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We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the
electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime (or dS/AdS spacetime), where
the electromagnetic field has a sign factor (and thus is discountinuous) at the light cone. This problem is intuitively and clearly
shown by the Penrose diagrams, from which one may find the remedy without too much difficulty. We use the Minkowski and
dS spacetimes together to cover the compactified space, which in fact leads to the doubled conformal compactification. Onthis
doubled conformal compactification, we obtain the globallywell-defined electrodynamics.
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1 Introduction

Conformal transformations play an interesting role in physics
and mathematics [1]. Conventionally, there are two mean-
ings of the term “conformal transformation” in the literature.
One is what we call the conformal coordinate transforma-
tion, which is a special kind of coordinate transformations
and whose infinitesimal generators are the conformal Killing
vectors (CKVs). The other is the local rescaling (more com-
monly called the Weyl transformation), which acts directlyon
the metric and can be regarded as a kind of gauge transforma-
tion. These two meanings certainly have some relationship,
but it is more appropriate to clearly distinguish them. Unless
otherwise specified, we mean in this paper by the term “con-
formal transformation” as the conformal coordinate transfor-
mation.

It has been shown that Maxwell’s equations are invariant
under the larger conformal group [2–5]. Codirla and Osborn
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pointed out that one can easily obtain the electromagnetic
field associated with uniformly accelerated charged particles
by the conformal invariance of the Maxwell equations with
point-like charges [6]. And conformal transformations in 2-
dimension also play an important role in string theory (see
e.g. ref. [7]). However, as what we will introduce in the next
section, conformal transformations can not be globally de-
fined on the Minkowski spacetime, which means that the con-
formal invariance of electrodynamics can only be regarded as
local. In fact, conformal transformations can always globally
act on ad-dimensional compactification spacetime (d > 2),
which is called the conformally compactified spacetime. This
idea inspires us to compactify the Minkowski, even dS/AdS,
spacetime. In fact, electrodynamics even cannot be well de-
fined globally on the ordinary conformal compactification of
the Minkowski spacetime. Instead, electrodynamics globally
defined on the double covering of that conformal compactifi-
cation is possible, which has long been noticed as mentioned
in ref. [6]. We call this double covering the doubled confor-
mal compactification. Interestingly, Penrose had shown the
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doubled Penrose diagrams in ref. [8], which is closely re-
lated to the doubled conformal compactification here. In this
paper, we try to construct the doubled conformal conpactifi-
cation to make the electrodynamics globally defined.

Considering that the zero-radius pseudo-sphere in (4+2)-
dimensional Minkowski space can always simplify the prob-
lem and give an obvious map about conformal compactifica-
tion (see for example refs. [6,9–12]).

2 General theory and the projective cone

The conformal transformations form a group, named the con-
formal group, under certain conditions. It is well known that
the conformal group on thed-dimensional Euclidean space
R

d is of (d + 1)(d + 2)/2 dimensions ford > 2 and of infinite
dimensions ford = 2. But general conformal transformations
cannot be globally defined on such a flat space, so this well-
known result has only considered the local aspects of confor-
mal transformations. In fact, nontrivial conformal transfor-
mations can be globally defined on thed-sphereS d instead,
where the conformal group is of (d + 1)(d + 2)/2 dimensions
whetherd > 2 or d = 2. There exists a conformal mapping
betweenRd andS d, which smoothly extends the conventional
conformal transformations on the former to the globally de-
fined ones on the latter. Ford = 2 only a (d + 1)(d + 2)/2 = 6
dimensional subgroup of the infinite-dimensional “conformal
group” onR2 can be so extended, which can be regarded as
the “global” conformal group onR2. These two distinct con-
formal groups for thed = 2 case can also be identified as
the “angle-preserving” one and the “circle-preserving” one,
respectively, see ref. [10]. For another elucidation of this
problem, see ref. [1], Chapter 5.

