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Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we studythe de-
formation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coefficients of nuclei with mass
numberA = 40, 100, 150, 208 are extracted from two-parameter parabolafitting to the calculated energy per particle. We find
that the symmetry energy coefficients decrease with the increase of nuclear quadrupole deformations, which is mainly due to the
isospin dependence of the difference between the proton and neutron surface diffuseness. Large deformations of nuclei can cause
the change of the symmetry energy coefficient by about 0.5 MeV and the influence of nuclear deformations on the symmetry energy
coefficients is more evident for light and intermediate nuclei.
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1 Introduction

Nuclear symmetry energy has attracted a lot of attention in
recent years. In addition to its importance in the study of
nuclear physics such as some crucial information on nuclear
structure and reactions, the symmetry energy is also closely
related to a large number of astrophysical phenomena. For
example, the symmetry energy is of great significance for
the study of the structure, the evolution mechanism and the
mass-radius relationship of neutron stars [1]. Although a
great effort has been devoted in recent decades to investi-
gate the symmetry energy [2–14], the density dependence of
the symmetry energy, especially at sub-saturation and super-
saturation density regions, is far from clear. More investiga-
tions on the symmetry energy are still required.

In ref. [15], Liu et al. studied the nuclear symmetry
energy at subnormal densities from the measured nuclear
masses [16]. The symmetry energy coefficients were ex-
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tracted from the masses and some evident oscillations in the
mass-dependence of the symmetry energy coefficients were
observed. When the shell corrections are taken into account,
the oscillations in the extracted symmetry energy coefficients
are reduced effectively. Because the shell effects in the mea-
sured masses are correlated with nuclear deformations, it is
therefore interesting to see how large the nuclear deforma-
tions individually affect the symmetry energy coefficients due
to the surface-symmetry term and the nuclear surface diffuse-
ness, based on theoretical models and removing the influence
of the shell effects.

The density functional theory is widely used in the study
of the nuclear ground state which provides us with a use-
ful balance between accuracy and computation cost, allow-
ing large systems with a simple self-consistent manner. In
the framework of the effective Skyrme interaction [17] and
the extended Thomas-Fermi approximation, the Skyrme en-
ergy density functional approach was proposed for the study
of nuclear structure and reactions [18–20]. One of the advan-
tages in the semi-classical extended Thomas-Fermi approach
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is that the microscopic shell and pairing corrections can be
clearly removed, which is helpful to study the deformation
energies without the influence of the shell effects.

In this work, we will study the “macroscopic” energies of
nuclei, especially the deformation dependence of the sym-
metry energy coefficient, based on the extended Thomas-
Fermi approximation together with the Skyrme energy-
density functional.

2 The Skyrme energy-density functional and
the extended thomas-fermi approach

The energy of a nucleus at its ground state can be expressed
as the integral of nuclear energy density functional:

E =
∫

H dr. (1)

The energy density functionalH(r) contains the Skyrme
energy densityHSky(r) and the Coulomb energy density
HCoul(r):

H(r) = HSky(r) +HCoul(r). (2)

The Skyrme energy density can be expressed in terms of the
local nucleon densitiesρq(r), kinetic energy densitiesτq(r)
and spin-orbit densitiesJq(r) (q = n for neutrons andq = p
for protons):
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wheret0, t1, t2, t3, x0, x1, x2, x3, α are the Skyrme interaction
parameters.W0 denotes the strength of the spin-orbit inter-
action. In the calculations, we adopt the Skyrme parameter
set SkM* [21] and SLy4 [22]. The kinetic energy density
τ = τp + τn and the spin-orbit densityJ = Jp + Jn are de-
scribed by using the extended Thomas-Fermi approach up to
the second order in~ (ETF2) [18–20].

The kinetic energy density is then expressed as:
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with the effective-mass form factor
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and the spin-orbit density is expressed as:

Jq = −
1
2

W0

(2m
~2

) 1
fq
ρq∇ρq. (6)

The Coulomb energy density is a functional of proton den-
sity. Here we consider the contributions of the direct term
and exchange term:

HCoul(r) =
e2

2
ρp(r)

∫
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4
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[ρp(r)]4/3. (7)

From eqs. (1)–(7), one can see that the total energy of a nu-
cleus can be expressed as a functional of nuclear density and
its gradients.

In the semi-classical ETF2 approach, the ground state de-
formations of deformed nuclei can not be accurately de-
scribed due to the neglecting of the microscopic shell and
pairing effects. However, based on the restricted density vari-
ational method together with the form of Woods-Saxon dis-
tribution:

ρq(r) =
ρ

(q)
0

1+ exp
[

r−Rq(θ)
aq

] , (8)

for describing the density of an axially deformed nucleus, one
can calculate the “macroscopic” part of the binding energyẼ
of a nucleus as a function of quadrupole deformationβ2. ρ

(q)
0

andaq denote the central density and the surface diffuseness
of nuclei, respectively.Rq defines the distance from the origin
of the coordinate system to the point on the nuclear surface

Rq(θ) = Rq [1 + β2Y20(θ)]. (9)

The central densityρ(q)
0 is determined from the conservation

of particle number. At a given nuclear quadrapole deforma-
tion β2, one can obtain the minimal energỹE(β2) of the nu-
clear system since the total energy is expressed as a function
of density and its gradients under the ETF2 approximation,
by using the optimization algorithm [20] and varying the four
variablesRp, ap, Rn, an for the description of the proton and
neutron density distributions.

