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Deformation dependence of symmetry energy cdigcients of nuclei
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Based on the semi-classical Thomas-Fermi approximatigetier with the Skyrme energy-density functional, we sttayde-
formation dependence of symmetry energyfiiorents of finite nuclei. The symmetry energy fugents of nuclei with mass
numberA = 40, 100, 150, 208 are extracted from two-parameter pardittiey to the calculated energy per particle. We find
that the symmetry energy dieients decrease with the increase of nuclear quadrupoterdafions, which is mainly due to the
isospin dependence of thefldirence between the proton and neutron surfafasginess. Large deformations of nuclei can cause
the change of the symmetry energy fimgent by about 0.5 MeV and the influence of nuclear deformmatimn the symmetry energy
codficients is more evident for light and intermediate nuclei.
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1 Introduction tracted from the masses and some evident oscillations in the
mass-dependence of the symmetry energytfments were
Nuclear symmetry energy has attracted a lot of attention inobserved. When the shell corrections are taken into account
recent years. In addition to its importance in the study ofthe oscillations in the extracted symmetry energyficoients
nuclear physics such as some crucial information on nucleaare reducedféectively. Because the shelffects in the mea-
structure and reactions, the symmetry energy is also gloselsured masses are correlated with nuclear deformatiorss, it i
related to a large number of astrophysical phenomena. Fotherefore interesting to see how large the nuclear deforma-
example, the symmetry energy is of great significance fortions individually dfect the symmetry energy ciieients due
the study of the structure, the evolution mechanism and théo the surface-symmetry term and the nuclear surfaess-
mass-radius relationship of neutron stars [1]. Although aness, based on theoretical models and removing the influence
great éfort has been devoted in recent decades to investiof the shell &ects.
gate the symmetry energy [2—14], the density dependence of The density functional theory is widely used in the study
the symmetry energy, especially at sub-saturation and-supeof the nuclear ground state which provides us with a use-
saturation density regions, is far from clear. More invgssti  ful balance between accuracy and computation cost, allow-
tions on the symmetry energy are still required. ing large systems with a simple self-consistent manner. In
In ref. [15], Liu et al. studied the nuclear symmetry the framework of the féective Skyrme interaction [17] and

energy at subnormal densities from the measured nucledhe extended Thomas-Fermi approximation, the Skyrme en-

masses [16]. The symmetry energy fiméents were ex-  €rgy density functional approach was proposed for the study
of nuclear structure and reactions [18—20]. One of the advan
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is that the microscopic shell and pairing corrections can be 1 (qu) 1 [ZmWo Vip +Pq)] @)
clearly removed, which is helpful to study the deformation 12 K2 2 fq
energies without the influence of the shefkeets.

In this work, we will study the “macroscopic” energies of
nuclei, especially the deformation dependence of the sym- ¢ ) _1 Zm{l[tl(1+ }Xl) N t2(1+ }xg)]p(r)

with the dfective-mass form factor

metry energy coicient, based on the extended Thomas- 2
Fermi approximation together with the Skyrme energy- N }[tz(xz+ 1) tl(X1+ 1)];3 (r)} (5)
density functional. 4 2 d
) ) and the spin-orbit density is expressed as:
2 The Skyrme energy-density functional and
the extended thomas-fermi approach Jg = ‘%WO(%T)%PQVPQ' (©6)
q

The energy of a nucleus at its ground state can be express

. . . eIq1e Coulomb energy density is a functional of proton den-
as the integral of nuclear energy density functional: 9y y P

sity. Here we consider the contributions of the direct term

and exchange term:

E= fﬂ dr. (1) .
3

Heoulr) = pr( )f‘ pp(r ) _ 37 (;) [,Op(r)]4/3- 7)

The energy density functiongt(r) contains the Skyrme
energy densityHsy(r) and the Coulomb energy density

