SCIENTIA SINICA

Vol. VII, No. 8, 1958

MATHEMATICS

SOME COVERING PROPERTIES OF CONVEX DOMAINS IN THE THEORY OF CONFORMAL MAPPING*

SHAH TAO-SHING (夏莲行) (Fuh-tan University)

1. Let G be a convex domain in the w-plane. If for a boundary point w of G, there exists a circumference which contains G in its interior and passes through w, then we say that this circle is a supporting circle of G at w. Suppose that for every boundary point of G there is a supporting circle with radius $\rho(\rho > 0)$ and that at a certain boundary point of G there exists no supporting circle with radius less than ρ , in these circumstances we say that G is a convex domain with the supporting radius ρ . Obviously, any convex domain is supported by a halfplane which may be regarded as a circle with the radius $\rho = \infty$. Denote by C_{ρ} the family of all the functions

$$w = f(z) = z + a_2 z^2 + \cdots$$

such that it maps the unit circle |z| < 1 onto a convex domain D_f with the supporting radius ρ . The mapping radius of D_f at w = 0 is evidently unity. Let K_{ρ} be the set of all those images D_f for which $f \in C_{\rho}$. We see that $\rho \ge 1$, that K_1 contains only the unit circle, and that $K_{\rho} \ne k_{\rho'}$ if $\rho \ne \rho'$. We have little knowledge about K_{ρ} ($\rho > 1$), although many properties concerning $\sum_{\rho \ge 1} K_{\rho}$ are known.

The object of the present paper is to investigate the covering properties of K_{ρ} by using the method of extremal length.

2. The Szegö-problem^[2] in the family C_{ρ} .

Let $G \in K_{\rho}$. Let n rays r_k issued from the origin w = 0 make equal angles. Let γ_k be the length of the segment of r_k lying in $G(k = 1, \dots, n)$. Denote max (r_1, \dots, r_n) by $R^{(n)}$ (G) and

$$T_n(\rho) = \min_{G \in K_{\rho}} R^{(n)}(G).$$

Theorem 1. For $1 < \rho < \infty$, n > 1, we have

^{*}First published in Chinese in Acta Mathematica Sinica, Vol. VII, No. 3, pp. 421-432, 1957.

$$T_n(\rho) = \rho \left(1 - \frac{\sin x\pi}{\sin \frac{\pi}{n}} \right), \tag{1}$$

where x being the root, $0 < x < \frac{1}{n}$, of the equation

$$(1-xn) \rho \cdot \Gamma\left(\frac{n-1}{2}\right)^2 = \Gamma\left(\frac{n-1}{n}-x\right) \Gamma\left(\frac{n+1}{n}+x\right). \tag{2}$$

Proof. Let $\rho > a > T_n(\rho)$. There is a domain $G \in K_\rho$ such that $R^{(n)}(G) < a$, and that $b_v = ae^{i\frac{2\pi\nu}{n}} \in G$ $(\nu = 1, 2, \dots, n)$. Let Δ_n be the regular circular polygon such that the middle points of the n sides are b_1, b_2, \dots, b_n . Denote by a_1, \dots, a_n the n vertices of Δ_n . Let U_v be the domain bounded by the segments $\overline{Oa_v}$, $\overline{Oa_{v+1}}$ and the circular arc $a_v a_{v+1}$. Let V_v be the inverse of U_v with respect to $a_v a_{v+1}$, $D_v = U_v + a_v a_{v+1} + V_v$. On the segment $\overline{Ob_v}$ there exists a boundary point ε of G. Let G be the supporting circumference of G at ε with radius ρ . Let b_v be a point such that $|b_v - b_v'| = 2\rho$ and $|b_v| = arg |b_v'| + \pi$. Let $|a_v| = a$ be the intersecting point either of C and $|a_v| = a$ or of C and $|a_v| = a$ arc $|a_v| = a$ be the intersecting point either of C and $|a_v| = a$ and $|a_v| = a$ or of $|a_v| = a$ be the intersecting point either of $|a_v| = a$ and $|a_v| = a$ arc $|a_v| = a$ be the intersecting point either of $|a_v| = a$ and $|a_v| = a$ and $|a_v| = a$ be the interior. Then $|a_v| = a$ is exterior to $|a_v| = a$ and $|a_v| = a$ be the interior. Then $|a_v| = a$ is exterior to $|a_v| = a$ and $|a_v| = a$ are $|a_v| = a$ by its exterior to $|a_v| = a$ and $|a_v| = a$ and $|a_v| = a$ and $|a_v| = a$ and $|a_v| = a$ are $|a_v| = a$ and $|a_v| = a$ and $|a_v| = a$ and $|a_v| = a$ are $|a_v| = a$ and $|a_v| = a$

