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Abstract This paper proposes a task-based hybrid parallel and hybrid pipeline (THPHP) scheme to implement

multi-standard video algorithms, including MPEG-2, H.264, and audio video coding standard (AVS), on a

heterogeneous coarse-grained reconfigurable processor, called the reconfigurable multimedia system (REMUS).

The proposed schemes greatly improve decoding performance and satisfy the real-time requirements of various

high-definition (HD) video decoding standards. In THPHP, we propose both a task-based hybrid parallel

scheme, in which macro-block (MB)-level, block-level, and sub-block-level decoding tasks are parallelized to

improve data processing throughput, and a hybrid pipeline scheme, in which slice-level, MB-level, block-level

and sub-block-level computations are pipelined to improve efficiency. Computation-intensive tasks, such as

motion compensation, intra prediction, inverse discrete cosine transform, reconstruction, and deblocking filter,

are implemented on two reconfigurable processing units, which are the core computing engines of REMUS.

Thanks to the proposed schemes, the implementations can achieve H.264 high profile (HP) 1920×1080@30 fps

streams, AVS Jizhun profile (JP) 1920×1080@39 fps streams, and MPEG-2 main profile (MP) 1920×1080@41 fps

streams when working at 200 MHz frequency. Compared with XPP-III (a commercial reconfigurable processor),

when implementing H.264 HD decoding, the performance and energy efficiency on REMUS are improved by

1.81× and 14.3×, respectively.
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1 Introduction

Allied to the boom in the multimedia market and rapid upgrading of video coding standards, there is a

potential market demand for a video decoder supporting multiple standards (e.g., MPEG-2 [1], H.264 [2],

audio video coding standard (AVS) [3]). The video decoder needs to satisfy the requirements not only
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of current standards, but also of various unknown standards in the future. As we know, the application

specific integrated circuit (ASIC) solution has very high energy efficiency with high performance and low

power consumption however with inferior flexibility. On the other hand, the general purpose processor

(GPP) solution and programmable DSP solution have high flexibility, but suffer from relatively poor en-

ergy efficiency. Considering both flexibility and energy efficiency, it is difficult to catch up with the rapid

evolution of the multimedia market by relying on the ASIC, GPP, and programmable DSP solutions,

or even a combination of these. Also, with the development of information technology and the arrival

of the low-carbon economic era, integrated circuits (ICs) and systems that target high performance and

low power consumption have widely penetrated all aspects of the national economy, national defense

construction, and everyday life [4]. Nowadays, reconfigurable systems, which can perform computations

in a specially designed reconfigurable processing unit (RPU) to greatly enhance performance and reduce

power while retaining much of the flexibility, are becoming an attractive topic in the field of computing

architecture. In most video decoding algorithms, some of the computation-intensive tasks, such as mo-

tion compensation (MC), intra prediction (IP), inverse discrete cosine transform (IDCT), reconstruction

(REC), and deblocking filter (DF), account for a large portion of the total computation intensity, e.g.,

roughly 50-80% in standard benchmark evaluations. Meanwhile, these tasks share similar features, such

as MB-based operations and an intrinsic regular calculation mechanism. All of these features are suitable

for reconfigurable computing, where functions are reconfigured onto RPUs at run-time to exploit pipeline

and parallel schemes. Hence, it is meaningful to explore the approaches for implementing different video

decoding algorithms on a reconfigurable system. Moreover, the derived approaches should contribute

positively to the implementation of other computation-intensive applications on reconfigurable systems,

such as communication baseband processing, computer vision processing, and encryption/decryption

applications.