) From egs. (1)—(7), one can see that the total energy of a nu-
7'{Coul(r)-

cleus can be expressed as a functional of nuclear density and
H(r) = Hsiy(r) + Heoulr). (2)  tsgradients.
In the semi-classical ETF2 approach, the ground state de-
The Skyrme energy density can be expressed in terms of thfvbrmations of deformed nuclei can not be accurately de-
local nucleon densitiegq(r), kinetic energy densitiesy(r) scribed due to the neglecting of the microscopic shell and
and spin-orbit densitiedy(r) (g = n for neutrons and| = p pairing gfects. However, based on the restricted density vari-

for protons): ational method together with the form of Woods-Saxon dis-
52 1 1 1 tribution:
Hsky(r) =omTt Eto[(l + —XO)P2 - (Xo + —)(P2 +P%)] Pl
pq(r) = r—Rq(60) s (8)
+ —t3p [(1 + = X3)0 (x3 + )(,o2 + pp)] 1+ exp[—a;‘ ]
+ }[tl(l + }xl) + tz(l + }X2)]Tp for describing the density of an axially deformed nuclens, o
4 2 2 can calculate the “macroscopic” part of the binding endtgy
+ }[tz(xz 4 1) _ tl(xl N })](Tnpn + To00) of a nucleus as a function of quadrupole deformagiorp(”
4 2 2 andaq denote the central density and the surfadiudeness
1 1\ 1 2 of nuclei, respectivelyR, defines the distance from the origin
+ 3ty(1+ =% 1+ X2 (Vp) > q -
2 of the coordinate system to the point on the nuclear surface
1 1
16[3t1(X1 + 2) + tz(Xz + )][(V;On)2 + (Vop)’] Rq(6) = Ry[1 + B2Ya0(6)]. 9)
+ %WO[J -Vp+JIn-Von+Jp - Vppl, 3) The central densnp@ is determined from the conservation

of particle number. At a given nuclear quadrapole deforma-
wherety, t1, to, t3, X0, X1, X2, X3, @ are the Skyrme interaction tion 3, one can obtain the minimal ener&fﬂz) of the nu-
parametersWy denotes the strength of the spin-orbit inter- clear system since the total energy is expressed as a fanctio
action. In the calculations, we adopt the Skyrme parameteof density and its gradients under the ETF2 approximation,
set SKM* [21] and SLy4 [22]. The kinetic energy density by using the optimization algorithm [20] and varying thefou
T = Tp + 7y and the spin-orbit density = J, + J, are de-  variablesR,, a,, Ry, a, for the description of the proton and
scribed by using the extended Thomas-Fermi approach up taeutron density distributions.

the second order in (ETF2) [18-20]. To test the ETF2 approach, we study the root-mean-square
The kinetic energy density is then expressed as: (rms) charge radii and deformation energies of nuclei with

5 this approach. In Table 1 we list the calculated rms charge
Toloq(N)] :§(37t2)2/3p5/3 n i(qu) radii of some spherical nuclei with the ETF2 approach by
5 36 pq adopting the parameters set SkM*. We find that the devia-

1 1 VpqVfq + pgAfy tions from the experimental data are generally smaller than

+ §qu 5 fq 0.03 fm for these nuclei, which is comparable with the rms
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error (0.028 fm) of the Hartree-Fock-Bogoliubov (HFB27)
model [23]. In addition, the deformation energies, defined
as the diference in energy of a nucleus between its spherical
and equilibrium shapes, for isotopes of Uranium are also in-
vestigated with the ETF2 approach. To describe the ground
state deformations of nuclei in this semi-classical moithel,
Strutinsky shell corrections from the universal paramzter
tion [24] of deformed Woods-Saxon potential are added to
the macroscopic enerdgy. In Figure 1, we show the cal-
culated deformation energies for the isotopes of Uranium.
The solid curve and squares denote the results of HFB27
and WS* [25] model, respectively. One sees that the results
of ETF2 approach (solid circles) are comparable with those
from the HFB27 and WS* mass models. These tests indi-
cate that the semi-classical ETF2 approach together with th
Skyrme energy-density functional is appropriate for the de
scription of nuclear deformation energies.

