is irreducible in Lemma 3.9, we only need to consider the case where

Õ(T, 0) is reducible. We proceed in three steps.

Step 1. λ∞ := limd→+∞ λ∗
d exists. According to Lemma 3.6, both λ+ := lim supd→+∞ λ∗

d and

λ− := lim infd→+∞ λ∗
d exist, and C1 6 λ−, λ+ 6 C2 for some C1 and C2. It suffices to prove that

λ− = λ+. Suppose that λ− < λ+ for any λ̂ ∈ [λ−, λ+]. By repeating the arguments in the proof of

Lemma 3.9, there exists a positive vector ϕ such that

ϕ = e−λ̂T Õ(T, 0)ϕ.

This implies that eλ̂T is an eigenvalue of Õ(T, 0) for any λ̂ ∈ [λ−, λ+], which is impossible.

Step 2. λ∞ 6 λ̃∗. For any given ϵ > 0, let M ϵ = (mϵ
ij)n×n and M̃ ϵ = (m̃ϵ

hl)α0×α0 be two continuous

matrix-valued functions of t ∈ R with mϵ
ij(t) = mij(t) + ϵ, ∀ t ∈ R and m̃ϵ

hl(t) = pT
hM

ϵ(t)ql, ∀ t ∈ R.
Let λ̃∗(ϵ) be the principal eigenvalue of the eigenvalue problem

du

dt
= M̃ ϵ(t)u− λu, t > 0.

Let λ∗
d(ϵ) be the principal eigenvalue of the eigenvalue problem (3.2) with M replaced by M ϵ. Clearly,

λ∗
d(ϵ) > λ∗

d for all ϵ > 0 due to Lemma 3.5. It then follows that

λ̃∗(ϵ) = lim
d→+∞

λ∗
d(ϵ) > lim

d→+∞
λ∗
d = λ∞, ∀ ϵ > 0.

Since λ̃∗(ϵ) → λ̃∗ as ϵ → 0+, we conclude that λ∞ 6 limϵ→0+ λ̃∗(ϵ) = λ̃∗.

Step 3. λ∞ > λ̃∗. We only consider the case αc
0 > 0, since the case αc

0 = 0 can be addressed in a similar

way. Without loss of generality, by Lemma 2.2, we assume that Λc
0 = {1, . . . , αc

0} and Λ0 = {αc
0+1, . . . , α}.

Based on Lemma 3.12, we can redefine M̃(t) = (m̃hl(t))α0×α0 by m̃hl(t) = pT
bh
M(t)qbl for a specified

α0-dimensional vector b such that

(1) b = (b1, . . . , bα0)
T with 1 6 bi 6 α0 and bi ̸= bj for i ̸= j;

(2) the matrix A := Õ(T, 0) can be split into

A =


A11 · · · A1ñ

...
. . .

...

Añ1 · · · Aññ

 ,

where Aij is an αi × αj matrix with
∑ñ

i=1 αi = α0, Aij = 0 for all 1 6 i < j 6 ñ and Aii is irreducible

for all 1 6 i 6 ñ;
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(3) b = ((b1)T, . . . , (bñ)T)T, where bi = (bi1, . . . , b
i
αi
)T with bi1 < · · · < biαi

for all 1 6 i 6 ñ.

Here (3) is achievable because both (1) and (2) are still valid by exchanging the components of bi due to

Lemma 2.3. By Lemma 3.13, M̃(t) can be split into

M̃(t) =


M̃11(t) · · · M̃1ñ(t)

...
. . .

...

M̃ñ1(t) · · · M̃ññ(t)

 ,

where M̃ij is an αi × αj matrix-valued function with M̃ij(t) = 0 for all 1 6 i < j 6 ñ. Let λ̃∗
i be the

principal eigenvalue of the eigenvalue problem

du

dt
= M̃ii(t)u− λu, t > 0.

Thus, Lemma 3.13 yields λ̃∗
i = ln r(Aii)

T and λ̃∗ = max16i6ñ λ̃
∗
i . For any 1 6 i 6 ñ and t ∈ R, define

Li, M i(t) and M̃ i(t) as Li, M i and M̃ i in Lemma 2.3. For any 1 6 i 6 ñ and 1 6 l 6 αi, choose pl,i

and ql,i in the same way as in Lemma 2.3. It then follows from Lemma 2.3 that for any 1 6 i 6 ñ,

M̃ii(t) = M̃ i(t), ∀ t ∈ R, and for any 1 6 l 6 αi,

pT
l,iql,i = 1, pT

l,iqh,i = 0, h ̸= l, Liql,i = 0 and pT
l,iL

i = 0T.