Many reconfigurable multimedia systems and video decoding implementations on these systems have

been proposed in the literature. In [5], a configurable architecture was proposed to explore a hardware and

software co-design technique for an H.264 decoder. Task-based MB level pipeline and MB-based parallel

techniques were adopted. H.264 decoding of 352×288(i.e., CIF format) @19.72 fps was achieved with

variable length decoding (VLD) implemented in software, while the other computation-intensive tasks

were executed by hardware accelerators. In [5], reconfiguration could easily be implemented by adding or

deleting accelerator modules, which is more flexible than ASIC and also more efficient than the GPP based

solution. However, there configurable functionality is still not very flexible. ADRES, proposed in [6], is a

coarse-grained reconfigurable architecture, combining a very long instruction word (VLIW) processor with

coarse-grained reconfigurable matrix. In [7], a reconfigurable array was used to accelerate dataflow-like

kernels, i.e., MC, inverse transform (IT), and DF in parallel, while the VLIW processor executed the non-

kernel code by exploiting instruction-level parallelism. Even though most computation-intensive tasks

were mapped onto the reconfigurable array, the pipeline operations incurred high overheads and degraded

the mapped kernel performance. For example, MC of the luminance component was performed on a fixed

4×4 sub-block rather than on variable blocks. As a result, the performance of ADRES was relatively

poor owing to its high pipelining overhead. In [8], an H.264 decoding algorithm was implemented on an

XPP-III [9,10], which contains 40 ALU processing array elements (PAEs), 16 RAM PAEs, and 8 function

PAEs. This implementation can decode H.264 streams with high performance, i.e., 1920×1080@24 fps

streams at 450 MHz working frequency. However, since this work only focused on the H.264 video

standard, it does not offer a comprehensive study of the task level scheduling and mapping methods for

multi-standard video decoding algorithms on reconfigurable architectures.

The main contribution of this paper is the proposal of THPHP, a task-based hybrid parallel and hybrid

pipeline scheme to implement multi-standard (MPEG-2, H.264, and AVS) video decoding on a heteroge-

neous coarse-grained reconfigurable processor. To reduce synchronization overhead and improve decoding

performance, multiple level pipeline techniques are introduced. First, a slice level pipeline technique is

adopted between entropy decoding (ED) and its subsequent tasks; second, an MB level pipeline tech-

nique is used both between inverse quantization (IQ) and its subsequent tasks, and between motion vector

prediction (MVP)/intra prediction mode calculation (IPMC) and its subsequent tasks; and third, block
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level pipeline and sub-block level pipeline techniques are adopted in RPUs to improve the performance

of computation-intensive tasks. Besides pipelining techniques, multi-level parallelism is also proposed to

further improve the computation throughput. Since IQ and MVP/IPMC are mutually independent, an

MB-based parallel technique is adopted between them. Similarly, for one MB in RPUs, the chrominance

and luminance components are mutually independent. The block-based parallel technique is therefore

adopted between chrominance IP and luminance IP, and between chrominance DF and luminance DF.

For MC, the luminance component of one MB may be partitioned into various sub-blocks which remain

independent, and thus, a sub-block-based parallel technique can be exploited to improve performance.

The proposed parallel and pipelining techniques effectively increase hardware utilization and substantially

reduce the power consumption under a low working frequency, while still maintaining a very high perfor-

mance. Measurement results on fabricated chips show that compared with the XPP-III, the performance

and energy efficiency on REMUS are improved by 1.81×and 14.3×, respectively, when implementing

H.264 HD decoding.

The rest of this paper is organized as follows. Section 2 reviews the architecture of REMUS, while

the hardware (HW) / software (SW) partitioning strategies for the three video decoding algorithms are

introduced in Section 3. Section 4 presents task level scheduling and mapping methods for H.264, AVS,

and MPEG-2. The scheduling approach for the system is given in Section 5. Section 6 presents an

implementation and performance comparison, while Section 7 concludes the paper.

2 Review of the REMUS architecture

Figure 1(a) shows the architecture of REMUS. The REMUS processor is a coarse-grained dynamically

reconfigurable processor [11], consisting of one host processor, two RPUs, a micro-processing unit (uPU),

hardware acceleration unit (HAU), and other assistant modules, such as an interrupt controller (IntCtl),

and a direct memory access controller (DMAC). These two RPUs are designed to implement computation-

intensive and regular tasks. They can work in parallel or execute computation tasks sequentially. The

HAU is a heterogeneous configurable module serving for control-intensive processes, while the host pro-

cessor is responsible for simple operations, such as flow and interrupt controls.