Let r be a positive number, sufficiently small. Let D be a doubly-connected domain which is the complementary domain of $|z| \leq r$ in G. Let Γ_1 and Γ_2 be the boundary curves of D. Let $\{\gamma\}$ be the set of all the Jordan arcs each of which is contained in D and connects Γ_1 and Γ_2 . Denote by $d_D(\Gamma_1, \Gamma_2)$ the extremal length^[3] of $\{\gamma\}$ in D. It is also the extremal distance^[4] of Γ_1 and Γ_2 with respect to D. Let $M_D(\Gamma_1, \Gamma_2)$ be the reciprocal of $d_D(\Gamma_1, \Gamma_2)$. Then there is a continuous function $\rho(z)$ (≥ 0) in D such that

$$M_D(\Gamma_1,\Gamma_2) = \iint_D \rho(z)^2 dx dy^{[5]}, \quad \min_{r \in \{r\}} \int_r \rho |dz| = 1.$$

Hence

$$M_D(\Gamma_1, \Gamma_2) \geqslant \sum_{\nu=1}^n \iint_{DD_{\nu}} \rho(z)^2 dx dy.$$
 (3)

Evidently, DD_{ν} is in the interior of C_{ν} . Let B_{ν} be the simply connected domain formed from D_{ν} cut by |z| = r and C_{ν} . Let the boundary components of B_{ν} in |z| = r and in C_{ν} be S_1 and S_2 respectively. On $B_{\nu} - DD_{\nu}$ we define $\rho(z) = 0$. If γ is a rectifiable Jordan arc in B_{ν} connecting S_1 and S_2 , then there is a subarc γ' of γ , connecting Γ_1 and Γ_2 . Hence

$$\int_{r} \rho |dz| \geqslant \int_{r'} \rho |dz| \geqslant 1.$$

Let $d_{B_{\nu}}(S_1, S_2)$ be the extremal distance of S_1 and S_2 with respect to B_{ν} , then by definition, we have

$$\iint_{DD_{\nu}} \rho(z)^2 dx dy = \iint_{D_{\nu}} \rho(z)^2 dx dy \geqslant d_{B_{\nu}} (S_1, S_2)^{-1}. \tag{4}$$

We have to estimate $d_{B_{\nu}}(S_1, S_2)$. By a suitable linear transformation b'_{ν} is transformed into ∞ , $\widehat{a_{\nu}a_{\nu+1}}$ into a segment l, b_{ν} into the middle point δ of l, S_1 , S_2 into S, S' and O into a point O' on the line m which is orthogonal to l and bisects l. By this transformation, D_{ν} is transformed into D^*_{ν} which is symmetric with respect to δ . In virtue of b'_{ν} being exterior to C_{ν} and O being in the interior of C_{ν} , we see that the image of C_{ν} is a finite circle C^*_{ν} and O' is in the interior of C^*_{ν} , so that the image B^*_{ν} of B_{ν} is also in the interior of C^*_{ν} which passes through δ . Let the images of S_1 and S_2 be S and S' respectively. Since D^*_{ν} is symmetric with respect to δ , the tangent t of C^*_{ν} at the point δ cuts D^*_{ν} into two congruent domains E and \hat{E} , $B^*_{\nu} \subset E$. Rotate the whole configuration around δ through an angle π ; E, B^*_{ν} , S and S' become \hat{E} , \hat{B}^*_{ν} , \hat{S} and \hat{S}' respectively. Let $B \subset D^*_{\nu}$ be bounded by S and \hat{S} . Since the extremal distance is invariant under conformal mapping, we have

$$d_{B_{\nu}}(S_1, S_2) = d_{B_{\nu}^*}(S, S') = d_{\hat{B}_{\nu}^*}(\hat{S}, \hat{S}'). \tag{5}$$

Let $\{\gamma_1\}$ be the set of all rectifiable Jordan arcs in B_{ν}^* , each γ_1 connecting S and S', then there is a continuous positive function $\rho_1(z)$ such that

$$d_{B_{\nu}^{\bullet}}(S,S')^{-1} = \iint_{B_{\nu}^{\bullet}} \rho_{1}(z)^{2} dx dy^{[5]}, \quad \min_{\{\gamma_{1}\}} \int_{\gamma_{1}} \rho_{1}|dz| = 1.$$
 (6)

