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Abstract This paper is devoted to the study of the asymptotic behavior of the principal eigenvalue and the
basic reproduction ratio associated with periodic population models in a patchy environment for small and large
dispersal rates. We first deal with the eigenspace corresponding to the zero eigenvalue of the connectivity matrix.
Then we investigate the limiting profile of the principal eigenvalue of an associated periodic eigenvalue problem
as the dispersal rate goes to zero and infinity, respectively. We further establish the asymptotic behavior of
the basic reproduction ratio in the case of small and large dispersal rates. Finally, we apply these results to a

periodic Ross-Macdonald patch model.
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1 Introduction

In 2007, Allen et al. [1] studied the following epidemic model in a patchy environment:

ds; - S;I; .
o = ds > "1;;S; —&m +ili, i=1,...,n,
. = . (1.1)
I, N

v T Pt
dt de;lzj 7 + /87,51 +I

K2

—’inZ', Z:L,TL

Here n > 2 is the number of patches, and S;(¢) and I;(¢) are the numbers of susceptible and infected
individuals in patch ¢ at time ¢, respectively. The parameters dg and d; are the migration rates of
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susceptible and infected populations; /;; is a nonnegative constant which denotes the degree of movement
from patch j to patch i for j # ¢ and [;; = — Z#i l;j; is the degree of movement from patch ¢ to all
other patches; 5; > 0 and ~y; > 0 are disease transmission and recovery rates at patch ¢, respectively. Let
L = (lij)nxn, F = diag(Bi,...,0n) and V = diag(y1,...,7n). Following [9,32], the basic reproduction
ratio of the system (1.1) is expressed as Ro(dr) = r((V —d;L)"'F), d; > 0, where r((V — d;L)"'F) is
the spectral radius of (V — d;L)"'F.

Recall that a square matrix is said to be cooperative if its off-diagonal elements are nonnegative, and
nonnegative if all the elements are nonnegative; a square matrix is said to be irreducible if it is not similar,
via a permutation, to a block lower triangular matrix, and reducible otherwise; the spectral bound (also
called the stability modulus) of a square matrix A is defined as s(A) = sup{ReA : A is an eigenvalue of A}.

Under the assumption that the migration matrix L of infected individuals is symmetric and irreducible,
Allen et al. [1] showed that

n

1
lim s(d;L—V+F)= max (8 —v), lim s(dL-V+F)==> (8 —n),
n

di—0+ 1<i<n di—+o00

i=1
. B; . Ztl Bi
Jm Ro(dr) = Ro(0) = max = and | lim Ro(dr) = $=

Without assuming the symmetry of L, Gao and Dong [10,11] and Chen et al. [6] recently proved the
same limiting properties for s(d;L —V + F') and Ro(dy) as d; — 0%, and generalized the other two limits

into n
‘ . Z?Zlﬁiqi
1 L-V+F)= N T =5
o UV P = el Rotd) =

where ¢ = (q1,...,q,)" is aright eigenvector of L corresponding to the eigenvalue 0 such that Z?:l q; = 1.

Note that the connectivity matrix obtained from the linearization of the system (1.1) at the disease-free
equilibrium refers to the migration matrix of infected individuals. In many multi-population models in
a patchy environment, however, the connectivity matrix is reducible, although the migration matrix for
each population is irreducible (see, e.g., [12,13]). Thus, a natural question is how to further characterize
the above limiting profiles for s(d;L — V + F) and Ro(d;) without the irreducibility condition on the
connectivity matrix. Such problems have been explored for reaction-diffusion systems (see, e.g., [2,5,7,
21,24,35,38]). In the case where the connectivity matrix is symmetric, this question is much easier than
the associated problem for reaction-diffusion systems. It is worth pointing out that the limiting problem
for the large dispersal rate is highly nontrivial when the connectivity matrix is non-symmetric.

For time-periodic patch population models (see, e.g., [12,37]), we may conjecture that the similar
limiting results on the principal eigenvalue and the basic reproduction ratio hold true. This conjecture
was confirmed for reaction-diffusion systems (see, e.g., [18,26,27,36,38]). However, it seems that these
methods and arguments may not be well adapted to such periodic patch models due to the lack of
irreducibility and symmetry for the connectivity matrix.

Our purpose of this paper is to address the afore-mentioned two questions for patch population models.
Motivated by [1,11,13,33,37], we assume that the connectivity matrix L admits the property that

(H1) L = (l;j)nxn is an n x n cooperative matrix with zero column sums.

Then we have the following elementary observation, which plays a key role in our analysis.

Theorem A (See Lemmas 2.2-2.4).  Assume that (H1) holds. Let o be the algebraic multiplicity of
the zero eigenvalue of L. Then the following statements are valid:

(i) There exist nonnegative matrices P = (Phj)aoxn and Q = (git)nxa, Such that PL and LQ are zero
matrices and PQ is an ag X «q identity matriz.

(ii) If M is an n X n cooperative matriz, then PMQ is an ap X a9 cooperative matriz.

(iii) Let P= (Pnj)aoxn and Q = (Git)nxa, e two nonnegative matrices such that PL and LQ are zero

matrices and PQ is an ag X aq identity matrixz. Then PMQ is similar to PMQ

We remark that all the rows of P and columns of @ are the left and right eigenvectors of L, respec-
tively. Note that any autonomous system can be regarded as a periodic one with the period being any
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given positive number. As a straightforward consequence of our general result for periodic systems (see
Theorem C below), we have the following result on the limiting profiles of the spectral bound and the
basic reproduction ratio with small and large dispersal rates for autonomous patch models.

Theorem B.  Assume that (H1) holds, —V is an nxn cooperative matriz, and F is an nxn nonnegative
matriz. Let P and Q be defined as in Theorem A, V := PVQ and F := PFQ. Then the following
statements are valid:

(i) limg_,o+ $(dL =V + F) = s(=V + F) and limy_, 1 oo S(dL — V + F) = s(=V + F).

(ii) If, in addition, s(dL — V) < 0 for all d > 0 and s(V) < 0, then limy_o+ Ro(d) = Ro(0) and
limg_, 400 Ro(d) = Ro, where

Ro(d) :=r((V —dL)"'F), Yd>0
and Ry :=r(V1F).

Note that the additional conditions s(dL—V") < 0 for all d > 0 and 5(V') < 0 are used to guarantee that
the associated basic reproduction ratios Ro(d) and Rg are well defined (see, e.g., [32]), and s(—V + F) is
independent of the choice of P and @) due to Theorem A. In the case where L is irreducible, the results
in Theorem B were established in [6,10,11].

To present our main result for time-periodic systems, we use 7" > 0 to denote the period throughout
this paper. Let F'(t) and V (t) be two continuous n x n matrix-valued functions of ¢ € R such that

(H2) F(t+T)=F(t), V(t+T) = V(t), F(t) is nonnegative, and —V(t) is cooperative for all ¢ € R.