2.1 Architecture of an RPU

The RPU is the core component for implementing computation-intensive decoding tasks. As illustrated in

Figure 1(b), each RPU consists of four reconfigurable cell arrays (RCAs), a macro buffer, a configuration

interface, an external data interface, and an exchange interface. The macro buffer is shared by four RCAs

and used to exchange data among the RCAs. The configuration interface is used to load contexts, while

the external data interface loads external data into an RPU or transfers data to the external memory.

The exchange interface is the data exchange interface between the two RPUs. Each RCA consists of

an 8×8 process element array (PEA), an 8×8 temp register array (TRA), an I/O buffer with 256-bit

width, and some control modules as shown in Figure 1(c). The architecture of a processing element

(PE) is illustrated in Figure 1(d), where each PE can realize 26 functions, as listed in Figure 1(e). One

advantage of RCAs is to accelerate intensive parallel computations, especially loop calculations.

2.2 Architecture of the HAU

The HAU is mainly employed for control-intensive tasks, such as context-based adaptive variable length

coding (CAVLC) and context-based adaptive binary arithmetic coding (CABAC), and IQ. Figure 1(f)

shows the architecture of the HAU, including the entropy decoder, inverse quantizer, predictor, four

DPRAMs with Ping-Pong mode, and so on. The entropy decoder can realize corresponding ED in H.264,

AVS or MPEG-2, i.e., decoding of CAVLC, CABAC, context-based adaptive two-dimensional variable

length coding (CA-2D-VLC), or Huffman. The inverse quantizer realizes inverse scanning (IS) and IQ

in these three video standards, while the predictor implements MVP/IPMC and boundary strength

calculation (BSC).
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Figure 2 Block diagram of H.264 decoding process.

3 HW/SW partitioning strategies

Figure 2 shows a block diagram of the H.264 decoding process. The above MB-level information, i.e.,

sequence parameter set (SPS), picture parameter set (PPS), and slice headers, is parsed by the host

processor because its symbol rates are very low [12]. ED parses and decodes the input bitstream to

derive the syntax elements. IS performs an inverse scan of the residual samples of an MB. IQ implements
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Figure 4 Task level scheduling on the HAU. (a) for H.264 or AVS video decoding; (b) for MPEG-2 video decoding.

inverse quantization of the residual samples after IS, and then, IT executes IDCT on the residual samples.

MC and IP carry out inter- and intra-prediction, respectively, REC is used to reconstruct the MB, and

DF implements a deblocking filter process to reduce blocking artifacts. Since the computation-intensive

tasks (i.e., MC, DF, IQ, IT, and IP) account for approximately 77% of the execution time in H.264 HD

decoding [13] as shown in Figure 3, these tasks are partitioned to be performed by two RPUs. The only

exception is IQ. Since the required data-width of IQ exceeds the granularity of the RPU, it is executed by

the HAU to avoid data overflow in the RPU. Regarding MC, only the interpolation calculations (intensive

and regular calculations) are carried out in the RPU, while the reference address calculations (irregular

calculations with many judgment branches) are performed in the uPU. Note that the MC referred to

hereafter denotes the interpolation process. All the control-intensive tasks (i.e., ED, IS, MVP, IPMC,

and BSC) with many conditional branches and irregular calculations are executed by the HAU. The

HW/SW partitioning strategies for AVS and MPEG-2 are similar to those for H.264.

4 Task level scheduling and mapping methods for H.264, AVS, and MPEG-2
decoding

4.1 Task scheduling on the HAU

As described in Subsection 2.2, the HAU performs ED, IS, IQ, MVP, IPMC, and BSC in H.264, AVS,

and MPEG-2 video decoding algorithms using the three function modules (i.e., entropy decoder, inverse

quantizer, and predictor). From the perspective of these three video decoding algorithms, IS and IQ

implemented by the inverse quantizer are independent of MVP/IPMC and BSC carried out by predictor.

