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Novel high-entropy polymers with superior capacitive energy storage

Yuan-Hua Lin”

High-entropy materials are highly attractive due to their unique
structural characteristics and exceptional properties which find
various promising applications such as energy technology,
electronics, catalysis, and biomedicine [1-3]. Current high-
entropy materials essentially involve alloys and ceramics, while
“high-entropy polymers have been rarely reported” [4], as
commented by Prof. Yeh JW who coined the term of high-
entropy alloys in 2004 [1]. Initial efforts to induce entropy sta-
bilization by blending multiple polymers were unsuccessful,
primarily due to the lack of molecular engineering of the chain
structure in these blends [4]. Moreover, none of previous works
explicitly defined the high-entropy state with the proof showing
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that configurational entropy AS.,s exceeds 1.5R (R is the gas
constant) like alloys and ceramics [1-3]. Therefore, entropy-
stabilized polymers remain largely unexplored, despite the
inherent disorder offering vast potential for regulation at the
molecular level.

Recently, a joint research team led by Prof. Huamin Zhou and
Prof. Yang Liu from Huazhong University of Science and
Technology and Prof. Qing Wang from Penn State University
[5] launched a pioneer study in Nature Materials, in which high-
entropy polymers are demonstrated via low-dose proton irra-
diation for the first time which overcomes the long-standing
challenge in relaxor ferroelectric polymers for capacitive appli-
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Figure 1 (a) Atomic force microscopy-infrared (AFM-IR) spectroscopy on pristine polymers. (b) AFM-IR characterization of high-entropy polymers. The
size of the images is 1 pmx 1 um. The local infrared data from spots 1-4 (right panels), as indicated in the chemical maps. (c-e) Phase-field simulations results
considering different variances of random field (o) and diffused Curie temperature (A4): 6=0; A =0 (c); 0 =88 MV m5A=0(d);0=88MVm;A=36K (e).
(f) Polarization-electric field loop results. (g) Unipolar polarization-electric field loops. (h) Comparison of ferroelectric loss between pristine and high-entropy
polymers. (i) Discharged energy density Uy and charge/discharge efficiency #. (j) Comparison of U,.
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cations. Li et al. [5] proposed a new approach to define the high-
entropy  state in  polymers through the relation

n
AS, . s=R E ¢;Inc;, where ¢; is the molar fraction of one
i=1

chemical bond in different comonomers and 7 is the species of
chemical bonds. The high entropy state can be achieved in
polymers if AS.,,£1.5R, just like alloys and ceramics. To realize
the high-entropy state in polymers, it generally requires both
more than five types of chemical bonds with appropriate molar
fractions of each bond. By incorporating a single chemical bond
such as C=C double bond, AS.¢ is well below 1.5R, indicating
the absence of a high-entropy state. Therefore, the definition of
high-entropy state in polymers is provided for the first time
which represents a milestone in the field of high-entropy
materials.

Based on this definition, Li et al. further show high-entropy
design through proton irradiation, bringing various chemical
bonds by irradiation-induced chemical reactions as evidenced
from combined structural characterization (Fig. la, b) and
phase-field simulations (Fig. 1c-e). They further use the high-
entropy strategy to overcome the longstanding challenge in
relaxor ferroelectric polymers for dielectric energy storage
applications [5]. Despite high dielectric constant, relaxor ferro-
electric polymers have long been hindered for capacitive energy
storage due to the presence of large ferroelectric loss, early
polarization saturation and reduced polarization [6]. In relaxor
ferroelectric polymers, the ferroelectric loss arises mainly due to
intercoupling between different local polar states which results
in nonzero local ferroelectric-switching barriers. High-entropy
design not only significantly smears the barriers leading to
considerably reduced ferroelectric losses [7,8] but also delays the
polarization saturation (Fig. 1g, h). Moreover, as irradiation
introduces polar bonds with increased local dipole moments
(Fig. la-f), the dielectric constant and polarization are found to
be markedly enhanced, which is highly desired for developing
high-energy density capacitors.

High-entropy state is achieved based on morphotropic phase
with small energetic barriers [9] whereas low-dose irradiation
triggers the phase transition into high-entropy phase. This is one
main reason to retain high polarization in high-entropy state. As
a result, through the high-entropy design, irradiated polymers
exhibit an ultrahigh discharged energy density of 45.7 ] cm™ at a
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high field of 700 MV m™’, exceeding the previous results under
the same electric field (Fig. 1i). Meanwhile, a markedly enhanced
discharged energy density of 3.2 J cm™ with a charge/discharge
efficiency of 87% at a low field of 100 MV m™" which is com-
parable to benchmark biaxially oriented polypropylene (BOPP)
obtained under a much higher field of 500-600 MV m™" close to
its dielectric breakdown field (Fig. 1j). In addition, to mitigate
the conductive loss, a scalable sandwich structure was used to
enable a high discharged energy density of 23.1 ] cm™ with an
efficiency of over 90% at 600 MV m™! (Fig. 1i).

In short, the authors propose a new definition of high-entropy
polymer and utilize the high-entropy strategy to address the key
limitations of relaxor ferroelectric polymers, including ferro-
electric loss and early polarization saturation, while taking
advantage of their high dielectric constants, for dielectric energy
storage applications. Their work may lay the foundation for
future explorations of high-entropy polymers with striking
functional properties such as the electrocaloric effect.
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