For any t € R, let F(t) := PF(t)Q and V(t) := PV (t)Q, where P and Q are defined as in Theorem A.
For any d > 0, let {®4(t,s) : t > s} be the evolution family on R™ of %’ = dLv — V(t)v, and let
{®(t,s) : t > s} be the evolution family on R of dv — —V(t)v (see Definition 3.1), where ayp is the
algebraic multiplicity of the zero eigenvalue of L. Let w(®) be the exponential growth bound of an
evolution family @ (see Definition 3.1). We further assume that

(H3) w(®q) < 0 for all d > 0 and w(®) < 0.

For any d > 0, let A} be the principal eigenvalue of the periodic eigenvalue problem (see Definition 3.3

and Theorem 3.4)
d
—%ﬁuﬂu—V@U+FQM—Aw
According to [3,34], the basic reproduction ratio Rg(d) is well defined for the following periodic ODE

system (see Section 4):
d
d%’ = dLv — V(t)v + F(t)v. (1.2)

In view of Theorem A, we see that —V (t) is cooperative for any ¢t € R. Moreover, F(t) is nonnegative for
any t € R. Let A\* be the principal eigenvalue of the periodic eigenvalue problem

d - .
M V) + Ft)u — M,
dt
and R be the basic reproduction ratio of the following periodic equation (see Section 4):
dv ~ -
— = -V(t)v+ F(t)v. (1.3)
dt
Then we have the following result on the asymptotic behavior of A% and R¢(d) for periodic patch models.
Theorem C (See Theorems 3.15 and 4.2).  Assume that (H1)—(H3) hold. Then the following statements
are valid:

(1) img o+ A5 = A§ and limg_, 4 o0 A = A*.

(11) limdﬁm Ro(d) = Ro (0) and limd_H_oo Ro(d) = Ro.

We should point out that M* s independent of the choice of P and @ (see Lemma 3.8). The state-
ments (i) and (ii) in Theorem C are straightforward consequences of Theorems 3.15 and 4.2, respectively.
In Theorem 4.2, we also introduce a metric space of parameters to discuss the continuity of the basic
reproduction ratio with respect to parameters.
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Since the Poincaré (period) map of the system (1.2), which is a square matrix, is continuous with respect
to the dispersal rate d € [0, +00), so is the principal eigenvalue due to the standard matrix perturbation
theory. To obtain the limiting profile of the principal eigenvalue as the dispersal rate goes to infinity,
we distinguish two cases. In the case where the Poincaré map (matrix) of (1.3) is irreducible, we use
some ideas inspired by [15-18,38], where the asymptotic behavior of the positive steady states or periodic
solutions was derived for large diffusion coefficients. In the case where such a matrix is reducible, we
combine the perturbation technique and the results for appropriate subsystems such that the Poincaré
maps of the associated limiting systems are irreducible. In our recent paper [38], we established the
continuity of the basic reproduction ratio with respect to parameters under the setting of Thieme [31],
which enables us to reduce the limiting profile of the basic reproduction ratio to the asymptotic behavior
of the principal eigenvalue of the associated periodic eigenvalue problem with parameters. In the current
paper, we give a more general result in this regard and then use it to prove Theorem C(ii).

The rest of this paper is organized as follows. In the next section, we present some basic properties of
cooperative matrices and prove a general result in order to study the continuity of the basic reproduc-
tion ratio with respect to parameters. In Section 3, we study the asymptotic behavior of the principal
eigenvalue for periodic cooperative ODE systems with large dispersal rates. In Section 4, we prove the
continuity of the basic reproduction ratio with respect to the dispersal rate and investigate the limiting
profile of the basic reproduction ratio as the dispersal rate goes to infinity. As an illustrative example,
we also apply these analytic results to a periodic Ross-Macdonald patch model.

2 Preliminaries

In this section, we present some properties of cooperative matrices and prove a general result in order to
study the continuity of the basic reproduction ratio with respect to parameters. Throughout the whole
paper, we define 0 = (0,...,0)T in the case of any finite dimension. Moreover, without ambiguity, 0
refers to the zero matrix.

Lemma 2.1.  Assume that (H1) holds and L can be split into a block lower triangular matriz

Ly -+ L1
L =
Lal T Laa
such that Lpp is an np X np irreducible matriz for 1 < h < a with Zf‘zl ng =mn, and Ly = 0 for

1< h<l<a. Then for any fited 1 <1< o, s(Ly) =0 if Lpp =0 for all 1 <1< h < a, and s(Ly) <0
otherwise. Equivalently, Ly =0 for all 1 < h #1 < a if s(Ly) = 0, and otherwise there is some hg # 1
such that Ly, is a nonzero matrix.

Proof. Let e = (1,...,1)T and ¢; = (1,...,1)T be n- and n;-dimensional vectors for any 1 < I < «,
respectively. It is easy to see that eTL = 0T. For a fixed 1 < Iy < a, an easy computation yields that

[e3%

Z(eh)Ttho = Z(eh)Ttho = OT.
h=1 h=lo

If Ly, is a zero matrix for all 1 < Iy < h < «, then (e;,)"Li,;, = 0T. This implies that s(L;,;,) = 0.

Otherwise, by the irreducibility of L;,;,, we conclude that s(L;,,) < 0 due to [4, Theorem I1.1.11]. O

(H1") L = (Iij)nxn is an n x n cooperative matrix with s(L) = 0, and L can be split into a block lower

triangular matrix
Ly -+ Lia
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such that Ly, is an ny, X ny, irreducible matrix for 1 < A < o with Zlo‘:l n=mn,Ly=0forl<h<I<aq,
and Lp; =0foralll € Ag and 1 < h < a with A # [, where

A ={1<i<a:s(Ly) =0} and Af:={l1<I<a:s(Ly) <0}

Let ap and af denote the numbers of all the elements in Ay and A§, respectively.

Using Lemma 2.1, we choose o« = 1 if L is irreducible, and write L as such a block lower triangular
matrix via a permutation if L is reducible. Accordingly, Lemma 2.1 implies that (H1) is sufficient for (H1’)
to hold.

Lemma 2.2.  Assume that (H1') holds. Let v be an ag-dimensional vector defined by v = (v1,...,Vay) "
with v = af +1, V1 <1 < ag. Then the following statements are valid:

(i) If AG # 0, then A§ ={1,...,ai} and Ao = {a§ +1,...,a} via a permutation.

(ii) The algebraic multiplicity of the zero eigenvalue of L is ag, and there exist oy linearly independent
left positive eigenvectors (p1)* = ((p})T,..., (M) (1 <1 < ag) of L and right positive eigenvectors
a = ((g),....(@)")T (1 <l < ) of L corresponding to 0 such that (p))Yqn = &5 for 1 <1, h < ap,
where pf and qli are n;-dimensional vectors and 0;, denotes the Kronecker delta function (i.e., oy, = 1
if | = h and &, = 0 otherwise). Moreover, p;* > 0, q" > 0, Ly,,,q/* = 0 and (p;")*L,,,, = 0%,
V1 S l § Q.