Therefore, an MB-based parallel technique can be used to implement the inverse quantizer and predictor.

Task level scheduling on the HAU is illustrated in Figure 4.

In the H.264 or AVS video decoding process, a slice level pipeline technique is adopted between the

entropy decoder and inverse quantizer/predictor to reduce synchronization overhead and improve the

decoding performance, as shown in Figure 4(a). The black dotted line in Figure 1(f) shows the data flow

between the entropy decoder and inverse quantizer/predictor:

Step1: The entropy decoder reads the original streams from memory by external memory interface

(EMI) and decodes them with the outputs written into memory by EMI, as depicted by markers ①

and ②.
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Figure 5 The block representation in one MB.

Step2: After the ED of slice 0 has been completed by the entropy decoder, DE CTRL fetches data

from memory by EMI, and then some data (i.e., the transform coefficients) are written into DPRAM0,

while other information (e.g., MB type) is sent to DPRAM1, as demarcated by markers ③ and ④.

Step3: Markers ⑤ and ⑥ show the data flow of inverse quantizer/predictor, which fetches data from

DPRAM0/DPRAM1 and then decodes the MBs in order with the outputs written to DPRAM2/DPRAM3.

In the MPEG-2 decoding process, an MB level pipeline technique is used between the entropy decoder

and inverse quantizer/predictor as illustrated in Figure 4(b). In this case, the outputs of the entropy

decoder are directly written into DPRAM0 and DPRAM1, rather than memory, which is different from

H.264 or AVS decoding. And the data flow of the inverse quantizer/predictor in MPEG-2 decoding is

the same as that in H.264 or AVS decoding. Note that there are no IP and DF processes in the MPEG-2

video decoding process.

4.2 Task scheduling and mapping on RPUs

4.2.1 Task level scheduling and mapping methods on RPUs

In this subsection, we make use of the notations shown in Figure 5, where Y refers to a 16×16 luminance

block in one MB; Y1–Y4 denote luminance 8×8 blocks; U denotes the 8×8 chrominance U block; U1–U4

are the 4×4 chrominance U blocks; V is the 8×8 chrominance V block; and V1–V4 denote the 4×4

chrominance V blocks.

(1) H.264 decoding.

For H.264 decoding, RPU0 and RPU1 are configured in synchronous mode, i.e., MC/IP, IDCT and

REC are implemented on RPU0, while the subsequent task DF is executed on RPU1, with the host

processor controlling that fact that successive tasks are sequentially executed. Therefore, an MB level

pipeline technique is used between RPU0 and RPU1. As discussed in Section 4.2.2, the actual decoding

experiments show that the execution time of the decoding tasks on RPU0 and RPU1 are well balanced,

which guarantees a very high pipelining efficiency.

Figure 6 shows the task level scheduling and mapping method for MC, IP, IDCT, and REC on RPU0.

Six different mapping schemes are designed according to the corresponding MB type. The methods in

Figure 6(a) and (b) are used for inter MBs, and those in (c)–(f) for intra MBs. For inter MBs, the four

8×8 luminance blocks are independent of each other when implementing MC, IDCT, or REC. This is

also true for the four 4×4 chrominance blocks of U and the four 4×4 chrominance blocks of V. For an

intra MB, if it is not an intra pulse code modulation (I PCM) MB, the intra prediction mode for the

luminance component may be intra 16×16, intra 8×8, or intra 4×4. Note that there are no IDCT, IP

and REC processes if the MB type is I PCM. In this case, the samples of the MB are transmitted, a

mapping of which is shown in Figure 6(f). It can be seen from Figure 6(c)–(f) that RCA0 and RCA1 are

in charge of decoding the luminance component of an intra MB; RCA2 takes charge of the chrominance

component U of the MB; while RCA3 is responsible for the chrominance component V of the MB.