There is exactly one point onS d that has no image on
R

d under the conformal mapping. That point, though actu-
ally not onRd, is called the infinity point (also known as the
conformal boundary for the case that the space has a non-
positive-definite signature) ofRd. The procedure that adds
the infinity point toRd, so that the conformal transformations
can be globally defined, is known as the conformal compact-
ification ofRd. The resulting compactified space (S d here) is
also called the conformal compactification (ofRd). Rd andS d

are both constant curvature (or maximal symmetry) spaces.
In differential geometry it is known that only constant curva-
ture spaces have (d + 1)(d + 2)/2 independent CKVs (d > 2).
In fact, all the constant curvature spaces, with any metric sig-
natures, have (d + 1)(d + 2)/2-dimensional “global” confor-
mal groups and the corresponding conformal compactifica-
tions ford > 21) .

To see how the doubly conformal compactification arises,
let us first have a simple review of the ordinary conformal
compactification of the Minkowski spacetime. As constant
curvature spaces with the same signature, de Sitter (dS) and

anti-de Sitter (AdS) space times also have that conformal
compactification, which can be all treated from the viewpoint
of the projective cone2) . From now on, we concentrate on
the 4-dimensional case.

The projective cone [N] is defined as a zero-radius pseudo-
sphereN in a (4+ 2)-dimensional Minkowski space:

ηABζ
AζB = 0, (ηAB) = diag(−1, 1, 1, 1, 1,−1), (1)

modulo the projective equivalence relation3)

(ζA) ∼ λ(ζA), λ , 0. (2)

The equivalence class corresponding to the point (ζA) is de-
noted by [ζA]. The whole (4+2)-dimensional Minkowski
spaceR6 modulo the projective equivalence relation (2) is
the 5-dimensional projective spaceRP5, so [N] is a subman-
ifold of RP5. It is obvious that the pseudo-sphere (1) and
the equivalence relation (2) are both invariant under general
O(2, 4) transformations, among which aZ2 antipodal reflec-
tion

(ζA)→ −(ζA), (3)

acts trivially on [N].
Then it can be shown that [N] is the conformal compacti-

fication of all the Minkowski, dS and AdS space times, where
the O(2, 4)/Z2 transformations act as conformal transforma-
tions on these space times. These different space times can be
regarded as different choices of representatives in the equiv-
alence classes onN. In fact, these constant curvature space
times correspond to choose representative points by intersect-
ingN with hyperplanes inR6, where the metrics on them are
naturally induced fromηAB. For the hyperplanePa:

aAζ
A = 1, (4)

with (aA) , 0 the normal vector, it can be shown that the
intersection manifold is characterized by

S = ηABaAaB, (5)

as follows: (1)S < 0: dS spacetime, (2)S = 0: Minkowski
spacetime, (3)S > 0: AdS spacetime, where in any caseS is
just the scalar curvature of the intersection manifold .

More concretely, to get the Minkowski spacetime we just
choose a light-like normal vector

(aA) = (0, 0, 0, 0, 1, 1). (6)

Thus the intersectionM of N and the correspondingPa is
flat with respect to the metric induced fromηAB, and can be
parametrized by

xµ = L
ζµ

ζ+
, µ = 0, · · · , 3, (7)

1) S d is its own conformal compactification.
2) Also called the null cone or the Lie sphere.
3) In order for [N ] to be a (4-dimensional) manifold, the origin (ζA) = 0 must be excluded.
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with L an arbitrary length scale parameter andζ± = ζ5 ± ζ4
the lightcone coordinates. The induced metric is proportional
to vect

ds2 = ηµνdxµdxν, (8)

so xµ is just the Cartesian coordinates onM. Then it is
straightforward to show that theO(2, 4)/Z2 transformations
act as conformal transformations onM (for more details, see
ref. [8]). Note that some equivalence classes onN, which
correspond to the infinity points ofM, have no representa-
tives onPa. They constitute precisely the intersection ofN
and the hyperplane

aAζ
A = 0, (9)

which is parallel toPa. Adding those infinity points toM pro-
duces its conformal compactification [N], whoseO(2, 4)/Z2