(iii) Define

P:=(p1,...,pa,)" and Q:=(qu,...,qu,)
Then PQ is an ag X aq identity matriz. Moreover, PL =0 and LQ = 0.

Proof. (i) can be derived by a permutation due to (H1').
(ii) We only consider the case of > 0, since the case af = 0 can be obtained similarly. For any
1 <1< ag, choose g¢”* > 0 such that L,,,,g"* = 0, and define

a = ((g)", ... (@)")",

where ¢} is an n;-dimensional vector, ;" = "', and gj = 0 if i # v;. This implies that Lg, = 0 for any
1 g l § ag.
For any 1 < I < ag, choose p** > 0 such that (p**)TL,,,, = 0T with (p*)Tq"" = 1. Define

b = ((pll)T7 IR (pla)T)T’
where p{ is an n;-dimensional vector, p;" = p“, pi = 0 if i € Ag with ¢ # v, and p} is solved by the
following equations if ¢ € A§. It holds that

[e3

> )" Lin=0", 1<h<a (2.1)
i=1

This is equivalent to

Z (P}) " Lin = — Z (p) " Lin, 1<h<a
i€AS i€Ao
Notice that the coefficient matrix
Liy -+ Ligg
L=
Lag -+ Lagag

of the above equations is a block lower triangular matrix whose diagonal elements are L;; for i € A§. It
then follows that

L)= L) <0,
s(L) ?é?\fés( ) <

and hence, (2.1) admits a unique solution. Moreover, pf is nonnegative for ¢ € A§ since L is cooperative.
Thus, plTL =0T, V1<I<ay.
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In view of the above arguments, it easily follows that the algebraic multiplicity of the zero eigenvalue
of L is no less than agy. To obtain the converse statement, it suffices to prove the following two claims.
Claim 1. If Lq = 0 with ¢ = ((¢")7,...,(q*)™)T, where q' is an n;-dimensional vector, then g’ = 0
for [ € A§ and Lyg' =0 for I € Ag.

Claim 2. If L™q = 0 for some m > 1 with ¢ = ((¢")7,...,(¢g*)")", where ¢' is an n;-dimensional
vector, then ¢! = 0 for [ € A§ and Ly q' = 0 for | € A.

Let us postpone the proof of these claims, and complete the proof in a few lines. By the irreducibility
of Ly, it then follows from Claim 1 that q is a linear combination of {g;}1<i<q for any g with Lg = 0,
and hence, the geometric multiplicity of the zero eigenvalue of L is no more than «g. Similarly, it follows
from Claim 2 that the algebraic multiplicity of the zero eigenvalue of L is no more than «g. Thus, the
desired conclusion holds.

We now return to the proof of Claim 1, and first show that g' = 0 for all I € A§ by the induction
method. It is easy to see that L1;q* = 0. Thus, s(L11) < 0 implies that g' = 0. Assume that ¢' = 0 for
1 <1< 1y with g € A§, and it suffices to prove go ™! = 0 if Ip + 1 € AS. In view of Lg = 0, we have

Lig+1) o+ @° ! = ZL(lo—&-l)iqi =0,
=1

due to Lgy41y; = 0if i > lp + 1, and q'=0ifi<ly+1. Thus, ¢ =0 for all | € A§. By (H1'), Ly =0
if h,l € Ag with h # [. Tt then follows that

(6%
Luq' = Zle‘qi =0, €A

i=1

We next verify Claim 2. Since L is a block lower triangular matrix, diag(L},..., L") is the block
diagonal of L™. In view of Claim 1, we have ¢' = 0 for [ € A§ and L'q' = 0 for [ € Ag. Thus, the
irreducibility of L; implies that L;q' = 0. O

In view of Lemma 2.2, we observe that «q is not only the number of the elements in Ay, but also the
algebraic multiplicity of the zero eigenvalue of L. In the rest of this paper, we use the same notations v,
P, qi, P and @ as in Lemma 2.2.

Lemma 2.3.  Assume that (H1') holds, A§ = {1,...,a§} and Ag = {a§ + 1,...,a} whenever A§ # 0.
Let M be a cooperative matriz such that

My - My,

Mal Maa

where My is an np, X n; matrix for 1 < h,l < a. Then the following statements are valid:

(i) PMQ@ is cooperative.

(ii) Let b be an ag-dimensional vector defined by b = (by,...,ba,)T with 1 < b; < ag and b; # b;
for i # 7. Deﬁnf a matriz M = (Thﬁl)aoxao by mp = thMsz- Then M is similar to PMQ via a
permutation. If M is reducible, then M, by exchanging the order of the components of b, can be split into

Mll Mlﬁ

My -+ M

where Mii is an «; X o irreducible matriz for all 1 < i < n with Z?:l a; = ag, and Mij = 0 for all
1<i<j<n.
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(iii) Let b = ((BH)Y,...,(0")NT = (b1,...,ba,)T, where b = (bi,... b

ai)T. Then Mj;; is still an
a; X o trreducible matriz for all 1 < i < n with Y, a; = ag, and ]\;[Z-j =0foralll<i<j<nby
exchanging the order of the components of b® such that bﬁ < <L bfl

(iv) For any 1 < i< n, let

i 1<j<a8,
J of +b§'—a8’ 1+af <Jj<of+ o,
if a§ > 0 and 17 = b; e 1<j <y, if af =0, and define

T i\ T\T L T AT\T
pri= (@) )Y @a=g ) g )T
L= (Lh) (agranx(agrans M= (My)(ag+anx(ag+as)
and M* = (it )a;xa; by
PlLi=p,, @,=q;, 1<j<afj+a, 1<I<a,
21 = Lf,;;pgq Mhl M i i 1< hl<af+a

and

N

ity = PEiMin,u 1 N

h g (67
Then for any 1 <1 < n, we have M;; = M and for any 1 <1 <

g,
pliqi=1 plani=0 h#l L'q;=0 and p,,L'=0".

Proof. ~ We only consider the case af > 0, since the case af = 0 can be addressed in a similar way.
(i) For any 1 <1 < ap, g #Oandql fO,j#l/l,andpll7£0andpl =0, j # 1y with j > of. An
easy computation yields that

o
prMa =Y (p) " Mjq" + (P)") " My,uq", 1< h1< a. (2.2)
st

Since Mj,, is nonnegative for all 1 < j < af and M,,,, is nonnegative for h # [, it follows that PMQ is
cooperative.

Note that exchanging the order of the components of b is equivalent to exchanging the row and column
simultaneously. Thus, the statements (ii) and (iii) follow from [4, Subsection 2.3].