Let λ∗
d,i be the principal eigenvalue of

du

dt
= dLiu+M i(t)u− λu. (3.5)

Since Aii is irreducible and (H1′) holds for Li, we conclude that λ∗
d,i → λ̃∗

i as d → +∞ due to Lemma 3.9

and Remark 3.11. It then follows from Lemma 3.5 that λ∗
d,i 6 λ∗

d. Notice that

λ̃∗
i = lim

d→+∞
λ∗
d,i 6 lim

d→+∞
λ∗
d = λ∞, 1 6 i 6 ñ.

Thus, Lemma 3.13 implies that λ̃∗ = max16i6ñ λ̃
∗
i 6 λ∞.

Remark 3.16. Assume that (H1′) and (H4) hold. Then limd→0+ λ∗
d = λ∗

0, limd→d̂ λ
∗
d = λ∗

d̂
for any

d̂ > 0, and limd→+∞ λ∗
d = λ̃∗.

4 The basic reproduction ratio

In this section, we study the continuity of the basic reproduction ratio with respect to parameters and

investigate its asymptotic behavior as the dispersal rates go to infinity for a periodic patch model.

In order to discuss the continuity of the basic reproduction ratio with respect to parameters, we

introduce a metric space (X , ρX ) with the metric ρX . For any given χ ∈ X , let Fχ(t) = (fij,χ(t))n×n and

Vχ(t) = (vij,χ(t))n×n be two continuous n× n matrix-valued functions of t ∈ R such that

(H2′) Fχ(t + T ) = Fχ(t), Vχ(t + T ) = Vχ(t), Fχ(t) is nonnegative, and −Vχ(t) is cooperative for all

χ ∈ X and t ∈ R.
Let F̃χ(t) = (f̃hl,χ(t))α0×α0 = PFχ(t)Q and Ṽχ(t) = (ṽhl,χ(t))α0×α0 = PVχ(t)Q for all t ∈ R. For

any d > 0, let {Φd,χ(t, s) : t > s} be the evolution family on Rn of ∂v
∂t = dLv − Vχ(t)v, t > s. We use

{Φ̃χ(t, s) : t > s} to define the evolution family on Rα0 of ∂v
∂t = −Ṽχ(t)v, t > s. We further assume that

(H3′) ω(Φd,χ) < 0 for all d > 0 and ω(Φ̃χ) < 0.

It is easy to see that (H2′) and (H3′) are generalizations of (H2) and (H3), respectively. For any µ > 0

and d > 0, let {Uµ
d,χ(t, s) : t > s} be the evolution family on Rn of

∂v

∂t
= dLv − Vχ(t)v +

1

µ
Fχ(t)v, t > s, (4.1)
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and let {Ũµ
χ(t, s) : t > s} be the evolution family on Rα0 of

∂v

∂t
= −Ṽχ(t)v +

1

µ
F̃χ(t)v, t > s. (4.2)

Define

X := {u ∈ C(R,Rn) : u(t) = u(t+ T ), t ∈ R},

X̃ := {u ∈ C(R,Rα0) : u(t) = u(t+ T ), t ∈ R},
X+ := {u ∈ C(R,Rn

+) : u(t) = u(t+ T ), t ∈ R}

and

X̃+ := {u ∈ C(R,Rα0
+ ) : u(t) = u(t+ T ), t ∈ R}

with the maximum norm ∥u∥X = max16i6n max06t6T |ui(t)| for u = (u1, u2, . . . , un)
T and ∥u∥X̃ =

max16i6α0 max06t6T |ui(t)| for u = (u1, u2, . . . , uα0)
T. Then (X,X+) and (X̃, X̃+) are two ordered Ba-

nach spaces.

For any d > 0, we define a bounded linear positive operator Qd,χ : X → X by

[Qd,χu](t) :=

∫ +∞

0

Φd,χ(t, t− s)Fχ(t− s)u(t− s)ds, t ∈ R, u ∈ X

and R0(d, χ) := r(Qd,χ). Define Q̃χ : X̃ → X̃ by

[Q̃χu](t) :=

∫ +∞

0

Φ̃χ(t, t− s)F̃χ(t− s)u(t− s)ds, t ∈ R, u ∈ X̃

and R̃0(χ) := r(Q̃χ). The subsequent result is a straightforward consequence of [34, Theorems 2.1

and 2.2].

Lemma 4.1. Assume that (H1), (H2′) and (H3′) hold. Then the following statements are valid for

any µ > 0 and χ ∈ X :

(i) For any d > 0, R0(d, χ)− µ has the same sign as ω(Uµ
d,χ).

(ii) R̃0(χ)− µ has the same sign as ω(Ũµ
χ).

Now we are ready to prove the main result of this section.

Theorem 4.2. Assume that (H1), (H2′) and (H3′) hold, and there exists χ0 ∈ X such that Vχ and Fχ

converge to Vχ0 and Fχ0 in the matrix norm as χ → χ0, respectively. Then the following statements are

valid:

(i) limd→0+,χ→χ0
R0(d, χ) = R0(0, χ0) and limd→d̂,χ→χ0

R0(d, χ) = R0(d̂, χ0) for any d̂ > 0.