3 Symmetry energy cofficients of finite nuclei

In this section, we first investigate the symmetry energy co-
efficient asym in the liquid drop mass formula at spherical
shapes as a function of nuclear mass number, based on the
semi-classical ETF2 approach. Then, the macroscopic en-
ergy of a deformed nuclear system is studied with the ETF2
approach and the deformation dependencaf is also in-
vestigated.

Figure 2 shows the calculated Skyrme energy per particl
Eo /A= 3 f H,,,dr as a function of isospin asymmetry for

(N-2)IA
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%igure 2 (Color online) Skyrme energy per particle as a function o$n

asymmetryl = (N — Z)/A for nuclei with A = 100. (a) The results with the

nuclei with A = 100. Here, the Coulomb interaction which skyrme force SkM*. (b) The results with SLy4. The Coulomtzfaiction is

Table 1 Nuclear root-mean-square charge radii of some nuclei (Jrfriom
the Skyrme energy density functional plus the ETF2 apprdschsing the
parameters set SkM*. The experimental data are taken frorf26d

Nucleus  “8Ca  ®Ni  90zr  6gpn  144gm  208pp
SkM* 351 384 427 461 494
Experiment 348 386 427 463 495
15 T T T T
7=92 —=—WS*
HFB27
10
>
()
=
W
5
. . A . .
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Neutron number
Figure 1  (Color online) Deformation energies of some isotopes of-Ura

nium. The solid curve, squares and circles denote the sestilHFB27,

WS* [25], and ETF2 approach, respectively.

removed in the calculations.

can influence the density distributions of nuclei has been ig
nored in order to obtain the information of symmetry energy
as clean as possible. In Figure 2, weet 0 in the calcu-
lations. The solid squares denote the calculated resutks wi
the Skyrme energy density functional approach. According
to the Bethe-Weizsacker mass formula, the energy perparti
cle of a nucleus subtracting the contribution of the Coulomb
energy can be expressed as a function of mass nufaed
isospin asymmetry = (N — Z)/A:
(E-Eq)/A=a, +aA™3 + agml?, (10)
wherea,, a, denote the cd#cients of the volume and the
surface term, respectively. The parabolic law of the bind-
ing energies of nuclei is due to the isospin symmetry in nu-
clear physics. In the realistic nuclear system, the depen-
dence of the asymmetry term is more complicated than the
12 term. To give a qualitative view of theffects of nuclear
deformations, we adopt the quadratic term for the descrip-
tion of the isospin asymmetry term. The do&ent asym
of the quadratic term for the isospin asymmetry is the sym-
metry energy coicient. The solid curves in Figure 2 de-
note the results from two-parameter parabola fitting to the
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squares. The curvature of the solid curve represents the cosurface-symmetry term and nuclear surfadkudeness. Sim-
responding symmetry energy dheienta,, of finite nuclei ilar to the spherical cases, the symmetry energyiments

with mass numbeA. The extracted symmetry energy coef- asym in the liquid drop formula can also be extracted for the
ficients for nuclei withA = 40, 100, 150, 208 are shown in deformed nuclei. We show in Figure 5 the symmetry energy
Figure 3. With these four isobaric-chains, we can test thecodficients of nuclei as a function of quadrupole deforma-
model for the description of the mass-dependencesg#. tion with SkM* and SLy4. The squares, circles, triangles
The squares and stars denote the results with the parametand crosses denote the results for the isobaric nuclei with
set SkM* and SLy4, respectively. Here, the nuclear defor-A = 40, 100, 150, 208, respectively. One sees that symme-
mations have not yet been taken into account. The valuefry energy coéficients decrease with the increaseé®f. The

of a,, (A) obtained in this approach are close to the resultslarge ground state deformations for some nuclei can cause
of ref. [15] in which the symmetry energy dbeients are the change of the symmetry energy fiagents by about 0.5
extracted from the measured massed together with the forMeV. Therefore, the influence of nuclear deformations sthoul
mulaa,, (A) = So(1+«A /31 [27] for describing the mass-  be further considered if one wants to determine the symmetry
dependence. Her&, is the volume symmetry energy co- energy coéficients more precisely from the masses.

