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We use Weyl transformations between the Minkowski spaeetimd d$AdS spacetime to show that one cannot well define the
electrodynamics globally on the ordinary conformal contifi@ation of the Minkowski spacetime (or @d&dS spacetime), where
the electromagnetic field has a sign factor (and thus is dig@wuous) at the light cone. This problem is intuitivelydaciearly
shown by the Penrose diagrams, from which one may find thedyméhout too much dficulty. We use the Minkowski and
dS spacetimes together to cover the compactified spacehwhiact leads to the doubled conformal compactification. tkis
doubled conformal compactification, we obtain the globalgll-defined electrodynamics.
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1 Introduction

Conf | f . | . . lein i pointed out that one can easily obtain the electromagnetic
og OrTﬁ trar:; orTatloCns P a)f[.an |rl1|tertehst|ng ro etln pey's field associated with uniformly accelerated charged padic
and mathematics [1]. Conventionally, there are two meanby the conformal invariance of the Maxwell equations with

ggs (_)f thit?rm Corlllf(zrr]mal trafnsforrlatlor:j_ n tthet I|ter?eu point-like charges [6]. And conformal transformations in 2
ne i1s what we call tne coniormal coordinate transiorma- y; , o ygjnn glso play an important role in string theory (see

tion, which is a special kind of coordinate transformations

ST .~ ~e.g. ref. [7]). However, as what we will introduce in the next
and whose infinitesimal generators are the conformal Kjllin

section, conformal transformations can not be globally de-

vectors (CKVs). The other is the I.ocal re;caling (m_ore COM-fined on the Minkowski spacetime, which means that the con-
monly called the Weyl transformation), which acts directly formal invariance of electrodynamics can only be regarded a

t_he meric and can be rggarded asa Kind of gauge trapsform%cal_ In fact, conformal transformations can always glyba
tion. These two meanings certainly have some relatlonshlpact on ad-dimensional compactification spacetinte¥ 2),
but it is more appropriate to clearly distinguish them. dsle

otherwise specified, we mean in this paper by the term “con
formal transformation” as the conformal coordinate transf
mation.

which is called the conformally compactified spacetime sThi
idea inspires us to compactify the Minkowski, evenAids,
spacetime. In fact, electrodynamics even cannot be well de-
fined globally on the ordinary conformal compactification of

It has been shown that Maxwell's equations are invariantthe Minkowski spacetime. Instead, electrodynamics glgbal
under the larger conformal group [2-5]. Codirla and Osborn defined on the double covering of that conformal compactifi-
- cation is possible, which has long been noticed as mentioned
*Corresponding author (SUN ZhaoYong, email: sunzhaoy@@#ails.ucas.ac.cn; in ref. [6] We call this double covering the doubled confor-
TIAN Yu, email: ytian@ucas.ac.cn) mal compactification. Interestingly, Penrose had shown the
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doubled Penrose diagrams in ref. [8], which is closely re-anti-de Sitter (AdS) space times also have that conformal
lated to the doubled conformal compactification here. Ia thi compactification, which can be all treated from the viewpoin
paper, we try to construct the doubled conformal conpactifi-of the projective corfé . From now on, we concentrate on
cation to make the electrodynamics globally defined. the 4-dimensional case.

Considering that the zero-radius pseudo-sphere-#2)4 The projective cone¥] is defined as a zero-radius pseudo-
dimensional Minkowski space can always simplify the prob- sphereV in a (4+ 2)-dimensional Minkowski space:
lem and give an obvious map about conformal compactifica-
tion (see for example refs. [6,9-12]). nasl’® =0, (nas) = diag-1,1,1,1,1,-1), (1)

modulo the projective equivalence relation

: (M ~aeh, azo )
The conformal transformations form a group, named the con-
formal group, under certain conditions. It is well knownttha The equivalence class corresponding to the paifi is de-
the conformal group on thé-dimensional Euclidean space noted by [#]. The whole (42)-dimensional Minkowski
R%is of (d + 1)(d + 2)/2 dimensions fod > 2 and of infinite  spaceR® modulo the projective equivalence relation (2) is
dimensions fod = 2. But general conformal transformations the 5-dimensional projective spak®®, so [NV] is a subman-
cannot be globally defined on such a flat space, so this wellifold of RP®. It is obvious that the pseudo-sphere (1) and
known result has only considered the local aspects of conforthe equivalence relation (2) are both invariant under ganer
mal transformations. In fact, nontrivial conformal tramsf  O(2, 4) transformations, among whichZza antipodal reflec-
mations can be globally defined on thesphereS® instead,  tion
where the conformal group is ofl ¢ 1)(d + 2)/2 dimensions (™ - (M), (3)
whetherd > 2 ord = 2. There exists a conformal mapping
betweerR? andS¢, which smoothly extends the conventiona