(ii) limd→+∞,χ→χ0 R0(d, χ) = R̃0(χ0).

Proof. (i) Without loss of generality, we only prove

lim
d→0+,χ→χ0

R0(d, χ) = R0(0, χ0).

In this case, we choose Θ = R+ ×X and θ0 := (0, χ0) ∈ Θ. Define

H(µ, θ) := ω(Uµ
d,χ), ∀µ ∈ R+, θ := (d, χ) ∈ Θ.

According to Lemma 4.1, for any d > 0 and χ ∈ X , H(R0(d, χ), (d, χ)) = 0, H(µ, (d, χ)) < 0 for all

µ > R0(d, χ) and H(µ, (d, χ)) > 0 for all µ < R0(d, χ). By Lemma 2.5, it suffices to show that for any

µ > 0,

lim
d→0+,χ→χ0

ω(Uµ
d,χ) = ω(Uµ

0,χ0
),

which can be derived by the arguments similar to those for [38, Theorem 4.1] and Theorem 3.15.
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(ii) Now we choose Θ = (Int(R+)×X )∪{θ0}, where θ0 := (0, χ0). Let κ = 1
d and θ := (κ, χ) ∈ Θ with

d > 0. Define

H(µ, θ) := ω(Uµ
d,χ), ∀µ ∈ R+, θ := (κ, χ) ∈ Θ \ {θ0}

and H(µ, θ0) = ω(Ũµ
χ), ∀µ ∈ R+. According to Lemma 4.1, for any κ > 0 and χ ∈ X , H(R0(κ, χ), (κ, χ))

= 0, H(µ, (κ, χ)) < 0 for all µ > R0(κ, χ) and H(µ, (κ, χ)) > 0 for all µ < R0(κ, χ). By Lemma 2.5,

it suffices to show that for any µ > 0, limd→+∞,χ→χ0 ω(U
µ
d,χ) = ω(Ũµ

χ0
), which can be derived by the

arguments similar to those for [38, Theorem 4.1] and Theorem 3.15.

To finish this section, we apply Theorem 4.2 to a periodic Ross-Macdonald model in a patch environ-

ment. According to [12], we consider the following T -periodic patch system:

dHi

dt
= d

m∑
j=1

lHijHj(t), 1 6 i 6 m, (4.3a)

dVi

dt
= ϵi(t)− µi(t)Vi(t), 1 6 i 6 m, (4.3b)

dhi

dt
= σ1iβi(t)

Hi(t)− hi(t)

Hi(t)
vi(t)− γihi(t) + d

m∑
j=1

lHijhj(t), 1 6 i 6 m, (4.3c)

dvi
dt

= σ2iβi(t)
hi(t)

Hi(t)
(Vi(t)− vi(t))− µi(t)vi(t), 1 6 i 6 m. (4.3d)

Here Hi(t) and Vi(t) are the total populations of humans and mosquitoes in patch i at time t, respectively;

hi(t) and vi(t) define the numbers of infectious humans and mosquitoes in patch i at time t, respectively;

ϵi(t) > 0 is the recruitment rate of mosquitoes in patch i at time t; µi(t) > 0 is the mortality rate of

mosquitoes in patch i at time t; σ1i > 0 (σ2i > 0) is transmission probability from infectious mosquitoes

(humans) to susceptible humans (mosquitoes) in patch i at time t; βi(t) > 0 is the mosquito biting rate

in patch i at time t; γ−1
i > 0 is the human infectious period; lHij is the degree of human migration from

patch j to patch i for i ̸= j; lHii is the degree of human migration from patch i to all the other patches; d

is the migration coefficient. We assume that there is no death or birth during travel, so the emigration

rate of humans in patch i satisfies
m∑
j=1

lHji = 0, ∀ 1 6 i 6 m;

the functions ϵi, µi and βi are T -periodic and continuous on R.
We further assume that the total populations of humans satisfy NH =

∑m
j=1 Hj(0) > 0. By [12,

Lemma 3.1], it then follows that (4.3a) admits a globally asymptotically stable equilibrium H∗ =

(H∗
1 , . . . , H

∗
n)

T, which is independent of d > 0 and t ∈ R, and (4.3b) admits a globally asymptoti-

cally stable T -periodic solution V ∗(t) = (V ∗
1 (t), . . . , V

∗
n (t))

T, which is independent of d > 0. Moreover,∑m
j=1 H

∗
j =

∑m
j=1 Hj(0). We linearize the system (4.3) at the disease-free periodic solution

(H∗
1 , . . . , H

∗
n, V

∗
1 , . . . , V

∗
n , 0, . . . , 0, 0, . . . , 0)

T

to obtain 
dhi

dt
= σ1iβi(t)vi(t)− γihi(t) + d

m∑
j=1

lHijhj(t), 1 6 i 6 m,

dvi
dt

= σ2iβi(t)
V ∗
i (t)

H∗
i

hi(t)− µi(t)vi(t), 1 6 i 6 m.