On \hat{B}_{ν}^{*} we define $\rho_{1}(z)$ by $\rho_{1}(z^{*})$ where z^{*} and z are symmetric with respect to δ . On $B - B_{\nu}^{*} - \hat{B}_{\nu}^{*}$, we define $\rho_{1}(z) = 0$. If γ is a rectifiable arc connecting S and \hat{S} , then there are two subarcs γ' and γ'' connecting S, S' and \hat{S} , \hat{S}' respectively. Hence

$$\int_{r} \frac{\rho_{1}(z)}{2} |dz| \geqslant \int_{r'} \frac{\rho_{1}}{2} |dz| + \int_{r''} \frac{\rho_{1}}{2} |dz| \geqslant \frac{1}{2} + \frac{1}{2} = 1.$$

Observing (6), we have

$$d_{B}(S, \hat{S})^{-1} \leq \iint_{B} \left(\frac{\rho_{1}}{2}\right)^{2} dx \, dy = \frac{1}{4} \left(\iint_{B_{y}^{\bullet}} \rho_{1}^{2} dx \, dy + \iint_{\hat{B}^{\bullet}} \rho_{1}^{2} dx \, dy\right) =$$

$$= \frac{1}{2} d_{B_{y}^{\bullet}}(S, S')^{-1}. \tag{7}$$

Let A^* be the subregion of B, bounded by l and S. Since B is symmetric with respect to l, we have [5]

$$2d_B(S,\hat{S}) = d_{A^*}(l,S). \tag{8}$$

Let A_{ν} be the subregion of D_{ν} , bounded by $\widehat{a_{\nu}a_{\nu+1}}$ and S_1 . Since the images of A_{ν} , S_1 and $\widehat{a_{\nu}a_{\nu+1}}$ are respectively A^* , l and S, we have

$$d_{A^*}(l,S) = d_{A_{\mathbf{y}}}(S_1, \widehat{a_{\nu}a_{\nu+1}}), \qquad (9)$$

and combining the relations (3)-(9), we have

$$M_D(\Gamma_1, \Gamma_2) \geqslant \sum d_{A_{\mathbf{v}}}(S_1, \widehat{a_{\mathbf{v}}a_{\mathbf{v}+1}})^{-1}. \tag{10}$$

Let the function $f^*(\zeta)$ be regular in the unit circle $|\zeta| < 1$ and map the unit circle into Δ_n with $f^*(0) = 0$, $f^{*'}(0) > 0$. The radius $\zeta = re^{i\frac{2\pi\nu}{n}}(0 \le r \le 1)$ is represented on the segment $\overline{Oa_{\nu}}$ ($\nu = 1, 2, \cdots, n$). The inverse image of the circumference |z| = r is nearly the circumference $|\zeta| = \frac{r}{f^{*'}(0)}$. It is easy to see that $\sum d_{A_{\nu}}(S_1, \widehat{a_{\nu}a_{\nu+1}})^{-1}$ is approximately the reciprocal of the extremal distance between $|\zeta| = \frac{r}{f^{*'}(0)}$ and $|\zeta| = 1$ with respect to the circular ring

$$\frac{r}{f^{*\prime}(0)} < |\zeta| < 1,$$

i.e.

$$\sum d_{A_{\nu}}(S_{1}, \widehat{a_{\nu}a_{\nu+1}})^{-1} = \frac{2\pi}{\log \frac{f^{*'}(0)}{r} + o(1)}.$$
 (11)

We may regard $f(\zeta)$ as a function which maps the ring $r + o(1) < |\zeta| < 1$ onto D. Thus

$$d_D(\Gamma_1, \Gamma_2) = \frac{\log \frac{1}{r} + o(1)}{2\pi} \,. \tag{12}$$

It follows from (10), (11) and (12) that

$$\log \frac{1}{r} \leqslant \log \frac{f^{*\prime}(0)}{r} + o(1) .$$

so that

$$f^{*'}(0) \geqslant 1, \tag{13}$$

for $a > T_n(\rho)$.

3. We are in a position to compute $f^{*'}(0)$. Let the angle between $\widehat{a_v}a_{v+1}$ and segment $\overline{Oa_v}$ be $\frac{q}{2}\pi$. Let $\overline{ba_v}$ be a radius of the circular arc $\widehat{a_v}a_{v+1}$. Let the angle between $\overline{ba_v}$ and $\overline{Oa_v}$ be $x\pi$, then $x = \frac{1}{2}(1-q)$. Evidently the angle between \overline{Ob} and $\overline{Oa_v}$ is $\left(1 - \frac{1}{n}\right)\pi$ and that between \overline{Ob} and $\overline{ba_v}$ is $\left(\frac{1}{n} - x\right)\pi$. Hence $0 < x < \frac{1}{n}$. Writing $|a_v| = p$, |b| = d, we obtain

$$\frac{\rho}{\sin\frac{\pi}{n}} = \frac{p}{\sin\left(\frac{1}{n} - x\right)\pi} = \frac{d}{\sin x\pi} . \tag{14}$$