action is fully well-defined.
The dS and AdS space times can be obtained by choosing

typically

(aA) = (0, 0, 0, 0, 0, 1) (10)

and

(aA) = (0, 0, 0, 0, 1, 0), (11)

respectively. However, they also have infinity points, or
conformal boundary, to be included for a fully well-defined
O(2, 4)/Z2 conformal action, since no single hyperplane can
contain representatives of all the equivalence classes onN.
To remedy this problem, one may use general hypersurfaces
(of antipodal symmetry) to intersectN. It can be shown that
these intersection manifolds are all conformally flat4), and
that theO(2, 4)/Z2 transformations induce conformal trans-
formations on them. The simplest choice of this hypersurface
is a 5-sphere

δABζ
AζB = 2L2, (12)

which intersects all the equivalence classes onN precisely
twice. The intersection ofN and the 5-sphere (12) is an
S 1 × S 3:

(ζ0)2 + (ζ5)2 = L2,

(ζ1)2 + (ζ2)2 + (ζ3)2 + (ζ4)2 = L2.
(13)

Upon the antipodal identification (3), one sees that [N] is of
topology

S 1 × S 3/Z2, (14)

which is actually homeomorphic toS 1 × S 3.
Although there is no natural metric defined on [N], there

is an induced metric on the intersection manifold (13) (mod-
ulo the antipodal identification), which is calledN hereafter.
N is conformally flat and has a globally definedO(2, 4)/Z2

conformal group, so it can be regarded as a metrical realiza-
tion of [N], being the conformal compactification of all the
Minkowski, dS and AdS space times.

The above construction of conformal compactification can
be extended to any dimension and any metric signature. How-
ever, for evend it can be shown thatS 1× S d/Z2 is not home-
omorphic toS 1 × S d but is a non-orientable manifold, so the
conformal compactification of (1+d)-dimensional spacetime
is not simple and in some sense not suitable to be a spacetime.
One immediately sees that this shortcoming can be simply
overcome by discarding theZ2 antipodal identification. That
is the doubly conformal compactification, which can be real-
ized by replacing the projective equivalence relation (2) with
the pseudo-projective one:

(ζA) ∼ λ(ζA), λ > 0. (15)

For thed = 3 case, we use [N]+ to denoteN modulo the
above equivalence relation, i.e., the doubly conformal com-
pactification of all the Minkowski, dS and AdS space times,
whose metrical realization is exactly the intersection mani-
fold (13), denoted by 2N. Correspondingly, the conformal
group on (13) isO(2, 4) instead ofO(2, 4)/Z2.

3 The breakdown of the Maxwell equation on
the compactification of Minkowski spacetime

We have shown the geometrical process of compactification.
It is the most important that physical considerations support
the introduction of the doubly conformal compactification.
At this section we will introduce the discontinuity of elec-
trodynamics caused by compactifing the Minkowski space-
time. The action functional of electrodynamics in general
space times is

S EM =

∫

d4x
√
−g

(

−1
4

gµαgνβFµνFαβ + gµνJµAν

)

,

Fµν = ∂µAν − ∂νAµ.
(16)

In this paper the metrics always have a (−,+,+,+) signa-
ture. For the Minkowski spacetime with Cartesian coordi-
nates (gµν = ηµν), the above action functional is invariant (up
to a boundary term) under the conformal transformations pro-
vided thatAµ andJµ transform as:

Aµ(x) =
∂x̃ν

∂xµ
Ãν(x̃), Jµ(x) = Ω2∂x̃ν

∂xµ
J̃ν(x̃), (17)

respectively, where the transformation ofAµ is just trivial and
that ofJµ contains a conformal factorΩ2 defined by

∂x̃µ

∂xρ
∂x̃ν

∂xσ
ηµν = Ω

2ηρσ. (18)

In fact, the action functional (16) in general space times is
invariant under, in addition to the diffeomorphism, the Weyl
transformation

gµν(x) = k−2(x)g′µν(x), (19)

provided thatAµ (and thusFµν) is invariant andJµ transforms
as:

Jµ(x) = k2(x)J′µ(x). (20)

4) So they are all related by Weyl transformations (also called conformal mappings), at least locally.
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Since the dS, AdS andN space times can all be obtained by
Weyl transformations from the Minkowski spacetime, where
the Cartesian coordinatesxµ become the conformally flat co-
ordinates on these space times, we can easily map the elec-
trodynamics from the Minkowski spacetime to them.

