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SOME COVERING PROPERTIES OF CONVEX DOMAINS IN
' THE THEORY OF CONFORMAL MAPPING*

Suan TaosuiNG (H3%{7)

(Fuh-tan University)

1. Let G be a convex domain in the w-plane. If for a bound-
ary point w of G, there exists a circumference which contains G
in its interior and passes through w, then we say that this circle
is a supporting circle of G at w. Suppose that for every boundary
point of G there is a supporting circle with radius p (p>0) and that
at a certain boundary point of G there exists no supporting circle
with radius less than p, in these circumstances we say that G is a
convex domain with the supporting radius p. Obviously, any convex
domain 1is supported by a halfplane which may be regarded as a
circle with the radius p=oc. Denote by C, the family of all the
functions

w:f{g):z-'—azzz-!- .

such that it maps the unit circle |z| <1 onto a convex domain D
with the supporting radius p. The mapping radius of D; at w =0
is evidently unity., Let K, be the set of all those images D; for
which feC,. We see that p>1, that K; contains only the unit
circle, and that K, %, if p= p’. We have little knowledge about

K, (p > 1), although many properties concerning >, K, are known.
epl

The object of the present paper is to investigate the covering pro-
perties of K, by using the method of extremal length.

2. The Szego-problem™ in the family C,.

Let Ge€K,. Let n rays r; issued from the origin w =0 make
equal angles. Let y, be the length of the segment of 7, lying in
G(k=1, ---,n). Denote max (r, -+, r,) by R (G) and

TA(p) = min R™(G).
GEK,
Theorem 1. For 1<p<oe, n>1, we have

*First published in Chinese in Acta Mathematica Simica, Vol, VII, No 3 pp. 421—432, 1357,
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r,(p) = p(1— S221), (1)

. T
sin —
n
. 1 .
where x being the root, 0 <x < o of the equation

(1—xn)p-r(”;1>2=r(-":1 —x)r(”jl +x). @)

Proof. Let p>a> T,(p). There is a domain G € K, such that

R"(G) <a, and that b,=ae " EG(v=1,2, ---, 7). Let A, be the
regular circular polygon such that the middle points of the 2 sides
are by, by -+, b.. Denote by ay, ---, a, the n vertices of A,. Let

U, be the domain bounded by the segments az-,, av-l-l and the cir-

P

P .
cular arc 4,4,4;. Let V, be the inverse of U, with respect to 4,241,

D,=U,+ a:.:\!,ﬂ + V,. On the segment Ob, there exists a boundary
point £ of G. Let C be the supporting circumference of G at &
with radius p. Let 4, be a point such that |5, — 4,|=2p and arg 4,=

arg b, + . Let 7 be the intersecting point either of C and Oa, or

of C and Oa,,;. Let C, be a circumference passing through 7 and
b,, containing O in the interior. Then &, is exterior to C, and GD,
is in the interior of C,.

Let » be a positive number, sufficiently small. Let D be a
doubly-connected domain which is the complementary domain of
|zl <7 in G. Let I'; and I', be the boundary curves of D. Let {y}
be the set of all the Jordan arcs each of which is contained in D
and connects I, and I',. Denote by 4p(I',, I,) the extremal length®™
of {y} in D. It is also the extremal distance™ of I', and I, with
respect to D. Let M,(I';,T,) be the reciprocal of d,(I';, I,). Then
there is a continuous function p(z) (=0) in D such that

Mp(I', I3) = jjpp(zrmwﬂ, mi Lp ldz| = 1.

Hence

My(T' T) = 2 H p(=)?dx dy. (3)

Evidently, DD, is in the interior of C,. Let B, be the simply con-
nected domain formed from D, cut by |z| =7 and C,. Let the
boundary components of B, in |z| =7 and in C, be §; and §, re-
spectively. On B,— DD, we define p(z) =0. If y is a rectifiable
Jordan arc in B, connecting S; and S, then there is a subarc y" of y,
connecting I'; and I',. Hence
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j plaz| >j pldz| > 1
T r

Let d5,(S;, S;) be the extremal distance of §; and &, with respect to
B,, then by definition, we have

HDD, p=)" dxdy = ﬂ,, p(2)?dx dy > ds, (51, 852) 7. (4)