By Schwartz-Christoffel's formula, we have

$$f^*(\zeta) = p\zeta \frac{\int_0^1 t^{x-1} (1-t)^{\frac{1}{n}-x} (1-t)^{\frac{1}{n}-x} dt}{\int_0^1 t^{x-1} (1-t)^{\frac{1}{n}-x} (1-t)^{\frac{1}{n}-x} dt}.$$

Hence

$$f^{*'}(0) = p \frac{\int_{0}^{1} t^{x-1} (1-t)^{\frac{1}{n}-x} dt}{\int_{0}^{1} t^{x-1} (1-t)^{-\frac{1}{n}-x} dt} = p \frac{B\left(x, 1 + \frac{1}{n} - x\right)}{B\left(x, 1 - \frac{1}{n} - x\right)} =$$

$$= p \frac{(1-nx) \sin \frac{1}{n} \pi \Gamma\left(\frac{n-1}{n}\right)^{2}}{\sin\left(\frac{1}{n} - x\right) \pi \Gamma\left(\frac{n-1}{n} - x\right) \Gamma\left(\frac{n-1}{n} + x\right)}.$$

Using (14), we obtain

$$f^{*\prime}(0) = \frac{\rho(1-xn) \Gamma\left(\frac{n-1}{n}\right)^2}{\Gamma\left(\frac{n-1}{n}-x\right) \Gamma\left(\frac{n-1}{n}+x\right)}.$$
 (15)

On the other hand, we have

$$a = \rho - d = \rho \left(1 - \frac{\sin x\pi}{\sin \pi/n} \right).$$

If a decreases from ρ to 0, Δ_n decreases. If we regard $f^*(0)$ as a function of x, it is decreasing in $x \in \left(0, \frac{1}{n}\right)$. By (13), $f^{*'}(0) \ge 1$ for $a > T_n(\rho)$. Let $x_0 \in \left(0, \frac{1}{n}\right)$ be such that

$$T_n(\rho) = \rho \left(1 - \frac{\sin x_0 \pi}{\sin \frac{1}{n} \pi} \right).$$

Let $x \to x_0 - 0$, it follows from $f^{*'}(0) \ge 1$ that

$$\frac{\rho (1-x_0 n) \Gamma\left(\frac{n-1}{n}\right)^2}{\Gamma\left(\frac{n-1}{n}-x_0\right) \Gamma\left(\frac{n-1}{n}+x_0\right)} \geqslant 1.$$

The quantity on the right-hand side in the above formula is not greater than unity. Otherwise, there would be an $x_1 > x_0$ such that

$$\rho\left(1-x_{1}n\right)\Gamma\left(\frac{n-1}{n}\right)^{2}=\Gamma\left(\frac{n-1}{n}-x_{1}\right)\Gamma\left(\frac{n-1}{n}+x_{1}\right).$$

But Δ_n corresponding to x_1 belongs to K_ρ and

$$a = \rho \left(1 - \frac{\sin x_1 \pi}{\sin \frac{1}{n} \pi} \right) < T_n(\rho).$$

This contradicts the definition of $T_n(\rho)$. Hence for $x = x_0$, (1) and (2) must hold. This completes the proof of Theorem 1.

4. The extremal domain Δ_n in § 2 is essentially unique, i.e. let G be any extremal domain such that $R^{(n)}(G) = T_n(\rho)$, then it can be shown that by a rotation, G coincides with Δ_n .

Suppose that there is another $G \in K_{\rho}$, different from Δ_n . Let $a = T_n(\rho)$. We may suppose that $ae^{i\frac{2\pi\nu}{n}}$, $\nu = 1, 2, \dots, n$ do not belong to G. Let D_{ν} , D, B, B_{ν}^* , \hat{B}_{ν}^* , etc., be the domains as in § 2. There exists a ν such that $B - B_{\nu}^* - \hat{B}_{\nu}^*$ possesses interior points, and accordingly the closure of $B_{\nu}^* + B_{\nu}^*$ does not contain B. The straight line t divides D_{ν}^* into two subdomains, and let E be the subdomain which has O' as a boundary point. There is a conformal mapping such that E maps onto a domain lying in the upper half-plane, O' maps into the origin, and the boundary points of E which do not belong to t map into the segment E on the real axis. Let E_1 be the symmetric domain of E_1 with respect to the real axis. Denote by E_1 the simply connected domain $E_1 + \hat{E}_1 + E_1$. The image E of E is nearly a semi-circumference. Let E be the image of E be a curve lying in the lower half-plane such that E and E is symmetric with respect to the real axis. Since E and E is simply-connected and is contained in E bounded by E by Lindelöf's principle, the mapping radius