(iv) It is easy to see that o} < --- < I}, +ag and ﬁli+o¢8 = b +af = Vi, V1 <1 < a;. Thus, for any
1<i<nandl<I<ay,

4l The 14 Vyi ; o .
qlz_qlaf qblioJr :qbz‘,l 7&07 qu;i:qb{: ) v];’éyla
) ﬂic 1 Vyi ; 137' . . .
pli=pi =p, =p; #0. pl;=p] =0 Vj#u withj>af,
M_;Vl = Mj(l—&-a“) M~J ~l+a0 = Mjl)li+a8 = ijbz;a Vl Oéo
and
My, = M(Zh+a8)(l+0¢8) T e Pag T T VISh<a
It then follows that for any 1 <i<nand 1 <I,h < ay,
ag
~ g T i i \T T
m;ll = phviMquvi = Z( / ) MJZW quyl'b + (pZ,z) M;nvz ql,é
=1

o o y
— J\TaAr. bf Yh\T b
= 22 My " () M "
j=1
=
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We also have

c
Qo

~ ] 1% 1% 1%
i = Py, May, = Y () M, @' + (0y") My, vy, @, 1< hl<ag.
j=1

Since b}, = by, if i = 1 and b}, = bh+zzgi o, 7> 2, we obtain that mb, =mp foralll < h <o ifi=1
i=
V1

and 1My = M, 531 o)) 143! o) 08 all 1<yl < aq if i > 2. This yields that Mi=M;,¥1<i<n.

1
Similarly, we can show that

plai=1 piqni=0, h#l, L'q;=0 and p;,L'=0"

hold for any 1 <i<nand 1 <1 < q;. O

Note that we define M by choosing all the indexes {ﬂ; 11 < j < a§+ ;) from M, and define L¢,
p1; and q;; by using the same indexes of L, p; and g, respectively. Thus, the analysis of a reducible
matrix M can be transferred into that of its irreducible block.

Lemma 2.4. Assume that (H1') holds. Let P = (B1j)aoxn and Q= (Gin)nxao be two nonnegative
matrices such that PL = 0, LQ =0 and PQ = I, where I is an ag X «oq identity matriz. If M is an
n X n matriz, then PMQ is similar to PMQ

Proof.  For any 1 < I < ag, let p; := (Pj1,...,P,)7T. Tt is easy to see that p; is a left eigenvector
of L corresponding to the zero eigenvalue. Since PQ = I and 15@ = I, the matrices P, Q, P and Q
share the same rank ag. This implies that {p} : 1 < i < ap} and {p} : 1 < i < ap} are two bases of
the left eigenspace of L corresponding to the zero eigenvalue due to Lemma 2.2. Thus, there exists an
ap X ag invertible matrix A such that AP = p. Similarly, there exists an oy X «q invertible matrix B
such that QB = Q. It then follows that AB = APQB = PQ = I, and hence, A = B!, Therefore,
PMQ = APMQA™". O

In order to study the continuity of the basic reproduction ratio with respect to parameters, we next
generalize the results in [38, Theorems 2.1 and 2.2]. Let (O, pg) be a metric space with the metric pg
and let H(u,0) be a mapping from Ry x ©® — R. Assume that for any 6 € O, one of the following two
properties holds:

(P1) There exists a unique p(f) > 0 such that H(u(6),0) = 0, H(u,0) < 0 for all 4 > u(f) and
H(p,0) >0 for all u < u(h).

(P2) H(p,6) <0 for all u > 0.

For convenience, we define p4(f) = 0 in the case (P2). Then we have the following observation.

Lemma 2.5. Assume that for any 0 € ©, either (P1) or (P2) holds. Let 6y € © be given. If H(u,0)
converges to H(p,00) as 0 — 6y for any > 0, then limg_,q, 1(0) = p(6o).

Proof. ~ We proceed according to two cases:

Case 1.  (P1) holds for 6y. For any € € (0, u(6p)), it follows from (P1) that
H(u(0o) —€,00) >0 and H(u(by) +¢€,6p) <O.
Thus, there exists § > 0 such that if pg(6,60y) < 4, then
H(u(0o) —€,0) >0 and H(u(fy) +¢€,60) <O0.

Assumption (P1) implies that
(o) — e < p(0) < (o) + €
provided that pg(6,6y) < 0, i.e., limg_,g, 11(0) = (o).
Case 2. (P2) holds for . It suffices to show that limg_,g, 11(8) = 0 = u(6p). For any given € > 0, the

assumption (P2) implies that H (e, 6y) < 0. Then there exists § > 0 such that H(¢,0) < 01if pe(0,6y) < 4.
In view of (P1) or (P2), we conclude that 0 < u() < € provided that pg(6,6y) < 6. O
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3 The principal eigenvalue

In this section, we investigate the asymptotic behavior of the principal eigenvalue for periodic cooperative
patch models with large dispersal rates. We first recall some properties of time-periodic evolution families.

Definition 3.1. A family of bounded linear operators 1'(¢, s), t,s € R with ¢ > s on a Banach space F
is called a T-periodic evolution family provided that

Y(s,s) =1, T(r)Y(r,s)=7(ts), YTt+T,s+T)=7(ts)

for all ¢,s,7 € R with t > r > s, and for each e € E, T'(¢, s)e is a continuous function of (¢, s) with ¢ > s.
The exponential growth bound of the evolution family {Y'(¢,s) : ¢ > s} is defined as

W) =inf{® eR:IM>1,Vt,s R, t = s:||T(t,s)||p < M9}
Lemma 3.2 (See [31, Proposition A.2]).  Let {T'(t,s) : t > s} be a T-periodic evolution family on a
Banach space E. Then

W(T) = lnr(TIET, 0)) _ lnr(T(Z;Jr T, 7'))7 vr e [0,7].

Let M(t) = (mi;(t))nxn be a continuous n x n matrix-valued function of ¢ € R such that
(H4) M(t) = M(t+T) and M(t) is cooperative for all ¢ € R.
Motivated by population models in a patchy environment, we consider the following periodic ODE

system:

‘flit’ = dLv + M(t)v (3.1)

and the associated eigenvalue problem

d
d—’l: =dLu+ M(t)u — \u. (3.2)
Definition 3.3.  \* is called the principal eigenvalue of (3.2) if it is a real eigenvalue with a nonnegative

eigenfunction and the real parts of all the other eigenvalues are not greater than A*.

For any d > 0, according to [20, Subsection 7.3] or [25, Chapter 5], the system (3.1) admits a unique
evolution family {Qg4(t, s) : t > s} on R™ with Qq4(t, s)¢ = u(t, s; @), Vt > s and ¢ € R™, where u(t, s; )
is the unique solution at time ¢ of (3.1) with initial data ¢ at time s. In view of [20, Theorem 7.17] and
Lemma 3.2, we have the following result (see also [22, Theorem 2.7]).

Theorem 3.4.  Assume that (H1) and (H4) hold. Then the eigenvalue problem (3.2) admits the prin-
cipal eigenvalue N = w(Qq) = w foralld > 0.

The subsequent result is a consequence of the standard comparison arguments.

Lemma 3.5.  Assume that (H4) holds. Let M(t) = (11 (t))nxn be a continuous n x n matriz-valued

function of t € R with M(t) = M(t +T) such that M(t) is cooperative for all t € R. Let A%, and Ay, be

the principal eigenvalues o ‘(%‘ = M(t)u — \u and % = M(t)u — \u, respectively. If mi;(t) > (1),

V1<i,j<nandt€R, then Ny = Ay, Furthermore, if M(t) can be split into

ME) = My (t) Mys(t)
Moy (t) Maa(t) ]’

then Xy = Ay, where Xy, is the principal eigenvalue of %‘ = M1 (H)u — Au.