We have to estimate d5,(S;, S;). By a suitable linear .transfor-

mation &, is transformed into oc, z::;:.ﬂ into a segment /, 4, into the
middle point & of /, &, §, into §, §' and O into a point O° on
the line m which is orthogonal to / and bisects /. By this trans-
formation, D, is transformed into D; which is symmetric with re-
spect to 8. In virtue of 4, being exterior to C, and O being in the
interior of C,, we see that the image of C, is a finite circle CJ and
O’ is in the interior of CJ, so that the image B of B, is also in the
interior of C)} which passes through 8. Let the images of §; and
S, be § and S respectively. Since D, is symmetric with respect to
g, the tangent z of C; at the point & cuts D; into two congruent

domains E and E, B} CE. Rotate the whole conflguratlon around &
through an angle n; E, B, § and §' become E, B,., S and § re-
spectively. Let BC D) be bounded by § and §. Since the extremal
distance is invariant under conformal mapping, we have

d5,(S1, 82) = d5;(S,8") = d5;(5,5") . (5)

Let {y,} be the set of all rectifiable Jordan arcs in B}, each y,
connecting § and §’, then there is a continuous positive function
p(z) such that

dp:(S,8) 1= _“j L p1(=)2dx dyl, mi.n'[ pildz] =1, (6)

R B, frg Jrqg
On B! we define e1(z) by p(2*) where z* and z are symmetric
with respect to 6. On B— B‘—B,ﬁ", we define p,(2) =0. If y is a

rectlflable arc connecting § and §, then there are two subarcs y" and
¥” connecting S, §’ and §, § respectively. Hence

p1(2) I P j £y 1 1
.L > |d=z| = .2 |dz| + .2 |dz| = 2 + > = 1.

Observing (6), v?c have

25(S, S‘)"lé”( )dxdy—-}-([j pldxdy+ﬂ pldxndy )=

= ‘—ds..(S s )
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Let A* be the subregion of B, bounded by / and S. Since B is
symmetric with respect to /, we have®

2d5(S,8) = d~(1,S) . (8)

Let A, be the subregion of D,, bounded by .c::z\z,.,_l and §;. Since the

- — -
images of 4,, §, and a,a,+, are respectively 4*, / and §, we have

—_ )
dA'UI} S) = dAy(Sb “Vav'i'l) B (9)

and combining the relations (3) —(9), we have

Mp(I', T2) = Z 24,(81, ;\avﬂ)_‘l . (10)

Let the function f*(¢{) be regular in the unit circle {¢|<1 and
map the unit circle into A, with f*(0) =0, f*(0) > 0. The radius

P —
¢=re " (0<r<1) is represented on the segment Oa, (v=1,2, - - -,
n). The inverse image of the circumference |z| =7 is nearly the

. . ~— —
circuamference IC]Z)"—’?E)—)—‘ It is easy to see that 3 d, (Sp, avays;) ™"
is approximately the reciprocal of the extremal distance between

wl:f“"_’&o) and |¢|=1 with respect to the circular ring

?*,(—0) <[¢l <1,
1.e.
dev(sl’ ‘zvav'f'l)#l f*x(zj; (11)

+ (l)

We may regard f(¢) as a function which maps the ring r+o0(1) <
|[¢1<1 onto D. Thus

log - + o(1)
dp(T'y ) = ————. (12)

2w

It follows from (10), (11) and (12) that

g log 1222 f*'(o) + o(1) .
so that

*(0) =1, (13)
for a > T,(p).
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3. We are in a position to compute f*'(0). Let the angle be-
tween a:.—&,ﬂ and segment QOa, be %ﬂ. Let ba, be a radius of the
circular arc favﬂ. Let the angle between ba, and Oa, be xm, then

=-;_(1~—q). Evidently the angle between 04 and Oa, is (1—%)91-

and that between 0% and ba, is(-};*—x)fr. Hence 0 <x < —i— Writing
la,|=p, |61=d, we obtain

? __a
.ow /1 \ sinaxr (14)
sin — sin| —— 2 )n

n n y;

o

By Schwartz-Christoffel’s formula, we have

[l =" =™ a

0

*(§) = pf = 3 o
Lt”“(l——:)"” (1—") " g

Hence
1 1, ‘ 1
I:""(l—:)” dt B x,1+—;-—x)

ftf(o) — P _ln _1 = P 1 =
j £ —2) " ar B(x,l—;-—x)
0

.1 n— 1\*
(1 — nx) sin ;ur( )

RN v s w  CES S

Using (14), we obtain

D oL G |
o= r(”“l —x)r(”“l +x) '

n n

(15)