 R_1 of G_1 with respect to O is greater than the mapping radius R_1^* of G_1^* with respect to O. We have, as $x \to o$,

$$d_{B^*}(S,t) = \frac{\log \frac{R_1}{\frac{n}{2}r} + o(1)}{\pi}$$

and

$$d_{B_{v}^{\bullet}}(S, S') = \frac{\log \frac{R_{1}^{*}}{\frac{n}{2}r} + o(1)}{\pi}.$$

Hence, for sufficiently small r,

$$d_{\mathfrak{B}^{\bullet}}(S,t) - d_{\mathfrak{B}^{\bullet}_{\mathfrak{p}}}(S,S') \geqslant k, \qquad (16)$$

k being a positive number independent of r. By (7), (8), (9), we have

$$d_{A_{\mu}}(S_1, \widehat{a_{\nu}a_{\nu+1}}) \geqslant d_{B_{\mu}^*}(S, S'),$$
 (17)

if $\mu \neq \nu$. Using the method of proof for (7), we can establish

$$d_B(S, \hat{S}) \geqslant 2d_{B^*}(S, t)$$
.

By (8) and (9), we have

$$d_{B^{\bullet}}(S,t) \leqslant d_{A_{\Psi}}(S_1, \widehat{a_{\nu}a_{\nu+1}}). \tag{18}$$

Since A_{μ} and $A_{\mu'}$ are congruent, we obtain

$$d_{A_{\mu}}(S_1, \widehat{a_{\mu}a_{\mu+1}}) = d_{A_{\mu'}}(S_1, \widehat{a_{\mu'}a_{\mu'+1}})$$

for $\mu \neq \mu'$. It follows from (11) that

$$d_{A_{\mu}}(S_1, \widehat{a_{\mu}a_{\mu+1}}) = \frac{n \log \frac{f^{*\prime}(0)}{r} + o(1)}{2\pi} . \tag{19}$$

Combining (3), (4), (16), (17), (18), (19), we obtain

$$M_D(\Gamma_1, \Gamma_2) \geqslant \frac{n-1}{n} \left(\frac{2\pi}{\log \frac{1}{r} + o(1)} \right) + \frac{1}{n} \frac{2\pi}{\log \frac{e^{-2\pi \frac{k}{n}}}{r} + o(1)}.$$

But the equation $M_n(\Gamma_1, \Gamma_2) = \frac{2\pi}{\log \frac{1}{\Gamma}}$ implies the contradiction that

 $k \le 0$. We see that the extremal domain must be Δ_n up to a rotation. As an application of Theorem 1, we see from the equation

$$\sqrt{T_2(\rho) (2\rho - T_2(\rho))} \sin^{-1} \sqrt{\frac{T_2(\rho)}{2\rho}} = \frac{\pi}{4}$$
 (20)

that $T_2(\rho)$ is the Bloch constant for the family C_{ρ} .

5. In this section we shall determine $T_1(\rho)$. Evidently there exists a domain G satisfying $R^{(1)}(G) = T_1(\rho)$. Without loss of generality, we may suppose that the point $a = T_1(\rho)$ lies on the boundary of G. Let G be the supporting circumference of G at G with radius G. Denote by G the interior of G. Let G be a circle passing through G with radius G and centre G and centre G be the centre of G, then G is G by Lindelöf's principle the mapping radius of G at G is greater than 1, i.e.

$$\frac{\rho^2 - |b'|^2}{\rho^2} \geqslant 1 \quad \text{or} \quad |b'| \leqslant \sqrt{\rho^2 - \rho} .$$

Hence $T_1(\rho) = a \geqslant \rho - |b| \geqslant \rho - \sqrt{\rho^2 - \rho}$. If $|\varepsilon| = 1$, then the function

$$f(z) = \frac{z}{1 + \sqrt{1 - \frac{1}{\rho} \, \varepsilon \, z}} \tag{21}$$

belongs to C_{ρ} . And $\min_{|z|=\rho} |f(z)| \geqslant \frac{1}{1+\sqrt{1-\frac{1}{\rho}}} = \rho - \sqrt{\rho^2-\rho}$. Hence

$$T_1(\rho) = \rho - \sqrt{\rho^2 - \rho} .$$

It can also be shown that the extremal function is (21), i.e. the extremal domain is a circle with the centre $\sqrt{\rho^2 - \rho} e^{i\theta}$ $(0 \le \theta < 2\pi)$ and radius ρ .

Theorem 2. For $1 \le \rho < \infty$, $T_1(\rho) = \rho - \sqrt{\rho^2 - \rho}$, the extremal function must be (21).