(4.4)

We next choose n = 2m, and hence,

X := {u ∈ C(R,R2m) : u(t) = u(t+ T ), t ∈ R}.

Let

V11(t) := (δijγi)m×m, V22(t) := (δijµi(t))m×m and V (t) :=

(
V11(t) 0

0 V22(t)

)
.
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Define

F12(t) := (δijσ1iβi(t))m×m, F21(t) :=

(
δijσ2iβi(t)

V ∗
i (t)

H∗
i

)
m×m

and

F (t) :=

(
0 F12(t)

F21(t) 0

)
.

Let L = (lij)2m×2m be a cooperative matrix with the zero column sum defined by lij = lHij , 1 6 i, j 6 m

and lij = 0 otherwise. For any d > 0, let {Φd(t, s) : t > s} be the evolution family on R2m of

∂v

∂t
= dLv − V (t)v, t > s

and define a bounded linear positive operator Qd : X → X by

[Qdu](t) :=

∫ +∞

0

Φd(t, t− s)F (t− s)u(t− s)ds, t ∈ R, u ∈ X

and R0(d) := r(Qd). According to Theorem 4.2, we see that R0(d) is continuous with respect to d ∈
(0,+∞). Indeed, Theorem 4.2 shows that the basic reproduction ratio is continuous with respect to all

the parameters in the model.

Now we turn to the limiting profile of R0(d) as d → +∞. Let q = (q1, . . . , qm)T be a strongly positive

vector such that LHq = 0 and
∑m

i=1 qi = 1, where LH = (lHij )m×m. Notice that L is a reducible matrix.

Since LH is irreducible, we have α0 = m+ 1 due to Lemma 2.2, and hence,

X̃ := {u ∈ C(R,Rm+1) : u(t) = u(t+ T ), t ∈ R}.

Moreover, P = (phj)α0×2m and Q = (qil)2m×α0 can be defined by p1j = 1, 1 6 j 6 m, ph(h+m−1) = 1,

2 6 h 6 α0, qi1 = qi, 1 6 i 6 m, q(l+m−1)l = 1, 2 6 l 6 α0, phj = 0 and qil = 0 otherwise.

For any t ∈ R, define Ṽ (t) := PV (t)Q and F̃ (t) := PF (t)Q. Let {Φ̃(t, s) : t > s} be the evolution

family on Rα0 of
∂v

∂t
= −Ṽ (t)v, t > s,

and define a bounded linear positive operator Q̃ : X̃ → X̃ by

[Q̃u](t) :=

∫ +∞

0

Φ̃(t, t− s)F̃ (t− s)u(t− s)ds, t ∈ R, u ∈ X̃

and R̃0 := r(Q̃). It then follows from Theorem C that R0(d) → R̃0 as d → +∞.

At last we numerically compute R0 by using the algorithm developed in [23, 34]. The baseline pa-

rameters are m = 2, T = 365, NH = 500, σ1i = 0.2, σ2i = 0.3, γi = 0.02 and µ = 0.1, as derived

from [12],

ϵ1(t) = 12.5− 5 cos

(
2πt

T

)
− 5 cos

(
4πt

T

)
, ϵ2(t) = 12.5− 5 cos

(
2πt

T

)
,

βi(t) = 0.028ϵi(t), l
H
12 = 1 and lH21 = 1. Our numerical result shows that the basic reproduction ratios on

patches 1 and 2 are R(1)
0 = 1.5340 and R(2)

0 = 1.4478, respectively. From Figure 1, we observe that the

dependence of R0 with respect to d may be very complicated: R0 is decreasing when d is small enough

and large enough, while it is increasing on an interval. Moreover,

R0(d) → max(R(1)
0 ,R(2)

0 )

as d → 0, and R0 → R̃0 = 1.5028 as d → +∞. For the corresponding time-averaged autonomous

system, we find that its basic reproduction number is R̄0 = 1.3555, which is independent of d. This

suggests that the use of a time-averaged autonomous model may underestimate the disease severity in

some transmission settings.
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Figure 1 (Color online) R0 initially decreases, then increases, and finally decreases with respect to d
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18 Hutson V, Mischaikow K, Poláčik P. The evolution of dispersal rates in a heterogeneous time-periodic environment. J

Math Biol, 2001, 43: 501–533

19 Kato T. Perturbation Theory for Linear Operators. Classics in Mathematics, vol. 132. Berlin: Springer-Verlag, 1995
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