The conformally flat coordinates on the dS spacetime can
be obtained by the stereographic projection [14], with the
Weyl factor

k−2
dS(x) =

(

1+
x2

4R2

)2

, x2 = ηµνx
µxν, (21)

with R the dS radius. The AdS case is simply achieved by
replacingR2 with −R2 for most of the dS expressions, so we
only mention the dS case. The Weyl factor for certain con-
formally flat coordinates onN can be shown to be

k−2
N (x) = 1+

x0x0 +
∑

i xixi

2L2
+

(

x2

4L2

)2

, (22)

which is positive definite reflecting the fact thatN has no con-
formal boundary.

The action functional (16) withgµν = ηµν

S EM =

∫

d4x

(

−1
4
ηµαηνβFµνFαβ + η

µνJµAν

)

(23)

leads to the familiar equation of motion

ηαµ∂αFµν = Jν. (24)

The simplest solution to the above equation is the Coulomb
field for a static point charge:x

Ei = Fi0 =
e

4π
xi

|x|3 , Bi =
1
2
ǫi jkF jk = 0,

J0 = eδ3(x), Ji = 0.
(25)

General solutions to eq. (24) are just linear combinations
of this fundamental solution. Of special interest is the elec-
tromagnetic field associated with uniformly accelerated point
charge, which can be obtained from the solution (25) by con-
formal transformations [6]. There one sees that, however, an
additional sign factorǫ(Ω) has to be inserted (or equivalently,
discarded) to attain a globally defined solution. That, in fact,
already indicates the doubly conformal compactification. In
the following, we will use Weyl transformations to map the
solution (25) onto the dS andN space times, where the dou-
bly conformal compactification is shown to be necessary. For
simplicity, we takeR = 1/2 in eq. (21) and masslessL = 1/2
in eq. (22).

First we consider the dS case. In this case we have from
eqs. (20) and (21)

J′0 = e(1+ x2)2δ3(x), J′i = 0, (26)

while E′i andB′i are the same asEi andBi in equation (25),
respectively. Note that there are actually two antipodal point

charges here, due to the conformal boundary 1+ x2 = 0 sepa-
rating the world linex = 0 into two parts. Properly speaking,
the linex = 0 is separated into three segments, but the outer
two of them are joined through the Minkowski conformal in-
finity, as shown in Figure 1(a), where the dash line KN can
be regarded as the world line of the charges in dS spacetime.
For convenience, we omit the prime in these notations in the
following equations. Since one patch of conformally flat co-
ordinates cannot cover the whole dS spacetime5) , other coor-
dinate patches must also be used to check whether the above
solution is globally defined on the dS spacetime. It is easy to
see that one more (conformally-flat-coordinate) patch is suf-
ficient, which can be viewed as the inversion

xµ =
x̃µ

x̃2
(27)

of the original conformally flat coordinates. One can define
special conformal transformations by combining an inversion
with a translation and then another inversion [6]. Under the
coordinate transformation (27), we have

J̃µ(x̃) =
∂xν

∂x̃µ
Jν(x) =

[

δνµ

x̃2
− 2

x̃ν x̃µ
(x̃2)2

]

Jν(x),

x̃µ = ηµν x̃
ν, (28)

which means

J̃0(x̃) =
J0(x)

x̃2
− 2x̃0

x̃0J0(x) + x̃iJi(x)
(x̃2)2

= e[1 + (x̃2)−1]2

[

1
x̃2
+

2t̃2

(x̃2)2

]