Let us now consider the case $\rho \to \infty$. Let $T_n = \lim_{\rho \to \infty} T_n(\rho)$, we have

$$T_1=\frac{1}{2}.$$

Since the right-hand side of (2) is bounded for $x \in (0, \frac{1}{n})$, the root x of (2) must tend to $\frac{1}{n}$, for n > 2, $\rho \to \infty$, and we obtain

$$\lim_{\rho \to \infty} (1 - nx) \rho = \frac{\Gamma\left(1 - \frac{2}{n}\right)}{\Gamma\left(\frac{n-1}{n}\right)^2}.$$

Thus for n > 2,

$$T_n = \lim_{\rho \to \infty} \rho \left(1 - \frac{\sin x\pi}{\sin \frac{\pi}{n}} \right) = \lim_{\rho \to \infty} \rho (1 - xn) = \frac{\Gamma \left(1 - \frac{2}{n} \right)}{\Gamma \left(\frac{n-1}{n} \right)^2} =$$

$$= \frac{1}{n} \frac{\Gamma \left(\frac{1}{n} \right) \Gamma \left(1 - \frac{2}{n} \right)}{\Gamma \left(1 - \frac{1}{n} \right)} \cos \frac{\pi}{n} =$$

$$= \int_0^1 \frac{dt}{(1 - t^n)^{2/n}} \cos \frac{\pi}{n} = \int_0^1 \frac{dt}{(1 + t^n)^{2/n}}.$$

The formula (20) gives $T_2(\rho) = \frac{\pi}{4}$. In general, we have

$$T_n = \int_0^1 \frac{dt}{(1+t^n)^{2/n}}, \qquad n=1, 2, \cdots.$$

6. Let T_{ρ} be the Bloch contant of C_{ρ} , then the corresponding Bloch function w = f(z) maps the unit circle onto a domain which contains the circle $|w| < T_{\rho}$. This theorem is due to M. Y. Chang^[1]. But he leaves out the problem of the determination of all the Bloch functions concerning C_{ρ} . We can now establish the following

Theorem 3. Let $w = f(z) \in C_{\rho}$ be a Bloch function of C_{ρ} , then the image of the unit circle by the mapping w = f(z) is a domain bounded by two circular arcs with radius ρ and symmetric with respect to w = 0. And furthermore, w = f(z) satisfies

$$\left(\frac{a+\varepsilon w}{a-\varepsilon w}\right)^{\theta} = \left(\frac{1+\varepsilon z}{1-\varepsilon z}\right)^{\pi},\tag{22}$$

where $|\varepsilon| = 1$, $\rho \theta \sin \frac{\theta}{2} = \pi$, $a = \rho \sin \frac{\pi}{2a}$.

Proof. Let Δ_2 be a domain in the w-plane, bounded by two circular arcs with radius ρ . The two arcs intersect at -a and a. At a the angle of intersection is θ , thus $a=\rho\sin\frac{\theta}{2}$. The function

$$u = \frac{a+w}{a-w} = h(w)$$

maps Δ_2 onto the angular domain $|\arg u| < \frac{\theta}{2}$ which is transformed into the half-plane $\Re(v) > 0$ by the transformation $v = u^{\frac{\pi}{\theta}}$. Accordingly the inverse function of $v = \frac{1+\zeta}{1-\zeta}$ maps $\Re(v) > 0$ onto $|\zeta| < 1$.

Combining these mappings, we obtain a function $\zeta = g(w)$ which maps Δ_2 onto $|\zeta| < 1$. Evidently the inverse function $w = f^*(\zeta)$ satisfies the equation

$$\left(\frac{a+w}{a-w}\right)^{\pi/\theta} = \left(\frac{1+\zeta}{1-\zeta}\right).$$

Hence $f^{*'}(0) = \frac{a\theta}{\pi}$. Select $a\theta$ such that $f^{*'}(0) = 1$, then $f^{*}(\zeta) \in C_{\rho}$, $\Delta_{2} \in K_{\rho}$. Moreover we have $\rho \theta \sin \frac{\theta}{2} = \pi$, $a = \rho \sin \frac{\pi}{2a}$.

We proceed to prove that any Bloch function of C_{ρ} takes the form $f(\zeta) = \frac{1}{\varepsilon} f^*(\varepsilon \zeta)$ where $|\varepsilon| = 1$. In other words, the image G of the unit circle by $w = f(\zeta)$ is congruent to Δ_2 after a suitable rotation. If this is not true, then on the circle^[1] there exists either (i) a pair of boundary points C and -C of G or (ii) three boundary points A, B, C (not on a semi-circumference) of G. In the case (i), the supporting circles of G at C and -C contact $|w| = T_{\rho}$, since $|w| < T_{\rho}$ is contained in G. The common part of these two circles contains G. In fact, G^* is of the type Δ_2 and the mapping radius of G^* at w = 0 is 1. Hence by Lindelöf's principle, $G^* = G$.