efficient of the nuclei (i.e. the nuclear symmetry energy at Pagm,
normal density) and s the ratio of the surface-symmetry co- . . . 0B; . .
efficient to the volume-symmetry cfigient. The shades rep- codficients in Figure 5 is simultaneously studled._ Figure 6
resent the uncertainty of the extracted symmetry energly coe SNOWS the curvature of the symmetry energyfioent as
ficients [15]. From Figure 3, one can see that the results fronf* function of mass number. The squares and stars denote
the formulaa,, (A) = 311(1+ 2.31A"Y%) are larger than the results of SkM* and SLy4, respectively. From Figure 6,
those from SkM* and smaller than those from SLy4, because

the corresponding values &, are 30.0 and 32.0 MeV for

Here, the curvature, =

|s,=0 Of the symmetry energy

SkM* and SLy4, respectively [28], anfly = 31.1 MeV for 30t ' ' ' ' ' 1
the solid curve. Here, we would like to state that the Coulomb
energy term (see eg. (7)) is not involved in the calculatibn o
the density distributions and the corresponding macrdscop < 20
energyE of a nucleus. Considering the isospin dependence 2
of the surface dfuseness obtained in the ETF2 approach, the & .
Coulomb energy from the ETF2 approach could not be sim- 10 . Sm 7
ply written asa.Z2/AY3 which is assumed for extracting the —— aym(A)=31.1/(142.31A %)
symmetry energy cdicienta,, in ref. [15].

Now we come to the cases for deformed nuclei. With the 0020 80 120 160 200 240
same approach, the macroscopic endi@j a nucleus with a A

certain quadrapole deformati@ga can be calculated. Figure _ _ : .

. . . Figure 3 (Color online) Symmetry energy cfiients of nuclei as a func-
4 shows the values CESkY/'_A‘ QS a function of ISPSpm aSYM- o of mass number. The solid curve denotes the resultas@f(A) =
metry for a series of nuclei with = 100 under given nuclear  sy1 4 «a-1/3)1 with S, = 311 MeV andx = 2.31 which is taken from
quadrupole deformations. One sees thad,/A changes with  ref. [15]. The squares and stars denote the results with Skt SLy4,
nuclear deformations, which could be due to the influence ofrespectively.
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Figure 4 (Color online) The same as Figure 2, but with nuclear deftionag, = —0.4, 0, 0.6, 0.9.
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Figure 5 (Color online) Symmetry energy cfiients of nuclei as a function of quadrupole deformation.

0 6 T T T T T 000 T T T T T
P —=—skm* W
* SLy4 ........o".
{4
07} . .a”"
~0.05F o .
S o
2 os} 1< o°
= o
¥ bd
o
-0.10F f g
09} . e
[ J
-1.0} (@) A (b)
1 1 1 1 1 _015 1 1 1 1 1
40 80 120 160 200 40 80 120 160 200
A A