δ3
( x̃

x̃2

)

= e(1− t̃2)2δ3(x̃), (29)

with t̃ = x̃0, and

J̃i(x̃) =
Ji(x)

x̃2
− 2x̃i

x̃0J0(x) + x̃iJi(x)
(x̃2)2

= 0. (30)

At the same time, the electromagnetic field transforms as:

F̃µν =

[

δ
ρ
µ

x̃2
− 2

x̃ρ x̃µ
(x̃2)2

] [

δσν

x̃2
− 2

x̃σ x̃ν
(x̃2)2

]

Fρσ

=
Fµν

(x̃2)2
− 2

x̃ρ x̃µ
(x̃2)3

Fρν − 2
x̃σ x̃ν
(x̃2)3

Fµσ, (31)

which means

F̃i0 = (x̃2)−3[ x̃2Fi0 − 2x̃i x̃
jF j0 + 2t̃(t̃Fi0 + x̃ jFi j)]

=
e

4π
(x̃2)−3

[

(t̃2 + x̃2)
x̃i/x̃2

|x̃/x̃2|3 − 2x̃i x̃2/x̃2

|x̃/x̃2|3

]

= − ǫ(x̃2)
e

4π
x̃i

x̃

2

(32)

with ǫ(x̃2) the sign of ˜x2 and

F̃i j = −2(x̃2)−3t̃(x̃iF0 j + x̃ jFi0) = 0. (33)

5) The uncovered part corresponds to (part of) the conformalboundary of the Minkowski spacetime.
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The discontinuity ofF̃i0 from theǫ(x̃2) factor in eq. (32)
indicates the breakdown of the Maxwell equation at ˜x2 = 0.
In fact, one may roughly understand this breakdown by the
usual argument that there can be no net charge on compact
spaces, since the dS spacetime can be viewed as an expand-
ing S 3 and it can be shown from eqs. (26) and (29) that there
are two charges of the same signature on any one of theS 3

simultaneity hypersurfaces.
Also, it’s interesting to consider about Maxwell equation

with the magnetic and electric charges. The solution (25) is
changed to be

Ei = Fi0 =
e

4π
xi

|x|3
, Bi =

1
2
ǫi jkF jk =

em

4π
xi

|x|3
,

J = eδ3 (x) , Jm
0 = emδ

3 (x) ,

where theem and Jm are the magnetic charge and current.
With the second equation, one can easily see that the field

Fi j = ǫki jBk =
em

4π

ǫki jxk

|x|3
, 0.

So the transformation of the field seems different with eqs.
(32) and (33). In fact, after adding the magnetic charge, there
will be a none zero term inF̃i0, which means that the mag-
netic charges will contribute to the electric field in the confor-
mal transformation. But the discontinuity of thẽFi0 at x = 0
still exists since the discontinuity is actually caused by the|x|3
term. Evidently, the magnetic field is not zero, but a function
containing the|x|3 term also has aε(x̃2) factor. This indicates
the discontinuity of the magnetic field at ˜x2 = 0. One can
roughly understand this by thinking about the symmetry of
electric and the magnetic charges.

4 Penrose diagrams and the doubled covering

The above discussion can be illustrated with Penrose dia-
grams, as in Figure 1. The lightcone ˜x2 = 0 corresponds

to the dashed line segmentsJG andIH in Figure 1(b). Then
it is easy to see that the discontinuity ofF̃i0 at x̃2 = 0 can
be removed by reversing the sign of the electromagnetic field
and electric current:

Aµ → −Aµ, Jµ → −Jµ, (34)

in the regions “I” to “IV”, so that the Maxwell equation

ηαµ∂αFµν = k2
dS(x)Jν (35)

can be satisfied on the whole dS spacetime. We explicitly
write this global solution as:

Ei = ǫ(1+ x2) e
4π

xi

|x|3 , Bi = 0,
J0 = ǫ(1+ x2)e(1+ x2)2δ3(x), Ji = 0.