Now we consider the case (ii). Let G^* be the common part of the three supporting circles of G at A, B and C. The domain G^* contains the circle $|w| < T_{\rho}$, and is contained in G. If $G^* \neq G$, then by Lindelöf's principle the mapping radius d of G^* at O is greater than unity. Hence K_{ρ} would have a domain which would contain a circle with the radius $\frac{T_{\rho}}{d}$. This is impossible.

It leaves us to consider the case where $G^* = G$. The boundary of G is a circular triangle whose vertices shall be denoted by A', B', C'. The segments \overline{OA} , \overline{OB} , \overline{OC} , $\overline{OA'}$, $\overline{OB'}$, $\overline{OC'}$ divide G into six subdomains D_1 , ..., D_6 . Suppose that the common boundary of D_4 and D_5 (D_6 and D_1 , D_2 and D_3) is \overline{OC} (\overline{OA} , \overline{OB}). Denote the circle $|w| \le r$ by E, and write $D = G - E_r$. Let the boundary of D be Γ_1 and Γ_2 . Let $\rho(z)$ be a positive function continuous on D such that

$$M_D(\Gamma_1,\Gamma_2) = \iint_D \rho(z)^2 dx dy, \quad \min_{\gamma \in \{\gamma\}} \int_{\gamma} \rho |dz| = 1.$$

Then

$$M_D(\Gamma_1, \Gamma_2) = \sum_{y=1}^6 \iint_{DD_y} \rho(z)^2 dz dy.$$

Denote respectively by S_v and t_v the partial boundary of DD_v in Γ_1 and Γ_2 . Denote by $d_{D_v}(S_v, t_v)$ the extremal distance of S_v and t_v with respect to D_v . As in § 2, we have

$$M_D(\Gamma_1, \Gamma_2) \geqslant \sum_{\nu=1}^6 d_{D_{\nu}}(S_{\nu}, t_{\nu})^{-1}.$$
 (23)

Now we have to estimate $d_{D_1}(S_1, t_1)$. By a rotation, we may suppose that D_1 lies in Δ_2 , the boundary OA of D on the imaginary axis and D_2 within the second quadrant. Let the angle of D at O be θ_1 . The function u = h(z) maps the segment arg $z = \frac{\pi}{2} + \theta_1 = \varphi_1$ onto a circular arc γ with the end points 1 and $u_0\left(\arg u_0 = \frac{\theta}{2}\right)$ of a circle K passing through -1 and 1. The angle between γ and the positive real axis is φ_1 . The function $w = u^{\frac{\pi}{\theta}}$ maps γ onto γ_1 lying in the first quadrant of the ν -plane. Consider K in the ν -plane, and we see that γ_1 lies in the interior of K. The angle between γ_1 and the positive axis is φ_1 . One end of γ_1 is $\nu=1$ and the other lies on the imaginary axis. The function $\nu = \frac{1+\zeta}{1-\zeta}$ maps γ_1 onto a curve γ_2 lying in the circle $|\zeta| < 1$ and outside the angular domain $\varphi_1 > \arg \zeta > \frac{\pi}{2}$. Hence $\zeta = g(w)$ maps D_1 onto a domain D_1^* lying in $|\zeta| < 1$ and bounded by γ_2 arg $\zeta = \frac{\pi}{2}$ and $|\zeta| = 1$. Let the images of S_1 and t_1 be S_1^* and t_1^* respectively.

Denote by \hat{D}_1 , \hat{S}_1 and \hat{t}_1 respectively the components of D_1^* , S_1^* and t_1^* lying in $|\zeta| < 1$. As in § 4 (cf. [8]) we can prove that there is a positive number k_1 such that

$$-d_{D_1^*}(S_1^*, t_1^*) + d_{\hat{D}_1}(\hat{S}_1, \hat{t}_1) \geqslant k_1$$

for sufficiently small r. On the other hand, we have $d_{\hat{D}_1}(\hat{S}_1, \hat{t}_1) = \frac{\log \frac{1}{r} + o(1)}{\theta_1}$. Hence we obtain

$$d_{D_{\nu}}(S_{\nu}, t_{\nu}) = d_{D_{\nu}^{*}}(S_{\nu}^{*}, t_{\nu}^{*}) \leqslant \frac{\log \frac{1}{r} - k\theta_{\nu} + o(1)}{\theta_{\nu}},$$

for v = 1. Similarly, we can prove this formula for $v = 2, \dots, 6$. Hence, by (23),

$$M_D(\Gamma_1, \Gamma_2) \geqslant \sum_{\nu=1}^6 \frac{\theta_{\nu}}{\log \frac{1}{\nu} - k_{\nu}\theta_{\nu} + o(1)}.$$