conformal transformations on the former to the globally de—f_ ) ¢ all the Minkowski. dS and AdS ) h
fined ones on the latter. Fdr=2 onlya @+ 1)(d+2)/2=6 ication of all the Minkowski, dS an space times, where

dimensional subgroup of the infinite-dimensional “confatm theO(z, 4)/Z> transfor_mations act as conforma! transforma-
group” onR? can be so extended, which can be regarded adonson these space tlm_es. Thesgaient space “f"es can b?
the “global” conformal group o 2. These two distinct con- regarded as flierent choices of representatives in the equiv-
formal groups for thel = 2 case can also be identified as alence classes oN. In fact, these constant curvature space
the “angle-preserving” one and the “circle-preserving&on _times cqrrespondto cho_osg representative points by eders
respectively, see ref. [10]. For another elucidation o$ thi |ngNW|th hyperplanes iR”, where the metrics on them are
problem, see ref. [1], Chapter 5. naturally induced fromyag. For the hyperplangy:

There is exactly one point 08¢ that has no image on
RY under the conformal mapping. That point, though actu-
ally not onR?, is called the infinity point (also known as the jth (a,) # 0 the normal vector, it can be shown that the
conformal boundary for the case that the space has a nonntersection manifold is characterized by
positive-definite signature) &Y. The procedure that adds
the infinity point toRY, so that the conformal transformations S = "Baqag, (5)
can be globally defined, is known as the conformal compact-
ification of RY. The resulting compactified spac®’(here)is  as follows: (1)S < 0: dS spacetime, (Z = 0: Minkowski
also called the conformal compactification f8f). R9andS?  spacetime, (3p > 0: AdS spacetime, where in any c&8és
are both constant curvature (or maximal symmetry) spacegust the scalar curvature of the intersection manifold .

In differential geometry it is known that only constant curva-  More concretely, to get the Minkowski spacetime we just
ture spaces have ¢ 1)(d + 2)/2 independent CKVsi(> 2).  choose a light-like normal vector
In fact, all the constant curvature spaces, with any meigic s
natures, haved(+ 1)(d + 2)/2-dimensional “global” confor- (@) =(0,0,0,0,1,1). (6)
:S)?:ngglép: S.Bd the corresponding conformal compactlflca—_l_hus the intersectioM of N and the correspondingy, is
. S . flat with respect to the metric induced frogag, and can be
To see how the doubly conformal compactification arises, .
: . . : parametrized by
let us first have a simple review of the ordinary conformal
compactification of the Minkowski spacetime. As constant o

curvature spaces with the same signature, de Sitter (dS) and X = LF’ =03 (7)

2 General theory and the projective cone

| acts trivially on [V].
Then it can be shown that] is the conformal compacti-

aAgA = 1’ (4)

1) S%is its own conformal compactification.
2) Also called the null cone or the Lie sphere.
3) In order for V] to be a (4-dimensional) manifold, the origitfy) = 0 must be excluded.
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with L an arbitrary length scale parameter atid= ¢° + /*
the lightcone coordinates. The induced metric is propo&io
to vect

ds? =, dx‘dx’, (8)

so X! is just the Cartesian coordinates &M Then it is
straightforward to show that th®(2, 4)/Z, transformations
act as conformal transformations &h(for more details, see
ref. [8]). Note that some equivalence classesNdgnwhich
correspond to the infinity points d#l, have no representa-
tives on®,. They constitute precisely the intersectionsf
and the hyperplane

aAgA =0,

9)

which is parallel t&P,. Adding those infinity points td/ pro-
duces its conformal compactificatioN], whoseO(2, 4)/Z,
action is fully well-defined.
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The above construction of conformal compactification can
be extended to any dimension and any metric signature. How-
ever, for everd it can be shown the8* x S9/Z, is not home-
omorphic toS* x SY but is a non-orientable manifold, so the
conformal compactification of (£ d)-dimensional spacetime
is not simple and in some sense not suitable to be a spacetime.
One immediately sees that this shortcoming can be simply
overcome by discarding tH&, antipodal identification. That
is the doubly conformal compactification, which can be real-
ized by replacing the projective equivalence relation (Rhw
the pseudo-projective one:

(@™ ~ AP,

For thed = 3 case, we useN], to denoteN modulo the

above equivalence relation, i.e., the doubly conformal-com
pactification of all the Minkowski, dS and AdS space times,
whose metrical realization is exactly the intersection iman

1> 0. (15)

The dS and AdS space times can be obtained by choosing 4 (13), denoted by B. Correspondingly, the conformal

typically

(aa) = (0,0,0,0,0,1) (10)

and

(ax) = (0,0,0,0,1,0), (11)

respectively. However, they also have infinity points, or
conformal boundary, to be included for a fully well-defined

0O(2, 4)/Z, conformal action, since no single hyperplane can

contain representatives of all the equivalence classe§ .on

To remedy this problem, one may use general hypersurfaces

(of antipodal symmetry) to intersestf. It can be shown that
these intersection manifolds are all conformally*latand
that theO(2, 4)/Z, transformations induce conformal trans-
formations on them. The simplest choice of this hyperserfac
is a 5-sphere

SaslAB =212, (12)

which intersects all the equivalence classesNoprecisely
twice. The intersection o and the 5-sphere (12) is an
Stx S8

(2% + ()2 =12

(2 + @2+ (PP + (P = L2,
Upon the antipodal identification (3), one sees tiN} is of
topology

(13)

S x S%/7,, (14)

which is actually homeomorphic ®' x S2.
Although there is no natural metric defined o¥][ there

is an induced metric on the intersection manifold (13) (mod-

ulo the antipodal identification), which is calléthereafter.
N is conformally flat and has a globally defin€q2, 4)/Z,

group on (13) i90(2, 4) instead 0f0(2, 4)/Z.

3 The breakdown of the Maxwell equation on
the compactification of Minkowski spacetime

We have shown the geometrical process of compactification.
It is the most important that physical considerations suppo
the introduction of the doubly conformal compactification.
At this section we will introduce the discontinuity of elec-
trodynamics caused by compactifing the Minkowski space-
time. The action functional of electrodynamics in general
space times is

1
_ 4 — _ T yVB v
SEM - fd X‘/_g( 4gﬂ g FﬂvFaﬁ"'gu \];lAv > (16)
Fu = 3,A — 0,A,.
In this paper the metrics always have 4 {, +, +) signa-
ture. For the Minkowski spacetime with Cartesian coordi-
nates ¢, = 1,,), the above action functional is invariant (up

to a boundary term) under the conformal transformations pro
vided thatA, andJ, transform as:

A =2

respectively, where the transformationAfis just trivial and
that of J, contains a conformal fact&? defined by

o IR%

N

In fact, the action functional (16) in general space times is
invariant under, in addition to the fieomorphism, the Weyl

transformation

~ xR ~
A(X), ‘Jﬂ(x) = sz‘]v(x)’ (17)

Ty = QZUPU' (18)

G (¥) = K ()G, (%), (19)

conformal group, so it can be regarded as a metrical realizaprovided that\, (and thusF,,) is invariant andl, transforms

tion of [N], being the conformal compactification of all the
Minkowski, dS and AdS space times.

as:

Ju(x) = (I3 (20)

4) So they are all related by Weyl transformations (alseedationformal mappings), at least locally.
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Since the dS, AdS anl space times can all be obtained by charges here, due to the conformal boundasyd = 0 sepa-
Weyl transformations from the Minkowski spacetime, where rating the world linex = 0 into two parts. Properly speaking,
the Cartesian coordinate$ become the conformally flat co- the linex = 0 is separated into three segments, but the outer
ordinates on these space times, we can easily map the eletwo of them are joined through the Minkowski conformal in-
trodynamics from the Minkowski spacetime to them. finity, as shown in Figure 1(a), where the dash line KN can
The conformally flat coordinates on the dS spacetime carbe regarded as the world line of the charges in dS spacetime.
be obtained by the stereographic projection [14], with theFor convenience, we omit the prime in these notations in the