Figure 6 (Color online) (a) Curvature, of the symmetry energy céiicients as a function of mass number. (b) Curvature of thebpéad, in the WS mass
formula [25] for describing the deformation energies ofleuc

one finds that the absolute valuegtiecreases with the mass  cientasym becomes weak (see Figure 7(b)). It indicates that
number, which is similar to the trend of the ¢heient b, the isospin dependence of thefdrence between the proton
(see Figure 6(b)) of the nuclear deformation energy in theand neutron dfuseness plays a key role for the deformation
Weizsicker-Skyrme mass formula [25, 29]. The influence of dependence of the symmetry energyfieeent of finite nu-
the quadrupole deformations on the symmetry energtficoe clei.
cients gradually decreases with the increase of nuclear siz
b, in Figure 6(b) denotes the (quadrupole) deformation en-4 Summary
ergy codficient which has a relationship with nuclear sur-
face of finite nuclei and is therefore related to the surface-ln summary, by using the Skyrme energy density functional
symmetry energy of nuclei. plus the extended Thomas-Fermi (ETF2) approximation, the
To understand the deformation dependence of the symmesymmetry energy cdicients of nuclei have been studied
try energy cofficient, we further study the influence of nu- with the restricted density variational method. Consiaigri
clear surface diuseness oasym. In Figure 7(a), we show the nuclear quadrupole deformations in the calculations, we fin
calculated surface ffuseness of neutrons and protons for the that the calculated symmetry energy fiagent depends on
isobaric chairA = 100 at spherical cases. Here, the Skyrmenot only the mass numbek but also the nuclear deforma-
force SkM* is adopted. The open and solid circles denotetions. The large deformations of nuclei can cause the change
the results for protons and neutrons, respectively. Ong seeof symmetry energy cdgcient by about 0.5 MeV. In the tra-
that the isospin dependence of the surfadkuideness is ev- ditional liquid drop model, it is usually thought that onhet
ident. For neutron-rich nuclei, the symmetry potentiall wil surface energy and Coulomb energy terms are dependent on
“push” the extra-neutrons to the very low density regiori[30 nuclear deformations. From the microscopic Skyrme energy
If setting the surface ffuseness, = a, = 0.4 fminthe cal-  density functional plus the ETF2 calculations, it is fouhaltt
culations, we find that the valuesa§,, slightly increase and  the isospin dependence of théfdrence between the proton
the deformation dependence of the symmetry energsficoe and neutron diuseness plays a key role for the deformation
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Figure 7 (Color online) (a) Nuclear surfaceftliseness for nuclei with = 100. (b) The same as Figure 5, but setting the surfatesdiness, = a, = 0.4
fm in the calculations.

dependence of the symmetry energyftioent of finite nu-
clei. These investigations are not only important for thelgt
of symmetry energy, but also for the improvement of nuclear 14
mass models.

This work was supported by the National Natural Science Foundation of
China (Grants Nos. 11275052, 11365005 and 11422548).

10

11

12

Gandolfi S, Carlson J, Reddy S, et al. The equation of stateof
tron matter, symmetry energy, and neutron star structuwePBys J A,
2014, 50: 10

Zhang Y X, Danielewicz P, Famiano M, et al. The influence abtr
emission and the symmetry energy on neutron-proton spelitéle
ratios. Phys Lett B, 2008, 664: 145

Tsang M B, Zhang Y X, Danielewicz P, et al. Constraints ondés-
sity dependence of the symmetry energy. Phys Rev Lett, 2008,
122701

Li B A, Chen L W, Ko C M. Recent progress and new challenges in
isospin physics with heavy-ion reactions. Phys Rep, 2068; 413—
281

Li B A, Das C B, Das Gupta S, et al. Momentum dependence of the
symmetry potential and nuclear reactions induced by neutoh nu-
clei at RIA. Phys Rev C, 2004, 69: 011603

Chen L W, Ko C M, Li B A. Determination of the $thess of the nu-
clear symmetry energy from isospinfiision. Phys Rev Lett, 2005,
94: 032701

Shetty D V, Yennello S J, Souliotis G A. Density dependentéhe
symmetry energy and the nuclear equation of state: A dyrairaid
statistical model perspective. Phys Rev C, 2007, 76: 024606
Botvina A S, Lozhkin O V, Trautmann W. Isoscaling in ligloti in-
duced reactions and its statistical interpretation. Pless® 2002, 65:
044610