On account of the relations $d_D(\Gamma_1, \Gamma_2) = \frac{2\pi}{\log \frac{1}{r} + o(1)}$ and $\sum_{\nu=1}^6 \theta_{\nu} = 2\pi$,

we arrive at the result

$$\frac{2\pi}{\log \frac{1}{r} + o(1)} \geqslant \sum_{\nu=1}^{6} \frac{\theta_{\nu}}{\log \frac{1}{r} - k_{\nu}\theta_{\nu} + o(1)} \qquad (k_{\nu} > 0).$$

This is absurd. Therefore (ii) is impossible. This completes the proof.

7. The Bloch constant of convex domains.

Let the convex domain G belong to $\sum_{\rho \ge 1} c_{\rho}$, and B(G) be the radius of maximal circle contained in G. The minimum B of B(G) for $G \in \sum c_{\rho}$ is called the Bloch constant of convex domains. M. Y. Chang discovered $B = \frac{\pi}{4}$. Here we shall give a new proof of $B = \frac{\pi}{4}$ through the principle of symmetrization. Furthermore, we can determine the extremal domain simultaneously.

Theorem 4. The extremal domain G, (i.e. B(G)=B) of $\sum_{\rho>1} c_{\rho}$ is a strip symmetric with respect to the origin, with width $\frac{\pi}{2}$.

Proof. Let $G \in \sum_{\rho > 1} c_{\rho}$, B(G) = B. Using Lindelöf's principle we can prove that G is either a strip or a triangle. Suppose that G is a triangle with vertices A, B and C, and further that $AD \perp BC$ and $D \in BC$, and BC is parallel to the real axis. Let G change into G^* by the Steiner symmetrization with respect to the real axis. Let the length of AD be h = 2d, and write $DB = a_1$, $DC = a_2$. Denote by ρ the distance from O to AD. Then G^* is the quadrilateral with the vertices

$$-(a_1+\rho)$$
, $a_2-\rho$, $-\rho+di$, $-\rho-di$.

The radius of a maximal circle contained in G^* is

$$k_1 = \frac{(a_1 + a_2) d}{\sqrt{a_1^2 + d^2} + \sqrt{a_2^2 + d^2}}.$$

The radius of a maximal circle contained in G is

$$k_2 = \frac{2 (a_1 + a_2) d}{a_1 + a_2 + \sqrt{a_1^2 + d^2} + \sqrt{a_2^2 + d^2}}.$$

Evidently $k_2 > k_1$, i.e. $k_1 < B$. Since the mapping radius R of G^* at O is greater than unity, hence by $w = \frac{\zeta}{R}$, G^* is represented onto $G_1 \in \sum_{n} c_n$ with $R(G_1) = \frac{k_1}{R} < B$. This is a contradiction. Therefore G must be a strip. If the strip G is not symmetric to the origin, then the mapping function for |z| < 1 onto G must be

$$\frac{\varepsilon}{2(1-|z_0|^2)}\left\{\log\frac{1-\frac{z-z_0}{1-\bar{z}_0\,z}}{1+\frac{z-z_0}{1-\bar{z}_0\,z}}-\log\frac{1+z_0}{1-z_0}\right\},\qquad |\varepsilon|=1.$$

Then $B(G) = \frac{\pi}{4} \frac{1}{1 - |z_0|^2} > \frac{\pi}{4}$. If follows that G must be symmetric with respect to the origin, and $B(G) = \frac{\pi}{4}$, $B = \frac{\pi}{4}$.

REFERENCES

- Chang, M. Y. 1955 Prog. in Math. 1, 387-391.
- Szegö, 1922 Jahresbericht D. M. V. 31, 42.
 Ahlfors, L. and Beurling, A. 1950 Acta Math. 83, 101—139.
 Wolontis, V. 1952 Amer. Jour. Math. 74, 587—606.

- Jenkins, J. A. 1949 *Trans. Amer. Math. Soc.* **67,** 307—350. Голузин, Г. М., Геометрическая теория функций комплексного переменного. (Перевод проф. Чен Цзя-куна с русского на китайский, 1952), 105—109.
- [7] Polya, G. & Szegö, G. 1951 Isoperimetric inequalities in mathmatical physics.
- Shah Tao-Shing. 1956 The Fu-tan Vniv. Journal (The Natural Science), (2), 125-132.