Weyl factor following equations. Since one patch of conformally flat co-
)2 ordinates cannot cover the whole dS spacetimether coor-
_ X v i
KG2(x) = ( _2) . R = XX, (21) dmat_e pgtches must a_Iso be used to check v_vhethe_r the above
4R solution is globally defined on the dS spacetime. It is easy to

see that one more (conformally-flat-coordinate) patch s su

with R the dS radius. The AdS case is simply achieved byficient, which can be viewed as the inversion

replacingR? with —R? for most of the dS expressions, so we
only mention the dS case. The Weyl factor for certain con- x

formally flat coordinates ofl can be shown to be X = 2 (27)
5 XOX0 + 3 XX x2 \2 of the original conformally flat coordinates. One can define
K (X) = L2 (E) ; (22)  special conformal transformations by combining an imaesi

with a translation and then another inversion [6]. Under the
which is positive definite reflecting the fact thdthas no con-  coordinate transformation (27), we have
formal boundary. v %%,

The action functional (16) withy,, = 1., jﬂ(i) _ %J (X) = [6_# 3,(%),
(NZ)2

Sem = f d4X(‘%fl’J“nVﬁFmeﬁ + n”VJuAv) (23) Re = 1%, (28)
which means

leads to the familiar equation of motion _
.Jo(x) g R0Jo(X) + X Ji(X)

naﬂaaFuv = ‘Jv- (24) ‘] (N) = Xo (,..2)2
The simplest solution to the above equation is the Coulomb — 1+ (Y2 [ 1 2P ]63 (z)
field for a static point charge ()2 \%
. e x o Lie g = e(1-?)%6°(%), (29)
i=Fio=——=, Bi==é"Fix=0,
R N A (25)  with t = %, and
Jo=e5%(x), J=0. _
o Ji(X L X0J0(X) + K Ji(X
General solutions to eq. (24) are just linear combinations J(%) = '( ) - 2% o) )y (30)

$2)2
of this fundamental solution. Of special interest is thecele ()
tromagnetic field associated with uniformly accelerateidipo At the same time, the electromagnetic field transforms as:
charge, which can be obtained from the solution (25) by con-

formal transformations [6]. There one sees that, however, a = [@ _ xf’_xﬂ} [ﬁ - &} Foo
additional sign factoe(Q) has to be inserted (or equivalently, T ez TR
discarded) to attain a globally defined solution. That, it,fa _ Fw ﬂF ~ ﬁF (31)
already indicates the doubly conformal compactification. | (X2 TR TR
the following, we will use Weyl transformations to map the .
solution (25) onto the dS and space times, where the dou- which means
bly conformal compactification is shown to be necessary. For Fio = ()”(2)‘3[$<2Fio — 2% Fjo + 28(EFio + KIFi))]
simplicity, we takeR = 1/2 in eq. (21) and masslets= 1/2 <2 102
in eq. (22). (x2) 3| (@ + 2) a ~23 2% X {)2(3]
First we consider the dS case. In this case we have from , | X/
gl
egs. (20) and (21) _ —6()?2)4£é (32)
¥ =e(l+x)%3(x), I =0, (26) X
_ . . with (%%) the sign of¥? and
while E{ and B[ are the same a; andB; in equation (25),
respectively. Note that there are actually two antipodaiipo = i= —2()?2)‘3f(>?iFoj + X;Fio) = 0. (33)

5) The uncovered part corresponds to (part of) the confobmahdary of the Minkowski spacetime.
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The discontinuity ofFio from the(%?) factor in eq. (32)
indicates the breakdown of the Maxwell equatiorxat="0.
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to the dashed line segmer§ andlH in Figure 1(b). Then
it is easy to see that the discontinuity 6% at % = 0 can

In fact, one may roughly understand this breakdown by thebe removed by reversing the sign of the electromagnetic field
usual argument that there can be no net charge on compaand electric current:
spaces, since the dS spacetime can be viewed as an expand-

ing S and it can be shown from egs. (26) and (29) that there

are two charges of the same signature on any one o®the
simultaneity hypersurfaces.
Also, it's interesting to consider about Maxwell equation

with the magnetic and electric charges. The solution (25) is

changed to be

e X 1k €n X
A A AN e |§ = LL
i i0 47T|X|3’ i 26 jk 47T|X|3’
J=eR (), I =eans (),

where thee,, and J™ are the magnetic charge and current.
With the second equation, one can easily see that the field