From now on, we let A5 be the principal eigenvalue of (3.2) and ug = (ug1,...,uan)T be a non-
negative eigenvector corresponding to \j for any given d > 0. For convenience, we normalize uq by
maxiig<n MaXieR ud,i(t) =1.

Lemma 3.6.  Assume that (H1) and (H4) hold. Then there exists a real number C' > 0 independent of
d such that |\ < C.



1372 Zhang L et al. Sci China Math  July 2022 Vol. 65 No.7

Proof.  Let M := maxi<; j<n{max;er mi;(t)} and M := mini; j<,{miner m;;(t)}, and define two
n x n matrices M! = (m}j)nxn with m}j = M and M? :=diag(M,...,M). Let X and A be the principal
eigenvalues of dL + M and dL + M?, respectively. We use e = (1,...,1)T to define an n-dimensional
vector. By the Perron-Frobenius theorem (see, e.g., [29, Theorem 4.3.1]), it then follows from e™ (dL+M*)
= nMe" and eT(dL + M?) = Me" that A\ = nM and A = M. In view of Lemma 3.5, we have
A< A< A O

For any d > 0, we define
Qo
ah(t) == plug(t), V1<I<ag, Bgt):= Zﬁfi(t)ql and  wg(t) := uq(t) — wq(t).
=1

Lemma 3.7.  Assume that (H1) and (H4) hold. Then sup,cp ||@q(t)|lrn — 0 as d — +o0.

Proof.  Our arguments are motivated by [15-18,38]. Define
X1 = Span{q; }1<i<a, and Xy:={geR" :pqu =0,1<I< o}
It then follows that
R" = X; & Xo.

Let S4(t) be the semigroup generated by dL, i.e., Sy(t) = e?lt. It is easy to see that Sy(t)X; € X; and
Sa(t) X2 C X5. According to [8, Theorem 7.3], we then have

[154(t)@llrn < Cre™°%||@|lrn, V¢ € Xy

for some o > 0 and C; > 0 independent of ¢ and d. We multiply (3.2) from left by p} to obtain

d
ﬁald =pl M(t)ug — N, V1<1<a,

and then multiply the above equation by q; to obtain

d . e
%( La)) = [pf M(Hudlqr — Nyabq, V1<1<ap.

Adding them together yields
d S

S = > o M(t)udlq — Nytia. (3.3)
=1

Subtracting (3.3) from (3.2), we have

d . . i .
o = dLag + M (t)ug — ;[p?M(t)ud]QZ — AgUg.

Clearly, for any 1 <1 < «ag,
P Lig =0, plia=p](wa—q) =iy —iy(p/q) =0

and
[e70]
o (31(0us = Y dr(0udar ) = pEM (s — pEM (Ous(pFa) =0
=1
e, Luy € Xo, g € Xo and M (t)ug — Zla:“l(p;rM(t)ud)ql € X5. By Lemma 3.6, there exists a Cy > 0
independent of d and ¢ such that

@0

HM(t)ud =Y P M(Huda
=1

< 02 and |/\2| < 02.
R’VL
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In view of the constant-variation formula, we obtain

aa(t) = Sult)ia0) + [ St~ s>{M<s>ud<s> =3 I M(s)uas)ar — Azad<s>}ds

=1

for all ¢ > 0. An easy computation gives rise to
t t
Ja(®)z- < Cre™*®aa(0) o+ Co [ &0 -y [ fig(o) s,
0 0

Choose 71 € (0,7), and define (4(t) := 79|14 (t)||rn, (4(t) := sup{Ca(s) : 0 < s < ¢} and

Cy = /OO esl=m00) g,
0
It then follows that
Ca(t) < Cre™07mC,(0) + CoC3(0d) "1™ + CoCs(v0d) "' Cy(t), >0,
and hence,
Ca(t) < Cre™ 0= (0) 4 CyCs(0d) ~1e" ¥ + CoC3(v0d) 1 Cy(t), ¢ = 0.

For any d > 0, let £(d) := C2C3(yod) L. Notice that £(d) — 0 as d — +oo. From now on, we assume
that d is large enough such that £(d) < 3, which implies that (1 — £(d)) ™' < 2. This leads to

( ) 1-— 5( ))_I[Cle—("/o—’n)dtcd(o) +C2C3(,yod)—le"{1dt]

< (
< 2[Cre~ (0L (0) 4 CoC3(yod) ~te 4,

and hence,
[@a(t)||rn < e, (t) < 2[Cre” 0 (0)e™ ¥ 4+ CoCs(v0d) ']

Letting t — +o00, we obtain

limsup || @q(t)||rn < 2C2C3(yod) ™"
—+0o0

Since a(t) is periodic in t € R, it follows that
[Ga(t)|rn < 2C2C5(v0d) ™"

This yields the desired conclusion. O

Define M(t) = (mni(t))agxao DY Mni(t) = pEM(t)qy, ie., M(t) = PM(t)Q. Let {O(t,s) : t > s} be
the evolution family on R*° of

and let A* be the principal eigenvalue of

It is easy to see that w(é) = \* due to Theorem 3.4. The following result indicates that A* is independent
of the choice of P and Q.

Lemma 3.8. Assume that (Hl ) holds. Let P = (P1j)aoxn and @ (Gih)nxa, be two nonnegatwe
matmces such that PL = 0, LQ =0 and PQ = I, where I is an ag X < identity matrix. Let M( )=

M(t)Q and {O(t, s) : t > s} be the evolution family on R of & M(t)v Then O(T,0) is similar to
O(T 0). Moreover, w(O) = w(O).
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Proof. According to Lemma 2.4, there exists an «g X «aq invertible matrix A such that AP = P and
QAL Q By a change of variables w = A~1v, we then transfer —” = M (t)v into %’ = M(t)w. Thus,
we have O(T,0) = A[O(T,0)]A~L. O
Lemma 3.9.  Assume that (H1) and (H4) hold. If O(T,0) is irreducible, then limg_, yo0 A = \*.
Proof.  For any 1 < h < ap, we multiply (3.2) from left by p; to obtain

d . e

ﬁui} = pl M(t)ug — \jih. (3.4)
Then there exists C; > 0 such that

dal <cy, Vi<h<a

di dl X VY1, X x G0
By the Arzela-Ascoli theorem (see, e.g., [28, Theorem 1.28]), it follows that there exists a sequence
dp — +00 suchthat Ad,, = Aoo and | ( ) —al (t)] %OumformlyfortER 1< h < ap, asm — 400,
for some Ao, and @l € C’(R R4) with @" h(t+T)=al(t), vVt € R, 1 < h < apg. We integrate (3.4)

from 0 to t to obtain

aly(t) — ali(0) = / [T M (s)ita(s) + pF M (3)ita(s) — N5ih(s)]ds.