The above mapping method divides a task into several sub-tasks, which helps maximize utilization of

the processing elements in the RPU and improves the performance by introducing block-based parallel,

sub-block-based parallel, and block level pipeline and sub-block level pipeline techniques. For inter MBs,

while executing MC, IDCT or REC, the utilization of the RPU can be up to 100%, that is, all of the four

RCAs work in parallel. Note that an 8×8 luminance block can be further partitioned into different size

sub-blocks, i.e., one 8×8 sub-block, two 8×4 sub-blocks, two 4×8 sub-blocks, or four 4×4 sub-blocks.
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Corresponding to this, a 4×4 chrominance block is divided into one 4×4 sub-block, two 4×2 sub-block,

two 2×4 sub-blocks, or four 2×2 sub-blocks. Hence, MC of an 8×8 size block in each RCA can be

completed by carrying out the corresponding sub-tasks. In other words, the variable block size motion

compensation (VBSMC) solution is adopted in MC to reduce the data bandwidth [5]. For intra MBs

except for I PCM, utilization of the RPU0 is 100% when executing IDCT, and decreases to 75% when

executing IP and REC. For I PCM MBs, the utilization of RPU0 is 100%.

Figure 7 shows the task level scheduling and mapping method of DF on RPU1. DF H represents the
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horizontal filter process for vertical edges, while DF V denotes the vertical filter process for horizontal

edges. It can be seen that DF is divided into several sub-tasks and that RPU1 utilization is 100%.

Furthermore, block-based parallel and block level pipeline techniques are used to improve performance.

(2) AVS decoding.

During the AVS decoding process, RPU0 and RPU1 work in parallel synchronous mode. MC/IP,

IDCT and REC of the luminance component are implemented on RPU0, while those of the chrominance

components are carried out on RPU1. Therefore, a block-based parallel technique is adopted between

RPU0 and RPU1.

Figure 8 shows the task level scheduling and mapping method for RPU0. The method in Figure 8(a)

is applied to decode inter MBs. IDCT, MC, REC and DF of an 8×8 luminance block are executed on

each RCA sequentially. The method in Figure 8(b) is the scheme used to decode intra MBs. In this case,

IDCT and DF are each divided into four sub-tasks, which are executed on the four RCAs. While decoding

inter MBs, the utilization of RPU0 is 100% when executing IDCT, MC, REC, or DF. While decoding

intra MBs, the utilization of RPU0 is 25% when carrying out IP and REC and 100% for the IDCT or DF

process. Block-based parallel and block level pipeline techniques are adopted in this mapping method.

As illustrated in Figure 9, in RPU1, RCA0 and RCA1 realize MC/IP, REC and DF of the chrominance

component U, while RCA2 and RCA3 realize MC/IP, REC and DF of the chrominance component V. For

chrominance components U and V, MC/IP and IDCT are implemented simultaneously to fully utilize

RPU1. A task is divided into several sub-tasks; the utilization of RPU1 is 100% when implementing

MC/IP together with IDCT, and 50% when carrying out REC or DF. Here block-based parallel and

block level pipeline techniques are used to improve the performance.

(3) MPEG-2 decoding.

In MPEG-2 decoding, there are no IP and DF processes, thus it can meet the real-time decoding

requirement when MC, IDCT and REC are executed on one RPU. During the MPEG-2 decoding process,

RPU0 and RPU1 process different MBs, i.e., they work in parallel synchronous mode.

The task level scheduling and mapping method on RPU0/RPU1 is illustrated in Figure 10. It can

be seen that a task is divided into several sub-tasks. During intra MB decoding, the utilization of

RPU0/RPU1 is 100% when executing IDCT or REC of the luminance component. The utilization rate
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Figure 10 Task level scheduling and mapping method for RPU0 and RPU1. (a) Intra MBs; (b) non-skipped inter MBs;

(c) skipped MBs.