€m Ekink

47t |x3

Fij = &ijBx =

So the transformation of the field seemfetient with eqs.
(32) and (33). In fact, after adding the magnetic chargegthe
will be a none zero term ifrjp, which means that the mag-
netic charges will contribute to the electric field in the farn
mal transformation. But the discontinuity of thg atx = 0
still exists since the discontinuity is actually causedhsx|®
term. Evidently, the magnetic field is not zero, but a functio
containing thex|® term also has a(%?) factor. This indicates
the discontinuity of the magnetic field a8 = 0. One can

A= —Ay, (34)

in the regions “I” to “IV”, so that the Maxwell equation

Ju = =,

naﬂaaFyv = kgs(x)\]v (35)

can be satisfied on the whole dS spacetime. We explicitly

write this global solution as:
E=e(l+xX®dL%, B =0,

Jo = €(1 + x2)e(1 + x2)%63(x), (36)

J =0.
For this solution the two antipodal point charges on the dS
spacetime have opposite sighs

The Penrose diagram of dS spacetime as Figure 1(a) is not
the familiar one, but has the shape of that of the Minkowski
spacetime. It turns out to be interesting that we superpese t
familiar Penrose diagrams of dS and Minkowski space times,
as in Figure 2. There the cylinder AEFB (with identification
AB=EF) is the Penrose diagram of dS spacetime, while the
diamond KLNM is that of Minkowski spacetime. If we iden-
tify the regions “I” to “IV” with “l ”” to “IV ”", respectively,
we obtain the ordinary conformal compactification of dS and
Minkowski space times (see also [14]). However, we have
seen that for globally defined solutions on dS and Minkowski

roughly understand this by thinking about the symmetry of space times (25) and (36) the electromagnetic field and elec-

electric and the magnetic charges.

4 Penrose diagrams and the doubled covering

tric current in the regions “I” to “I\V” difer from that in “”

to “IV’” by a sign, up to positive Weyl factors. In order to find

a conformal compactification of the Minkowski and/d8S
space times where the electrodynamics can be globally de-

The above discussion can be illustrated with Penrose diafined, then, instead of identifying the regions “I” to “I\V” ¢

grams, as in Figure 1. The lightcond = 0 corresponds

“1”"to “IV ’” immediately, one should take them as, actually,

Figure 1 An illustration of the point charge(s) in the dS spacetimévirenrose diagrams. (a) Penrose diagram of the dS spadaticoaformally flat
coordinates, with identification KEMN and KM=LN, which can be compared with Figure 1 in ref. [14]. The sdilié segments GH and |J are its conformal
boundary. The dashed line segment stands for the world ditkee point charges. (b) Inversion (27) of (a). The pointd. KM and N are all transformed to
the origin, and the triangles (numbered “I” to “IV”) in (a) tbe corresponding positions in this Figure, respectively.

6) Itis interesting if this fact has something to do with thigiaments given in ref. [15], which is from a completelyfdrent point of view.
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Figure 3 Double extension of Figure 2.

Figure 2 Superposition of the familiar Penrose diagrams of dS and transformation
Minkowski space times, where extension of the ordinary aonél com- X —» _,IWX_; — _ﬁz (37)
pactification arises. X X
can be viewed as to have relative coordinate§, Q) or

antipodal region8 on the doubly conformal compactifica- (0, £1) on these diagrams.
tion of these Space times. In other words, we use Minkowski Then we consider thH case. S|m||ar|y1 we have from eqs.
spacetime and dS spacetime to covefedent parts of this  (20) and (22)
doubly conformal compactification.

Although we have not seen in Figure 2 the whole of Jo = €1 + 2(t* + x°) + (X*)?]6%(X) = (1 + t?)%6°(x), (38)
the doubly conformal compactification of Minkowski and 4 =0
dSAdS space times, it is rather straightforward to consttucti i, E: andB; still given by eq. (25), where we have omitted
based on the above analysis. From Figure 2 it is clear that ahe prime in these notations. The regionfolincovered by

tipodal points have relative coordinatesl(+1) on the Pen- o conformally flat coordinates corresponds to the orgiinar
rose diagram, where we have takeB as the length unit. - n0rmal houndary of the Minkowski spacetime. By the in-