Centelles M, Roca-Maza X, Vinas X, et al. Nuclear symmetgrgy
probed by neutron skin thickness of nuclei. Phys Rev Let192002:
122502

Steiner AW, Gandolfi S. Connecting neutron star obsematio three-
body forces in neutron matter and to the nuclear symmetryggne
Phys Rev Lett, 2012, 108: 081102

Steiner A W, Prakash M, Lattimer J M, et al. Isospin asynnyniet
nuclei and neutron stars. Phys Rep, 2005, 411: 325-375

Dong J, Zuo W, Scheid W. Correlation betweetlecay energies of
superheavy nuclei involving thefects of symmetry energy. Phys Rev
Lett, 2011, 107: 012501

13

15

23

24

25

26

27

28

29

Wang N, Ou L, Liu M. Nuclear symmetry energy from the Fermi-
energy diference in nuclei. Phys Rev C, 2013, 87: 034327

Wang N, Li T. Shell and isospirffects in nuclear charge radii. Phys
Rev C, 2013, 88: 011301(R)

Liu M, Wang N, Li Z X, et al. Nuclear symmetry energy at subno
mal densities from measured nuclear masses. Phys Rev C, 2210
064306

Audi G, Wapstra A H, Thibault C. The AME 2003 atomic masd-eva
uation (). Tables, graphs and references. Nucl Phys A320Q9:
337-676

Vautherin D, Brink D M. Hartree-fock calculations withyskne'’s in-
teraction. I. Spherical nuclei. Phys Rev C, 1972, 5: 626

Bartel J, Bencheikh K. Nuclear mean fields through sefisisient
semiclassical calculations. Eur Phys J, 2002, 14: 179-190

Brack M, Guet C, Hakanson H B. Selfconsistent semiclakdiescrip-
tion of average nuclear properties t a link between micrpecand
macroscopic models. Phys Rep, 1985, 123: 275-364

Liu M, Wang N, Li Z, et al. Applications of Skyrme energyraity
functional to fusion reactions spanning the fusion basriéucl Phys
A, 2006, 768: 80-98

Bartel J, Quentin P, Brack M, et al. Towards a better panagation of
Skyrme-like dfective forces: A critical study of the SkM force. Nucl
Phys A, 1982, 386: 79-100

Chabanat E, Bonche P, Haensel P, et al. A Skyrme paraatitnz
from subnuclear to neutron star densities Part Il. Nuclefriam sta-
bilities. Nucl Phys A, 1998, 635: 231-256

Goriely S, Chamel N, Pearson J M. Hartree-Fock-Bogoliutaclear
mass model with 0.50 MeV accuracy based on standard forms of
Skyrme and pairing functionals. Phys Rev C, 2013, 88: 06(R)D2
Cwoik S, Dudek J, Nazarewicz W, et al. Single-particlergies, wave
functions, quadrupole moments and g-factors in an axiafprined
woods-saxon potential with applications to the two-cetype nuclear
problems. Comp Phys Comm, 1987, 46: 379-399

Wang N, Liang Z, Liu M, et al. Mirror nuclei constraint inclear mass
formula. Phys Rev C, 2010, 82: 044304

Angeli |, Marinova K P, Data At, et al. Table of experiméniaclear
ground state charge radii: An update. Data Tables, 2013395
Danielewicz P, Lee J. Symmetry energy |: Semi-infiniteteratNucl
Phys A, 2009, 818: 36-96

Dutra M, Lourenco O, Sa Martins J S, et al. Skyrme intivacand
nuclear matter constraints. Phys Rev C, 2012, 85: 035201

Wang N, Liu M, Wu X Z. Modification of nuclear mass formula by
considering isospinféects. Phys Rev C, 2010, 81: 044322

Wang N, Liu M, Wu X Z, et al. Surface filiseness correction in global
mass formula. Phys Lett B, 2014, 734: 215