Table 1 Number of cycles consumed by critical sub-algorithms in H.264 decoding

Sub-algorithm
Cycles/MB (with Cycles/MB (with proposed

Speedup
conventional approaches) parallel and pipeline techniques)

MC 4×4 (Sub-macro-block size is 4×4) 2968 1059 180%

MC 8×8 (Sub-macro-block size is 8×8) 628 323 94%

DF 1310 704 86%

IDCT4×4 144 106 36%

IDCT8×8 322 192 68%

decreases to 50% when implementing IDCT or REC of the two chrominance components. In non-skipped

MB decoding, the utilization of RPU0/RPU1 is 100%. If decoding skipped MBs, the utilization of

RPU0/RPU1 is100% and 50% when decoding the luminance and two chrominance components of a

skipped MB respectively. Block-based parallel, sub-block-based parallel, block level pipeline and sub-

block level pipeline techniques are adopted in this mapping method.

4.2.2 Performance evaluation

Table 1 shows the clock cycles consumed by critical sub-algorithms in H.264 decoding. It can be seen

that the performance of the sub-algorithms is greatly improved by the proposed parallel and pipeline

techniques. It should be noted that the MC, IDCT and DF (for H.264 and AVS only) sub-algorithms in

MPEG-2 and AVS share similar data structures and computation patterns and could also be efficiently

implemented using the proposed scheme. For brevity, we only report the measured performances for

H.264 decoding since it is the most complicated and widely studied standard of the three.

5 System scheduling approach

The main process units in REMUS include the host processor, HAU, uPU, RPU0, and RPU1. The above

MB-level information is parsed by the host processor. Control-intensive tasks (i.e., ED, IS, MVP/IPMC,

and BSC) and IQ are executed by the HAU. Configuration contexts of MBs for the two RPUs are

generated by the uPU. Computation-intensive tasks are carried out by RPU0 and RPU1.

The scheduling chart for the H.264 decoding process is illustrated in Figure11(a). A 4-stage MB

level pipelining technique is introduced between the HAU, uPU, RPU0, and RPU1. DF of an MB is

executed on RPU1. The other computation-intensive tasks (i.e., MC, IP, IDCT, and REC) of the MB are

implemented on RPU0. Block-based parallel, sub-block-based parallel, block level pipeline and sub-block

level pipeline techniques are used in RPU0 and RPU1 as mentioned in Section 4.
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Figure 11 Scheduling charts. (a) For H.264 video decoding; (b) for AVS video decoding; (c) for MPEG-2 video

decoding.

Figure 11(b) depicts the scheduling chart for the AVS decoding process. A 3-stage MB level pipelining

scheme is used between the HAU, uPU and RPU0/RPU1, while an MB-based parallel technique is

adopted between RPU0 and RPU1. In the AVS video decoding process, MC, IP, IDCT, REC, and DF of

the luminance component of an MB are executed on RPU0, while those of the chrominance components

of the MB are executed on RPU1.

Figure 11(c) shows the scheduling chart for the MPEG-2 video decoding process. A 3-stage MB level

pipelining technique is used between HAU, uPU, and RPU0/RPU1. An MB-based parallel technique is

applied between RPU0 and RPU1. All computation-tasks (i.e., MC, IDCT, and REC) are executed on

an RPU, i.e., RPU0 and RPU1 process different MBs.

According to the discussion in Sections 4 and 5, the performance of multi-standard (i.e., H.264, AVS,

and MPEG-2) video decoding can be increased by using the proposed scheme, which adopts the proposed

slice level pipelining, MB level pipelining, block level pipelining, sub-block level pipelining, MB-based

parallel, block-based parallel and sub-block-based parallel techniques correctly. All the techniques are

based on tasks in the video decoding algorithms, which is the reason that the proposed scheme is called

THPHP.

6 Implementation and comparison

Figure 12 shows a chip photograph of a multimedia targeted system on a chip, fabricated in TSMC

65 nm technology. Known as the RHINOCEROS, this chip is a reconfigurable high performance system

and can be employed in a set-top box and communication base station, amongst others. It integrates

an REMUS reconfigurable processor to support H.264, AVS, and MPEG-2 video decoding applications.

RHINOCEROS also contains an ARM 11 processor core, PLL, and other circuits for peripheral controls

as illustrated in Figure 12. The total area of REMUS is 48.9 mm2. The areas of the host processor,

HAU, uPU, and two RPUs occupy 0.2%, 6.0%, 15.3%, and 74.4% of REMUS, respectively.