By Lemma 3.7, letting d,,, — 400, for any 1 < h < ag, we have

i) - i (0) = [ t [pEM@)(iaéo(s)ql) At (o)) a5

and hence,
23U (t) = > Iph M ()@ ak (1) — Aolil ().
Letting ¢ = (a,(0),...,72(0))T, we see that
¢ =e=TO(T,0)0.
With the irreducibility of O(T,0), the Perron-Frobenius theorem (see, e.g., [29, Theorem 4.3.1]) then

leads to Ao = PR O
To remove the irreducibility condition on O(T ,0) in Lemma 3.9, we prove the same conclusion as in

Lemma 3.6 under weaker conditions.

Lemma 3.10.  Assume that (H1") and (H4) hold. Then there exists some C > 0 such that |\}| <

Proof. ~ We proceed according to two cases:

Case 1. A§ = (. The proof is motivated by the arguments for Lemma 3.6. Define

M := max {maxmu(t)} and M := min {mlnmw(t)}
1<ii<n L teR 1<i,j<n L teR

For any 1 < i < ag, choose p* > 0 such that (p*)TL;; = 0T. Let

p=(e"H"....(P*))" = (p1,...,pa)".

Thus, p* L = 0. Without loss of generality, we assume that min;<;<, p; = 1. Define two n x n matrices
M= (m}j)an with m%j = Mp;, V1 < i,j < n and M? := diag(M,...,M). Let A and \ be the
principal eigenvalues of dL + M*' and dL + M?, respectively. In view of pT(dL + M) = (> p;)MpT
and pT(dL + M?) = Mp", the Perron-Frobenius theorem (see, e.g., [29, Theorem 4.3.1]) implies that
A= (2?21 pj)M and A = M. By Lemma 3.5, it easily follows that A < A < .
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Case 2. Af§ # 0. Without loss of generality, in view of (H1'), we assume that A = {1,...,a§} and
Ao ={af +1,...,a}, and still write v; ;= af +1 (1 <1 < «p), as in Lemma 2.2. Let us first prove
that A has a lower bound independent of d. We split the matrix-valued function M (¢) into a block form
as follows:

My (t) -+ Mia(2)

M(t) = : . : )
Mo (t) -+ Maa(t)
where Mp; is an ny X n; matrix for 1 < h,l < a. Define a matrix L = diag(Ly vy .-y Laa) and a
matrix-valued function M (t) by
MVlVl (t) Mula(t)
M(t) _ . . .

Mam(t) Ma;x(t)

Let ;\2 be the principal eigenvalue of

d . .

M L+ M(tu — .

dt

Since s(Ly;) = 0 for all v; < I < a, and M (t) is cooperative for any ¢ € R, it then follows from Lemma 3.5
that A} < AJ. By the proof of Case 1, A has a lower bound independent of d, so does \J.

We next show that A} has an upper bound independent of d. Define a matrix L by

where Ly; = Ly for 1 < h < of, 1 <l <aand vy <hl <o, and Ly =Ly + enh,e}; for vy < h < q,
1<l<af Heree,, =(1,..., 1)T is an np-dimensional vector. For any 1 < I < «g, choose p”* > 0
such that (p*')TL,,,, = 0T. Since all the elements of Lj; are positive for 1 < h < a, 1 < 1 < of
and L; is irreducible for 1 < I < af, by the arguments similar to those for (2.1), there exist p’ > 0
(1 <i < af) such that Y5 (p") "Ly, = 0T (1 < h < «f). Define p := ((p")7T,..., (p*)")", where p’
is an n;-dimensional vector. By repeating the arguments for the upper bound in Case 1, we obtain the
desired conclusion. O

Remark 3.11.  Assume that (H1’) and (H4) hold. If O(T,0) is irreducible, then limg_, o A5 = A*.

The following result provides a powerful tool to analyze the matrix O(T,0) in the case where it is
reducible.

Lemma 3.12.  For any ap-dimensional vector b = (by, .. .J)ao)T with 1 < b; < ag and b; # b; for
i # j, define ]\/Z(t) = (Mni(t))aoxao bY Mui(t) = py, M(t)qy,. Let {O(t,s) : t > s} be the evolution family
of & = ]\/Z(t)v on R®. Then the matriz O(T,0) is similar to the matriz O(T,0). If, in addition, O(T,0)
is reducible, then O(T,0) is a block lower triangular matriz after a suitable b is chosen.

The following two results are straightforward consequences of [38, Lemmas 3.5 and 3.7].
Lemma 3.13.  Write A := O(T,0) = (ai)agxay and let

A=| 1 0 | ed M@= ],
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where Ay is an oy X «; matriz with Z?:l a; = ag, and Mu(t) is an oy X «; matriz-valued function of
t e R. If A;; are zero matrices for all 1 < i < j <, then so are M;;(t) for any t € R. Moreover, let X}
be the principal eigenvalue of ‘2—'; = M (t)u — du, t > 0, then A} = % and \* = maxigi<n Af -
Lemma 3.14. Let g be a continuous function on (a,b) and write g = limsup,_,, g(x) and g— =
liminf, ,;, g(x). Then for any ¢ € [g—, g4], there exists a sequence xr, — b as k — oo with x, € (a,b)

such that limy 00 g(xf) = c.
Now we are in a position to prove the main result of this section.

Theorem 3.15.  Assume that (H1) and (H4) hold. Then the following statements are valid:

(i) limgoo+ A5 = A§ and limy_ g Ay = N* for any d > 0.

(i) limg s o0 A = A*.
Proof. (i) We only prove that limg_,o+ A} = Aj, since lim, , ; A} = )\2 can be derived for any d>0
in a similar way. Since the solutions of (3.1) depend continuously upon parameters (see, e.g., [14,
Subsection 1.3]), it follows that @4 (T, 0) converges to Qg(T,0) in the matrix norm as d — 0%. For the
definition of the matrix norm, we refer to [30, Subsection II.2]. Therefore, the desired statement (i)
follows from the perturbation theory of matrices (see, e.g., [19,30]).

(if) Our proof is motivated by the arguments for [38, Theorem 3.3]. Since the conclusion has been
proved in the case where O(T, 0) is irreducible in Lemma 3.9, we only need to consider the case where

O(T,0) is reducible. We proceed in three steps.

Step 1. Aoo = limg, oo A} exists. According to Lemma 3.6, both A, := limsup,,, . A; and
A = liminfy 400 A exist, and C; < A, A4 < Oy for some Cy and Cs. It suffices to prove that
A_ = Ay. Suppose that A\_ < A, for any \e [A_,A;]. By repeating the arguments in the proof of
Lemma 3.9, there exists a positive vector ¢ such that

¢ =eTO(T,0).

This implies that T is an eigenvalue of O(T,0) for any Me [A—, A1], which is impossible.