(36)

For this solution the two antipodal point charges on the dS
spacetime have opposite signs6) .

The Penrose diagram of dS spacetime as Figure 1(a) is not
the familiar one, but has the shape of that of the Minkowski
spacetime. It turns out to be interesting that we superpose the
familiar Penrose diagrams of dS and Minkowski space times,
as in Figure 2. There the cylinder AEFB (with identification
AB=EF) is the Penrose diagram of dS spacetime, while the
diamond KLNM is that of Minkowski spacetime. If we iden-
tify the regions “I” to “IV” with “I ′” to “IV ′”, respectively,
we obtain the ordinary conformal compactification of dS and
Minkowski space times (see also [14]). However, we have
seen that for globally defined solutions on dS and Minkowski
space times (25) and (36) the electromagnetic field and elec-
tric current in the regions “I” to “IV” differ from that in “I′”
to “IV ′” by a sign, up to positive Weyl factors. In order to find
a conformal compactification of the Minkowski and dS/AdS
space times where the electrodynamics can be globally de-
fined, then, instead of identifying the regions “I” to “IV” with
“I ′” to “IV ′” immediately, one should take them as, actually,

Figure 1 An illustration of the point charge(s) in the dS spacetime with Penrose diagrams. (a) Penrose diagram of the dS spacetimein conformally flat
coordinates, with identification KL=MN and KM=LN, which can be compared with Figure 1 in ref. [14]. The solidline segments GH and IJ are its conformal
boundary. The dashed line segment stands for the world linesof the point charges. (b) Inversion (27) of (a). The points K,L, M and N are all transformed to
the origin, and the triangles (numbered “I” to “IV”) in (a) tothe corresponding positions in this Figure, respectively.

6) It is interesting if this fact has something to do with the arguments given in ref. [15], which is from a completely different point of view.
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Figure 2 Superposition of the familiar Penrose diagrams of dS and

Minkowski space times, where extension of the ordinary conformal com-

pactification arises.

antipodal regions7) on the doubly conformal compactifica-
tion of these space times. In other words, we use Minkowski
spacetime and dS spacetime to cover different parts of this
doubly conformal compactification.

Although we have not seen in Figure 2 the whole of
the doubly conformal compactification of Minkowski and
dS/AdS space times, it is rather straightforward to construct it
based on the above analysis. From Figure 2 it is clear that an-
tipodal points have relative coordinates (±1,±1) on the Pen-
rose diagram, where we have takenAB as the length unit.
The antipode of antipode, with relative coordinate (±2, 0) or
(0,±2), should be itself. In fact, the electromagnetic field and
electric current are of the same value, up to positive Weyl
factors, at these points, so it is safe to identify these points in
the conformal sense. A thus extended version of Figure 2 is
Figure 3. The doubly conformal compactification of dS and
Minkowski space times is shown, more clearly, in Figure 4.
Note also that any pair of points related by an inversion-like

Figure 3 Double extension of Figure 2.

transformation

xµ → −ηµν
xν

x2
= −

xµ
x2

(37)

can be viewed as to have relative coordinates (±1, 0) or
(0,±1) on these diagrams.

Then we consider theN case. Similarly, we have from eqs.
(20) and (22)

J0 = e[1 + 2(t2 + x2) + (x2)2]δ3(x) = e(1+ t2)2δ3(x),
Ji = 0, (38)

with Ei andBi still given by eq. (25), where we have omitted
the prime in these notations. The region ofN uncovered by
the conformally flat coordinates corresponds to the ordinary
conformal boundary of the Minkowski spacetime. By the in-
version (27), we can examine the uncovered region (actually
a “compactified” light cone). For the electric current, we have

J̃0(x̃) = e(1+ t̃2)2δ3(x̃), J̃i(x̃) = 0. (39)

For the electromagnetic field, we have also eqs. (32) and
(33). So we can see the breakdown of the Maxwell equation
at x̃2 = 0, similar to the dS case. Unlike the dS case, however,

Figure 4 An illustration of the doubly conformal compactification ofdS and Minkowski space times with Penrose diagrams. (a) Double extension of the
Penrose diagram of dS spacetime, with the usual cylindricalidentification B′B=F′F, which is conformally compactified by identifying B′F′=BF. (b) Double
extension of the Penrose diagram of Minkowski spacetime, which is conformally compactified by identifying OP=QR and OQ=PR.