6.1 Measured performance of the HAU

Measurements show that the decoding process of the HAU consumes 512, 435, and 438 clock cycles per
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Figure 12 Chip photograph of RHINOCEROS.

Table 2 Throughput of CABAC running at 200 MHz

H.264
Resolution

File Size
Frames

ABR (average Total decoding Average decoding time

Stream (bytes) bit rate, Mbps) time (ms) per picture (ms)

Football 1920×1080 2 198 544 9 55.91 190.87 21.21

Fascination 1920×1080 3 437 008 15 52.44 325.46 21.70

Madagascar 1920×1080 1 400 308 8 40.06 81.83 10.23

Sun 1920×1080 10 297 103 30 78.56 817.88 27.26

Table 3 Sub-algorithms for H.264, AVS, MPEG-2 on an RPU

Sub-algorithm H.264 AVS MPEG-2

IDCT
Sub-macro-block size 4×4 8×8 8×8 8×8

Cycles/MB 106 192 96 239

MC
Sub-macro-block size 4×4 8×8 8×8 8×8

Cycles/MB 1059 323 204 191

DF Cycles/MB 704 176 −

MB for H.264, AVS and MPEG-2 decoding respectively. The target decoding performance of H.264,

AVS, and MPEG-2 is 1920×1080@30 fps when exploiting a 200 MHz working frequency, i.e., the time

to process an MB should be limited to 816 cycles. The MB-level pipeline techniques are used in the

decoding process, so the performance of the HAU satisfies the real-time decoding requirements of H.264,

AVS, and MPEG-2. Of the three video algorithms, H.264 has the highest complexity, while the decoding

performance of CABAC has a huge impact on the performance of the HAU in H.264 decoding. The bit

rates of CABAC when decoding H.264 HD streams are listed in Table 2, with the average decoding time

per picture listed in the last column. If the performance of H.264 video decoding is 30 fps, it means

the average decoding time per picture is 33 ms. As the average decoding time per picture for these four

streams is less than 33 ms, these four streams can be decoded and displayed in real-time.

6.2 Measured performance of critical sub-algorithms implemented on RPUs

Table 3 gives the performance of the critical sub-algorithms in H.264, AVS, and MPEG-2 video decoding,

implemented on RPUs. The basic block size of IDCT is 8×8 in the AVS and MPEG-2 decoding processes,
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Table 4 Sub-algorithms for H.264 on an RPU and XPP-III[9]

Sub-algorithm RPU XPP-III[9] Speedup

IDCT
Sub-macro-block size 4×4 8×8 N.A.

At least 8.85×
Cycles/MB 13+93 17+175 1700+192

MC
Sub-macro-block size 4×4 8×8 4×4 8×8 4×4 8×8

Cycles/MB 46+1013 42+281 2300+720 2000+364 1.85× 6.32×

DF Cycles/MB 93+611 2400+688 3.39×

while that in H.264 is 4×4 or 8×8. The different transform matrix and mapping methods of IDCT result

in different performance in the H.264, AVS, and MPEG-2 decoding processes. The block size of MC in

AVS is 8×8, that in MPEG-2 is 16×8 or 16×16, and that in H.264 may be 4×4, 4×8, 8×4, 8×8, 8×16,

16×8, or 16×16. If the block size is larger than 8×8, the block is divided into several 8×8 blocks, and

the MC of these 8×8 blocks can be carried out in parallel. In the H.264 video algorithm, the 6-tap filter

requires that (N+5)×(M+5) bytes reference data must be loaded for the interpolation of quarter-pixels

in an N×M luminance block in the worst case. It is required that (8+5)×(8+5)=169 bytes reference

data at the very least are loaded to predict an 8×8 luminance block. If the MC calculation of the

8×8 luminance block is based on a 4×4 block unit, it needs (4+5)×(4+5)×4=324 bytes reference data,

which will increase the memory access cycles. Hence, the sub-macro-block size and the number of pixels

processed per sub-macro-block have a huge impact on the performance of the MC sub-algorithm in the

H.264 video algorithm, as seen in Table 3. The DF process is applied to all N×N block edges. In the

H.264 decoding process, N is equal to 4 or 8 for the luminance component and 4 for the chrominance

components. In the AVS decoding process, N is equal to 8. There is no DF process in the MPEG-2

decoding process.