Step 2. A, < A\*. For any given € > 0, let M€ = (m%)an and M¢ = (M5,;) a0 xao be two continuous
matrix-valued functions of t € R with mg;(t) = mi;(t) +¢, V¢ € R and mg,(t) = prMe(t)q, YVt € R.
Let A\*(€) be the principal eigenvalue of the eigenvalue problem

du ~
— = M° — .
o tHu—Au, t>0

Let A} (€) be the principal eigenvalue of the eigenvalue problem (3.2) with M replaced by M¢. Clearly,
A5(€) = A% for all € > 0 due to Lemma 3.5. It then follows that

A(e) = lim Aj(e) = lm A= A, .
= Jp x> Jp x ez
Since A\*(e) = A* as € = 0T, we conclude that Ay < lim,_,o+ A*(€) = A*.
Step 3. Ao > A\*. We only consider the case af > 0, since the case af = 0 can be addressed in a similar
way. Without loss of generality, by Lemma 2.2, we assume that A§ = {1,...,af} and Ag = {ai+1,...,a}.
Based on Lemma 3.12, we can redefine M(t) = (mni(t))aoxao bY mni(t) = py, M(t)qs, for a specified
ap-dimensional vector b such that

(1) b= (bl,...,bao)T with 1 < bz < (67} and bl # bj for ¢ #j,

(2) the matrix A := O(T,0) can be split into

All Alﬁ

Anr - Adg

where A;; is an o; X «; matrix with Z?zl a; = ag, Aj; =0for all 1 <7 < j <7 and Ay is irreducible
forall 1 <7< n;
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(3) b= (YY", ..., (")), where b" = (bi,... b, )T with b] <--- < bl forall 1 <i<n.
Here (3) is achievable because both (1) and (2) are still valid by exchanging the components of b* due to
Lemma 2.3. By Lemma 3.13, M (t) can be split into

My (t) -+ Myz(t)
M(t) = e ;

Mai(t) - Man(t)

where Mij is an a; x «; matrix-valued function with Mij(t) =0foralll <i<j<n Let :\;F be the
principal eigenvalue of the eigenvalue problem

Thus, Lemma 3.13 yields 5\;-* = % and \* = maxi<i<n :\;*. For any 1 < 7 < n and ¢t € R, define
L*, M*(t) and M*(t) as L*, M* and M* in Lemma 2.3. For any 1 < ¢ <7 and 1 < < oy, choose p;;
and q;; in the same way as in Lemma 2.3. It then follows from Lemma 2.3 that for any 1 < ¢ < 7,
M;;(t) = ]\~4"(t)7 Vt e R, and for any 1 <1 < ay,

plL@i=1, pligni=0, h#l, L'q;=0 and p/,L'=0".
Let Aj; be the principal eigenvalue of

d _ .
d—’: = dLiu + Mi(t)u — \u. (3.5)
Since A;; is irreducible and (H1’) holds for L?, we conclude that Aii = 5\;‘ as d — +oo due to Lemma 3.9

and Remark 3.11. It then follows from Lemma 3.5 that >‘2,i < Aj. Notice that

M= lim A5, < lim A=A, 1< <
d—+oo 7 d——+o00

Thus, Lemma 3.13 implies that N = maxi i< 5\:‘ < Aso- O

Remark 3.16.  Assume that (H1’) and (H4) hold. Then limgo+ Aj = A, lim,_, ;A7 = A% for any
d >0, and limg, o A5 = A*.

4 The basic reproduction ratio

In this section, we study the continuity of the basic reproduction ratio with respect to parameters and
investigate its asymptotic behavior as the dispersal rates go to infinity for a periodic patch model.

In order to discuss the continuity of the basic reproduction ratio with respect to parameters, we
introduce a metric space (X, px) with the metric py. For any given x € X, let F\(t) = (fij,x(t))nxn and
Vi (t) = (Vij,x (t))nxn be two continuous n x n matrix-valued functions of ¢ € R such that

(H2') F, (t +T) = F\(t), Vi (t + T) = Vy (t), F,(¢t) is nonnegative, and —V, (t) is cooperative for all
x € X and t € R.

Let Fyx(t) = (Frinx))aoxao = PF(#)Q and Vi (t) = (Oniy(t))agxas = PVi(H)Q for all t € R. For
any d > 0, let {®q(t,s) : t > s} be the evolution family on R™ of 2 = dLv — Vi (t)v, t > s. We use
{®,(t,5) : t > s} to define the evolution family on R of g — ~V, (t)v, t > s. We further assume that

(H3') w(®q,y) <0 for all d > 0 and w(®,) < 0.

It is easy to see that (H2') and (H3') are generalizations of (H2) and (H3), respectively. For any p > 0
and d > 0, let {U}; (¢,s) : t > s} be the evolution family on R™ of

ov

1
Frie dLv -V, (t)v + ;Fx(t)v, t>s, (4.1)
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and let {I[NJQ (t,s):t = s} be the evolution family on R of

ov - 1~
a0 = vt R, > (4.2)
Define
X:={ue CR,R") :u(t) =u(t+17), t € R},
X:={u e C(R,R™) : u(t) =u(t+T), t € R},
Xy ={uec CR,RY) :u(t) =u(t+T),t € R}
and
Xy ={uec CR,RY) :u(t) =u(t+17),t R}
with the maximum norm |lul|x = maxi<i<, maxo<i<r [ui(t)] for uw = (ug,uz,...,u,)" and ||luly =
maxi <i<a, Maxo<i<r |ui(t)| for w = (ug,uz,...,uq,)". Then (X,X;) and (X,X;) are two ordered Ba-

nach spaces.
For any d > 0, we define a bounded linear positive operator Qq,, : X — X by

“+o0
(Quu](t) ::/O By (bt — 8)F(t— s)ult — s)ds, tER, weX

and Ro(d, x) := r(Qq,y). Define @X : X — X by

~ +OO ~
[Qyul(t) == /0 O, (t,t — s)F\(t —s)u(t—s)ds, teR, wuweX

and Ro(x) := 7(Qy). The subsequent result is a straightforward consequence of [34, Theorems 2.1
and 2.2].

Lemma 4.1.  Assume that (H1), (H2') and (H3') hold. Then the following statements are valid for
any >0 and x € X:

(i) For any d > 0, Ro(d, x) — p has the same sign as w(Uy ).

(ii) Ro(x) — i has the same sign as w(@i)

Now we are ready to prove the main result of this section.
Theorem 4.2.  Assume that (H1), (H2") and (H3') hold, and there exists xo € X such that V,, and F,

converge to V,, and Fy, in the matriz norm as x — Xo, respectively. Then the following statements are
valid:

(i) img—0+ x—xo Ro(d, x) = Ro(0, x0) and lim, 5, Ro(d,x) = Ro(d, xo) for any d > 0.
(ii) img—+c0,x—x0 Ro(d, X) = Ro(x0)-
Proof. (1) Without loss of generality, we only prove
lim Ro(d, X) = Ro (0, XQ).

d—0t ,x—x0

In this case, we choose @ =R, x X and 6y := (0, xo) € ©. Define
H(p,0) :=w(Uy,), YueR, 0:=(dx) €®O.