On the other hand, we have

¢=p_d=p(1__sin__ﬂ[_)_

sin w/n

If a decreases from p to 0, A, decreases. If we regard f*(0) as a
function of x, it is decreasing in .rE(O,%). By (13), f*'(0)>1 for

a>T,(p). Let xOE(O, %) be such that
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T,(p) = p(l _ _sin X Y\
A
sm—”—rr

Let x — x, — 0, it follows from f*'(0) > 1 that
P(l—xon)r(ﬂ_ 1)2

Jr(=5t+=)

The quantity on the right-hand side in the above formula is not
greater than unity. Otherwise, there would be an x; > x, such that

)T )

But A, corresponding to x; belongs to K, and

a= p(l sin = )< T.(p) .

sin —W

=1,

p (1 — ) r(ﬁf_’:_l)z _

This contradicts the definition of 7,(p). Hence for x=x,, (1) and
(2) must hold. This completes the proof of Theorem 1.

4. The extremal domain A, in § 2 is essentially unique, i.e. let
G be any extremal domain such that R (G)=T,(p), then it can be
shown that by a rotation, G coincides with A,

Suppose that there is another G € K,, different from A,. Let

, 2my
a=T,(p). We may suppose that ae ” ,v=1,2, ---, n do not be-
long to G. Let D,, D, B, B¥, B?, etc., be the domains as in § 2. There
exists a v such that B— B¥ — B} possesses interior points, and accord-
ingly the closure of B + B does not contain B. The straight line
t divides D)’ into two subdomains, and let E be the subdomain which
has O’ as a boundary point. There is a conformal mapping such
that £ maps onto a domain lying in the upper half-plane, O maps
into the origin, and the boundary points of E which do not belong
to £ map into the segment L on the real axis. Let E, be the sym-
metric domain of E; with respect to the real axis. Denote by G;
the simply connected domain E; + E; + L. The image S* of § is nearly
a semi-circumference. Let C® be the image of C*. Let C® be a
curve lying in the lower half-plane such that C+C is symmetric
with respect to the real axis. Since CJ and O’ lie on the same side
of #, the domain G} bounded by C® and C® is simply-connected
and is contained in G,. By Lindeléf’s principle, the mapping radius
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R, of G, with respect to O is greater than the mapping radius Ry

of G} with respect to O. We have, as x—o,

log -ii 4+ o(1)

-—r
. 2
dﬂ‘(é’ t) = .
and
*
log I:I + o(1)
-_r
d5:(S,8) = —2 .
v 14

Hence, for sufficiently small 7,

do(S,1) — d5;(8,8") =2 k,

(16)

% being a positive number independent of . By (7), (8), (9), we

have

d.f”(sh avav‘f'l) } dﬂ:.(s) S’) »

if ##v. Using the method of proof for (7), we can establish

d5(S,8) = 2dp(S, 1) .

By (8) and (9), we have

—
dpe (S, 1) < d4,(Sy, avavsy) .

Since A, and A, are congruent, we obtain
~ ~
d,;»(Sl, @uaury) = d4,.(S1, auau +1)

for p#p'. It follows from (11) that

7
—_ n log f_r(U) + o(1)
dA,‘(Sb Gulut]) = I
n

Combining (3), (4), (16), (17), (18), (19), we obtain

n _2,'%

Mp(T1 ) > L
log —+ o(1)

n——l(__ 27 + 1 2w

r

log < + o(1)

(17)

(18)

(19)
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But the equation M (I}, T,) = 2“1 implies the contradiction that
log —
r

k<0. We see that the extremal domain must be A, up to a rotation.

As an application of Theorem 1, we see from the equation

) _ =«

V'Ty(p) (2p — T3(p)) sin™! 20 n

(20)

that 7,(p) is the Bloch constant for the family C.,.

5. In this section we shall determine T,(p). Evidently there
exists a domain G satisfying R’ (G)=T;(p). Without loss of general-
ity, we may suppose that the point a = T,(p) lies on the boundary
of G. Let C be the supporting circumference of G at a with radius

p. Denote by G the interior of C. Let A, be a circle passing through
a with radius p and centre b=a—p. Let ' be the centre of &G, then
|6'|>|b], the equality holds good when and only when G = a,.
Since GAQG, by Lindeléf’s principle the mapping radius of G at O
is greater than 1, i.e.

=1 or ib'ié‘\/pT—-:;.