6.3 Performance comparison

6.3.1 Critical sub-algorithms in H.264 decoding

The measured performance of the critical sub-algorithms in H.264 decoding is listed in Table 4. In

the mapping process, the execution time consists of two parts. The first is latency, including the RPU

reconfiguration time and pipeline filling time, and the second is calculation time. For example, the

execution time of IDCT 4×4 on the RPU is (13+93) cycles, which means latency is equal to 13 cycles

and calculation time is 93 cycles. The optimization schemes for configuration [14] to reduce latency are

beyond the scope of this paper. The proposed optimization schemes for calculation time are described in

Section 4. Compared with XPP-III, the performance of IDCT, MC and DF is improved at least 8.85×,

at least 1.85×, and 3.39×, respectively.

6.3.2 Decoding performance

Table 5 gives a comparison between the XPP-based reconfigurable system in [8] and REMUS. The

throughput of REMUS can achieve 30 fps when decoding H.264 HP 1920×1080 streams at a 200 MHz

operating frequency. The unit MBs/s/MHz represents the video decoding capability, indicating how

many MBs can be processed per second at the same clock frequency. This parameter is used to evaluate

the decoding performance of a video decoder. Compared with [8], the H.264 decoding performance on

REMUS is improved by a factor of 1.81. The unit MBs/s/mW (i.e., energy efficiency) denotes how

many MBs can be processed per second with the same power consumption. The dynamic power (i.e.,

3420 mW) of XPP-III in Table 5 is derived from 450 MHz × 7.6 mW/MHz [15]. Hence, the energy

efficiency of REMUS is improved by 14.3× compared with that of XPP-III. When normalized to the

same process (using a full-scaling approach), the energy efficiency of REMUS still outperforms that of

XPP-III by about 4.76 times.
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Table 5 Comparison of the performance of H.264 decoding using the system in [8] and REMUS

Item System in [8] Proposed

Platform XPP-III REMUS

Technology 90 nm 65 nm

Area(mm2) 75 48.9

Clock 450 MHz 200 MHz

Performance 1920×1080@24 fps 1920×1080@30 fps

Power (mW) 3420 280

Normalized performance (MBs/s/MHz) 435 1224

Energy efficiency (MBs/s/mW) 57 874

Normalized performance comp. 1× 2.81×

Energy efficiency comp. 1× 15.3×

7 Conclusion

In this paper, we presented a scheme called THPHP to implement multi-standard (i.e., H.264, AVS, and

MPEG-2) video decoding on REMUS, which is a coarse-grained dynamically reconfigurable multimedia

processor. To accelerate the decoding process, several pipeline techniques, including slice level pipeline,

MB level pipeline, block level pipeline and sub-block level pipeline techniques, were introduced. More-

over, several parallel techniques were applied to computation-intensive tasks to improve the decoding

performance, including MB-based parallel, block-based parallel, and sub-block-based parallel techniques.

Measurements on fabricated chips show that the proposed scheme supports H.264 HP 1920×1080@30 fps

streams, AVS JP 1920×1080@39 fps streams, and MPEG2 MP 1920×1080@ 41fps streams in 4:2:0 format

when exploiting an operating frequency of 200 MHz. The proposed techniques can also be exploited by

other computation-intensive applications. Consider the upcoming HEVC standard for example, which

is a natural extension of the H.264 standard and shares a similar decoding framework. According to

our qualitative analysis, since both the operations and the calculation patterns are potentially supported

by an RPU based reconfigurable fabric, motion compensation, adaptive interpolation, and transforms

and quantization of HEVC (accounting for 70% of the total computation burden) can also be effectively

mapped and realized using the proposed THPHP scheme.
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