According to Lemma 4.1, for any d > 0 and x € X, H(Ro(d, x),(d,x)) = 0, H(u,(d,x)) < 0 for all
> Ro(d, x) and H(u, (d,x)) > 0 for all p < Ro(d, x). By Lemma 2.5, it suffices to show that for any
>0,

li UL ) = w(Uf
d*)OJrle%ng( d’X) W( O’XO),

which can be derived by the arguments similar to those for [38, Theorem 4.1] and Theorem 3.15.
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(ii) Now we choose © = (Int(Ry) x X)U{6}, where 6y := (0, x0). Let x = 2 and 0 := (k, x) € © with
d > 0. Define
H(p,0) :=w(Uy ), YpeRy, 60:=(kx) €0\ {0}

and H(u,0p) = w(UY), Vo € Ry. According to Lemma 4.1, for any £ > 0 and x € X', H(Ro(k, X), (k, X))
=0, H(u, (k,x)) < 0 for all pp > Ro(k,x) and H(u, (k,x)) > 0 for all p < Ro(k,x). By Lemma 2.5,
it suffices to show that for any p > 0, limg—+cc y—yo w(Ul,) = w(@ﬁo), which can be derived by the
arguments similar to those for [38, Theorem 4.1] and Theorem 3.15. O

To finish this section, we apply Theorem 4.2 to a periodic Ross-Macdonald model in a patch environ-
ment. According to [12], we consider the following T-periodic patch system:

dgi — dilgHj(t)v 1<i<m, (4.3a)
J=1
% =a(t) —mVi(t), 1<i<m, (4.3b)
ddi? _ Uliﬁi(t)Ww(t) — yihi(t) + dzm; Hhi(t), 1<i<m, (4.30)
o
O — (0 (V0 — i) — pa)ui), 1< i< m (43d)

Here H;(t) and V;(t) are the total populations of humans and mosquitoes in patch ¢ at time ¢, respectively;
h;(t) and v;(t) define the numbers of infectious humans and mosquitoes in patch ¢ at time ¢, respectively;
€;(t) > 0 is the recruitment rate of mosquitoes in patch ¢ at time ¢; p;(t) > 0 is the mortality rate of
mosquitoes in patch i at time ¢; 01; > 0 (02; > 0) is transmission probability from infectious mosquitoes
(humans) to susceptible humans (mosquitoes) in patch ¢ at time ¢; 3;(¢) > 0 is the mosquito biting rate
1
patch j to patch i for i # j; [ is the degree of human migration from patch i to all the other patches; d
is the migration coefficient. We assume that there is no death or birth during travel, so the emigration

rate of humans in patch i satisfies

in patch ¢ at time ¢; 7, 1> 0 is the human infectious period is the degree of human migration from

m
=0, Vi<i<m;
j=1

the functions ¢;, p; and 3; are T-periodic and continuous on R.

We further assume that the total populations of humans satisfy N = Z;nzl H;(0) > 0. By [12,
Lemma 3.1], it then follows that (4.3a) admits a globally asymptotically stable equilibrium H* =
(Hf,...,H:)T, which is independent of d > 0 and t € R, and (4.3b) admits a globally asymptoti-
cally stable T-periodic solution V*(¢) = (Vi*(t),...,V,*(t))T, which is independent of d > 0. Moreover,
Z;’;l H; = Z;nzl H,;(0). We linearize the system (4.3) at the disease-free periodic solution

(Hf,...,H V', ..., V5 0,...,0,0,...,00"

to obtain -
dd’f = onifi(t)oi(t) — yihi(t) + d Y _Uh;(), 1<i<m,
J Vo) Jj=1 (4.4)
(% B .

K2

We next choose n = 2m, and hence,
X:={u € C(R,R*™) : u(t) =u(t+T), t € R}.
Let

Vit (6) = Gigidmms Voo () i= (83 115())mxm and  V(£) :<V11(t) 0 )

0 Vaa(t)
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Define -
Fio(t) := (0i01:8:(t))mxm, Fou(t) == (51‘3‘02151(15)}{(5))

C \Eau(t) 0 '

Let L = (I;j)2mx2m be a cooperative matrix with the zero column sum defined by l;; = lg, 1<i,5<m

and l;; = 0 otherwise. For any d > 0, let {®4(t,s) : t > s} be the evolution family on R*™ of

and

% =dLlv-V(t)v, t=s

and define a bounded linear positive operator Qg : X — X by
“+oo
[Qqul(t) := / O,y(t,t —s)F(t—s)u(t—s)ds, teR, ueX
0

and Ro(d) := r(Qg). According to Theorem 4.2, we see that Ro(d) is continuous with respect to d €
(0, +00). Indeed, Theorem 4.2 shows that the basic reproduction ratio is continuous with respect to all
the parameters in the model.

Now we turn to the limiting profile of Ro(d) as d — +o0o. Let ¢ = (q1,...,qm)"T be a strongly positive
vector such that L q = 0 and 221 ¢; = 1, where LH = (lg)mxm. Notice that L is a reducible matrix.
Since L¥ is irreducible, we have oy = m + 1 due to Lemma 2.2, and hence,

X:={uec CR,R™ :u(t)=u(t+T),tcR}.

Moreover, P = (pnj)aox2m and @ = (gi1)2mxa, can be defined by p1; =1, 1 < j < m, pp(hem—1) = 1,
2<h<ao, i1 =qi, 1 <@ <m, quym—1y =1, 2 <1 < ag, prj = 0 and gy = 0 otherwise.

For any ¢t € R, define V(t) := PV (t)Q and F(t) :== PF(t)Q. Let {®(t,s) : t > s} be the evolution
family on R of

88—: = V(tw, t=s,
and define a bounded linear positive operator Q:X—>X by

+oo
(Qul (1) ::/0 B(t,t— $)B(t— s)u(t —s)ds, tcR, weX

and Rg := r(Q). It then follows from Theorem C that Ro(d) — R as d — +oc.
At last we numerically compute R by using the algorithm developed in [23,34]. The baseline pa-
rameters are m = 2, T = 365, N = 500, o1; = 0.2, 09; = 0.3, 7 = 0.02 and p = 0.1, as derived

from [12],
2mt 4rt 2mt
61(t) =12.5—5cos (T) — 5 cos (T)’ Ez(t) =12.5—5cos (T)’

Bi(t) = 0.028¢;(t), 15, = 1 and I = 1. Our numerical result shows that the basic reproduction ratios on
patches 1 and 2 are Rél) = 1.5340 and RE)Q) = 1.4478, respectively. From Figure 1, we observe that the
dependence of Ry with respect to d may be very complicated: Rg is decreasing when d is small enough
and large enough, while it is increasing on an interval. Moreover,

Ro(d) — max(RY, R)

as d — 0, and Rg — Ry = 1.5028 as d — +oo. For the corresponding time-averaged autonomous
system, we find that its basic reproduction number is Ry = 1.3555, which is independent of d. This
suggests that the use of a time-averaged autonomous model may underestimate the disease severity in
some transmission settings.
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Figure 1 (Color online) Ry initially decreases, then increases, and finally decreases with respect to d
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