The antipode of antipode, with relative coordinat€,0) or  \grsion (27), we can examine the uncovered region (actually
(0, £2), should be itself. In fact, the electromagnetic field a”da“compactified” light cone). For the electric current, wedia
electric current are of the same value, up to positive Weyl

factors, at these points, so it is safe to identify thesetpaim Jo(®) = e(1 + 2)%6%(%), Ji(%) = 0. (39)

the conformal sense. A thus extended version of Figure 2 is

Figure 3. The doubly conformal compactification of dS and For the electromagnetic field, we have also egs. (32) and
Minkowski space times is shown, more clearly, in Figure 4. (33). So we can see the breakdown of the Maxwell equation
Note also that any pair of points related by an inversios-lik at%? = 0, similar to the dS case. Unlike the dS case, however,

(a) B F' (b O K Q
A E L M
B F P N R

Figure 4 An illustration of the doubly conformal compactification @& and Minkowski space times with Penrose diagrams. (a) Baxtiension of the
Penrose diagram of dS spacetime, with the usual cylindideaitification BB=F'F, which is conformally compactified by identifying B=BF. (b) Double
extension of the Penrose diagram of Minkowski spacetimégtwis conformally compactified by identifying &R and OGPR.

7) This “antipodal” refers to the 6-dimensional one in eq, & can be seen more clearly in the following discussion.
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sinceN has no (conformal) boundary, this breakdown cannotwith a magnetic charge is very similar to the electron, which
be remedied by the sign reversion (34)qafandJ, in certain ~ we don’t analysis here.

regions ofN. Although one can see egs. (38) and (39) as the Since our attention is solely paid to the classical case, here
only correct form of a point-like source that satisfies the-co one should further consider the conformal invariant quan-
tinuity equation, there is no corresponding electromagnet tum field theory containing electrodynamics corresponiging
field that globally satisfies the Maxwell equation. In other [16,17]. And zero-mass systems [18—20] can also be con-
words, one cannot find fundamental solutions to the Maxwellsidered, including the Lienard-Wiechert field of massless
equation orN. This problem can be resolved by cutting open charges [21]. These problems should be left for future works
N alongx? = 0 and sewing anothét (also cut open) ontoit, The CPT invariance, and causality are also some interesting

which yields the double coverind\2 as expected. aspects for our further studying.

5 Concluding remarks
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that the pseudo-sphere really can help him to understand the
conformal compactification. First, we get the intersecidn
which in fact is a Minkowski spacetime, of the hyperpléhe

and the zero radius pseudo-sphafén a (4+2)-dimensional 2
Minkowski spacetime. It's not dicult to see that the infinity
points of M lie on the hyperplane parallel ¥8,. The com- 3
pactification V], in which theO(2,4)Z, action can be well
defined, is generated by adding those infinity points\io
That is the compactification of Minkowski spacetime. For
the dS and Ads case, we use a general hypersurface (of an-
tipodal symmetry) to intersed¥ to get some conformally flat g
manifolds.

In sect. 3, we map the solution to Maxwell equation on 7
Minkowski spacetime (25) to the dS spacetime to get eq.
(26), from which one can find that there are really two antipo-
dal point charges. This is caused by the fact that the confor-

) . 9
mal boundary 1 x?=0 separates the world line= 0 into two
parts. With the inversion (27), one can find that the field (32) 19
is discontinuous ax*"= 0, which shows the breakdown of
the Maxwell equation on the compactification of Minkowski 11
spacetime. It is not hard to see that the breakdown is caused
by the modulus term in equation (25). One should take carel?
that in eq. (29) there is not a simpké factor but a Jacobian
factor when one writeg® (F(/)?Z) into 63(X). And the condi-
tion for magnetic charge is notftrent .

In sect. 4, the discussion in sect. 3 is illustrated with Pen- 14
rose diagrams. Reversing the sign of the electromagndtic fie
and current (see eq. (34)) in “I’=“I\V" in Figure 1(b), one can 15
see the Maxwell equations can be well defined on the whole
dS spacetime. Eq. (36) is the global solution, and one can
see that there are two antipodal point charges. We also show,
that the ordinary compactification, identifying “I"’—*I\V” ith
“I’”"=“I\V ”", can not give a global defined electrodynamics. 18
This leads us to consider the doubled conformal compactifi-
cation, and we reveal that superposing the familiar Penrose
diagrams of dS and Minkowski space times see Figure 2, andt®
identifying the regions “I"-“IV” with “I""=“IV " as antipo-
dal regions, respectively will give the doubled compaciHic
tion. Figures 3 and 4 show this process clearly. And the
doubled conformal compactification for the electrodynamic
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