7) This “antipodal” refers to the 6-dimensional one in eq. (3), as can be seen more clearly in the following discussion.
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sinceN has no (conformal) boundary, this breakdown cannot
be remedied by the sign reversion (34) ofAµ andJµ in certain
regions ofN. Although one can see eqs. (38) and (39) as the
only correct form of a point-like source that satisfies the con-
tinuity equation, there is no corresponding electromagnetic
field that globally satisfies the Maxwell equation. In other
words, one cannot find fundamental solutions to the Maxwell
equation onN. This problem can be resolved by cutting open
N alongx̃2 = 0 and sewing anotherN (also cut open) onto it,
which yields the double covering 2N, as expected.

5 Concluding remarks

In sect. 2, we review the ordinary conformal compactification
of the Minkowski, dS and Ads space times, where one can see
that the pseudo-sphere really can help him to understand the
conformal compactification. First, we get the intersectionM,
which in fact is a Minkowski spacetime, of the hyperplanePa

and the zero radius pseudo-sphereN in a (4+2)-dimensional
Minkowski spacetime. It’s not difficult to see that the infinity
points ofM lie on the hyperplane parallel toPa. The com-
pactification [N], in which theO(2,4)/Z2 action can be well
defined, is generated by adding those infinity points toM.
That is the compactification of Minkowski spacetime. For
the dS and Ads case, we use a general hypersurface (of an-
tipodal symmetry) to intersectN to get some conformally flat
manifolds.

In sect. 3, we map the solution to Maxwell equation on
Minkowski spacetime (25) to the dS spacetime to get eq.
(26), from which one can find that there are really two antipo-
dal point charges. This is caused by the fact that the confor-
mal boundary 1+x2=0 separates the world linex = 0 into two
parts. With the inversion (27), one can find that the field (32)
is discontinuous at ˜x2 = 0, which shows the breakdown of
the Maxwell equation on the compactification of Minkowski
spacetime. It is not hard to see that the breakdown is caused
by the modulus term in equation (25). One should take care
that in eq. (29) there is not a simple ˜x2 factor but a Jacobian
factor when one writesδ3

(

x̃/x̃2
)

into δ3(x̃). And the condi-
tion for magnetic charge is not different .

In sect. 4, the discussion in sect. 3 is illustrated with Pen-
rose diagrams. Reversing the sign of the electromagnetic field
and current (see eq. (34)) in “I”–“IV” in Figure 1(b), one can
see the Maxwell equations can be well defined on the whole
dS spacetime. Eq. (36) is the global solution, and one can
see that there are two antipodal point charges. We also show
that the ordinary compactification, identifying “I”–“IV” with
“I ′”–“IV ′”, can not give a global defined electrodynamics.
This leads us to consider the doubled conformal compactifi-
cation, and we reveal that superposing the familiar Penrose
diagrams of dS and Minkowski space times see Figure 2, and
identifying the regions “I”–“IV” with “I ′”–“IV ′” as antipo-
dal regions, respectively will give the doubled compactifica-
tion. Figures 3 and 4 show this process clearly. And the
doubled conformal compactification for the electrodynamics

with a magnetic charge is very similar to the electron, which
we don’t analysis here.

Since our attention is solely paid to the classical case here,
one should further consider the conformal invariant quan-
tum field theory containing electrodynamics correspondingly
[16,17]. And zero-mass systems [18–20] can also be con-
sidered, including the Lienard-Wiechert field of massless
charges [21]. These problems should be left for future works.
The CPT invariance, and causality are also some interesting
aspects for our further studying.
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