Hence T,(p) =a=p—|bl=p—Vp*=p. If |e|==1, then the function

f(z) = S (21)
1+ \/1 iy ez
belongs to C,. And min |f(2)|> - =p—Vp*—p. Hence
lsl=p 1+ 1 — —
P

T(p)=p—VF—7p.

It can also be shown that the extremal function is (21)," i.e. the

extremal domain is a circle with the centre vp? —pe (0 <0 < 2x)
and radius p.

Theorem 2. For 1< p <@, T\(p)=p—Vp>—p, the extremal
function must be (21).

Let us now consider the case p— . Let T,=limT,(p), we
have o0

1
Ti=.
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Since the right-hand side of (2) is bounded for xé(O,%), the

1 .
root x of (2) must tend to - for n > 2, p— ¢, and we obtain

r(i-2)

p]i:r; (1—nx) p= —r—ﬂ ‘-—_S_
Thus for » > 2,
. r(1~—)
T, = lim p(l—M>=ﬁm p(1 — xn) = -
p— = . _ﬂ'_ P r 7n — )
sin

r(;)r (1‘*) o
r(1——)

J (1—: )z/.. cos — r _(..1.__12‘?:;)_2;; _

~1_\n/
n

The formula (20) gives T,(p) = _ZL‘ In general, we have

! d
T"_Jn—(l-f-F)zT’ n=1,2 ---.

6. Let T, be the Bloch contant of C,, then the corresponding
Bloch function w = f(z) maps the unit circle onto a domain which
contains the circle |w|<T,. This theorem is due to M. Y. Chang'’.
But he leaves out the problem of the determination of all the Bloch
functions concerning C,. We can now establish the following

.Theorem 3. Ler w=f(z) € C, be a Bloch function of C,, then
the image of the unit circle by the mapping w=f(z) is a domain bounded
by two circular arcs with radius p and symmetric with respect to w =0.

And furthermore, w=f(z) satisfies
a-+ sw 14 ez
(a—sw) (1-—83) (22)

7]
where le|=1, pﬂsm-z——fr a= psmz—a

Proof. Let A, be a domain in the w-plane, bounded by two cir-
cular arcs with radius p. The two arcs intersect at —a and 4. At

. . ) . 0 )
a the angle of intersection is 6, thus a=p sin —- . The function
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a4 w

& —

= h(w)

i =

maps A, onto the angular domain |arg ul<g- which is transformed
into the half-plane MW(#) >0 by the transformation v =#°. Accord-
ingly the inverse function of » = }—T—:—g—. maps NR(z) >0 onto [¢|< 1.

Combining these mappings, we obtain a function ¢=g(#) which
maps A, onto |{|<1. Evidently the inverse function w=f*(¢) sat-

isfies the equation
(a+w)’”'9 (_1“-{5_5

Hence f*'(0) = i:i Select af such that f*'(0) =1, then f*(¢)€C,,

. @ .ow
A,€ K,. Moreover we have pﬂsm—2== ™, a=psin 5—.
al

We proceed to prove that any Bloch function of C, takes the
form f(T) = % f*(e¢) where le|=1. In other words, the image G

of the unit circle by w = f(¢) is congruent to A, after a suitable
rotation. If this is not true, then on the circle! there exists either
(i) a pair of boundary points C and —C of G or (ii) three boundary
points 4, B, C (not on a semi-circumference) of G. In the case (i),
the supporting circles of G at € and —C contact |w| =T,, since
|| < T, is contained in G. The common part of these two circles
contains G. In fact, G* is of the type 4, and the mapping radius
of G* at w=0 is 1. Hence by Lindeléf’s principle, G* =

Now we consider the case (ii). Let G* be the common part of
the three supporting circles of G at 4, B and C. The domain G*
contains the circle |w|<T,, and is contained in G. If G* % G, then
by Lindeléf’s principle the mapping radius 4 of G* at O is greater
than unity. Hence K, would have a domain which would contain

a circle with the radius —Z‘;f- This is impossible.

It leaves us to consider the case where G* = G. The boundary
of G is a circular triangle whose vertices shall be denoted by A, B,
C'. The segments OA, OB, OC, 0A’, OB, OC’ divide G into six
subdomains D;, +--, Ds. Suppose that the common boundary of D,
and Ds (D and Dy, D, and D,) is OC (OA4, OB). Denote the circle
|w|<r by E, and write D=G —E,. Let the boundary of D be T,
and I,. Let p(z) be a positive function continuous on D such that
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Mol = || pterraxay,  min | olast =1.
Then
&
Mp(I'y,T2) = 2 ]‘Lm p(z)*dxdy.

v=1

Denote respectively by S, and 7, the partial boundary of DD, in
I'y and T,. Denote by dp, (S, 2,) the extremal distance of §, and ¢,

with respect to D,. As in §2, we have

Mp(I', T2) = X do,(Sv, )7 . (23)

v=1

Now we have to estimate dp, (S, 2,). By a rotation, we may suppose

that D, lies in A,, the boundary OA of D on the imaginary axis and
D, within the second quadrant. Let the angle of D at O be 6,. The

function # = £(z) maps the segment arg z = %+31=1p1 onto a cir-

cular arc y with the end points 1 and #, (arg uu=%) of a circle K
passing through —1 and 1. The angle between y and the 1pOsitiw;

real axis is ¢,. The function w =#° maps y onto y, lying in the
first quadrant of the z-plane. Consider K in the v-plane, and we
see that y, lies in the interior of K. The angle between ¥, and the
positive axis is ;. One end of y; is #=1 and the other lies on the

imaginary axis. The function v = iig maps y; onto a curve y, lying
in the circle |{]|<1 and outside the angular domain ¢, >arg{ > -21.
Hence ¢ = g(w) maps D, onto a domain D; lying in |{]|<1 and
bounded by v, arg ¢ = % and |{|=1. Let the images of §; and ¢
be S¢ and #® respectively.

Denote by D, §; and #, respectively the components of D}, SF
and z; lying in 11 <1. Asin §4 (cf [8]) we can prove that there
is a positive number %, such that

— dpi(ST, 1) + 45,81 i) = ky

for sufficiently small ». On the other hand, we have dj, (S, 7)) =

Iog-}- + o(1)
=" Hence we obtain
1
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log — — kB + o(1)

dDy(Sl'! r".) = dD;(s:‘s ‘:) g B ’

for v=1. Similarly, we can prove this formula for v=2, --- 6.
Hence, by (23),

’ 6
Mo l) > 3 —
=1 log——-k..@ +o(1)

6
On account of the relations d,(I}, I,) = — 12’1' ~— and X 0,=2m,
log-;_——}* o(1) v=1
we arrive at the result
6
2"'___ > 2 R 9‘-‘ o (k. >0).

log =+ 0(1)  ¥=* log— &, + o (1)

This is absurd. Therefore (ii) is impossible. This completes the
proof.

7. The Bloch constant of convex domains.

Let the convex domain G belong to §1 ¢y and B(G) be the radius
of maximal circle contained in G. Tl;e minimum B of B(G) for
G € X ¢, is called the Bloch constant of convex domains. M. Y. Chang
discovered B = %. Here we shall give a new proof of B = % through

the principle of symmetrization. Furthermore, we can determine the
extremal domain simultaneously.

Theorem 4. The extremal domain G, (i.e. B(G)=B) of Z ¢, is

a strip symmetric with respect to the origin, with width -?.

Proof. Let G€ X ¢,, B(G) = B. Using Lindeldf’s principle we
el

can prove that G is either a strip or a triangle. Suppose that G is
a triangle with vertices 4, B and C, and further that 4D I BC and
D € BC, and BC is parallel to the real axis. Let G change into G*
by the Steiner symmetrization with respect to the real axis. Let
the length of AD be A=2d, and write DB=a;, DC =a,. Denote by
e the distance from O to AD. Then G* is the quadrilateral with
the vertices

(i +p), m—p, —p+di, —p—di.
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The radius of a maximal circle contained in G* is

(a1 4+ a) d .
Va+d +vVd+d

Ry =

The radius of a maximal circle contained in G 1s

— 2(“1:"‘_32-)‘5
st +VE+E +VE+P

k2

Evidently %,>k%,, i.e. kX, <B. Since the mapping radius R of G* at

O is greater than unity, hence by wz%, G* is represented onto

G, € X ¢, with R(G,) =—%— < B. This is a contradiction. Therefore
)

G must be a strip. If the strip G is not symmetric to the origin,

then the mapping function for |z2|<1 onto G must be

1 — 2 %
& 1—z =2 14 =z
& _ == . =1.
A= lm® ) T r—m  FI—a lel =1
l+_"_"':'_
1—'203'

Then B(G) = %_itll::;‘r‘- > i: If follows that G must be symme-

tric with respect to the origin, and B(G) = —E—, Bz%.
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