To test the ETF2 approach, we study the root-mean-square
(rms) charge radii and deformation energies of nuclei with
this approach. In Table 1 we list the calculated rms charge
radii of some spherical nuclei with the ETF2 approach by
adopting the parameters set SkM*. We find that the devia-
tions from the experimental data are generally smaller than
0.03 fm for these nuclei, which is comparable with the rms
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error (0.028 fm) of the Hartree-Fock-Bogoliubov (HFB27)
model [23]. In addition, the deformation energies, defined
as the difference in energy of a nucleus between its spherical
and equilibrium shapes, for isotopes of Uranium are also in-
vestigated with the ETF2 approach. To describe the ground
state deformations of nuclei in this semi-classical model,the
Strutinsky shell corrections from the universal parameteriza-
tion [24] of deformed Woods-Saxon potential are added to
the macroscopic energỹE. In Figure 1, we show the cal-
culated deformation energies for the isotopes of Uranium.
The solid curve and squares denote the results of HFB27
and WS* [25] model, respectively. One sees that the results
of ETF2 approach (solid circles) are comparable with those
from the HFB27 and WS* mass models. These tests indi-
cate that the semi-classical ETF2 approach together with the
Skyrme energy-density functional is appropriate for the de-
scription of nuclear deformation energies.

3 Symmetry energy coefficients of finite nuclei

In this section, we first investigate the symmetry energy co-
efficient asym in the liquid drop mass formula at spherical
shapes as a function of nuclear mass number, based on the
semi-classical ETF2 approach. Then, the macroscopic en-
ergy of a deformed nuclear system is studied with the ETF2
approach and the deformation dependence ofasym is also in-
vestigated.

Figure 2 shows the calculated Skyrme energy per particle
ESky/A =

1
A

∫

HSkydr as a function of isospin asymmetry for
nuclei with A = 100. Here, the Coulomb interaction which

Table 1 Nuclear root-mean-square charge radii of some nuclei (in fm) from
the Skyrme energy density functional plus the ETF2 approachby using the
parameters set SkM*. The experimental data are taken from ref. [26]

Nucleus 48Ca 64Ni 90Zr 116Sn 144Sm 208Pb

SkM* 3.51 3.84 4.27 4.61 4.94 5.53

Experiment 3.48 3.86 4.27 4.63 4.95 5.50
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Figure 1 (Color online) Deformation energies of some isotopes of Ura-
nium. The solid curve, squares and circles denote the results of HFB27,
WS* [25], and ETF2 approach, respectively.
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Figure 2 (Color online) Skyrme energy per particle as a function of isospin
asymmetryI = (N − Z)/A for nuclei with A = 100. (a) The results with the
Skyrme force SkM*. (b) The results with SLy4. The Coulomb interaction is
removed in the calculations.

can influence the density distributions of nuclei has been ig-
nored in order to obtain the information of symmetry energy
as clean as possible. In Figure 2, we setβ2 = 0 in the calcu-
lations. The solid squares denote the calculated results with
the Skyrme energy density functional approach. According
to the Bethe-Weizsäcker mass formula, the energy per parti-
cle of a nucleus subtracting the contribution of the Coulomb
energy can be expressed as a function of mass numberA and
isospin asymmetryI = (N − Z)/A:

(E − Ec)/A = av + asA
−1/3 + asymI2, (10)

whereav , as denote the coefficients of the volume and the
surface term, respectively. The parabolic law of the bind-
ing energies of nuclei is due to the isospin symmetry in nu-
clear physics. In the realistic nuclear system, the depen-
dence of the asymmetry term is more complicated than the
I2 term. To give a qualitative view of the effects of nuclear
deformations, we adopt the quadratic term for the descrip-
tion of the isospin asymmetry term. The coefficient asym

of the quadratic term for the isospin asymmetry is the sym-
metry energy coefficient. The solid curves in Figure 2 de-
note the results from two-parameter parabola fitting to the
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squares. The curvature of the solid curve represents the cor-
responding symmetry energy coefficientasym of finite nuclei
with mass numberA. The extracted symmetry energy coef-
ficients for nuclei withA = 40, 100, 150, 208 are shown in
Figure 3. With these four isobaric-chains, we can test the
model for the description of the mass-dependence ofasym.
The squares and stars denote the results with the parameter
set SkM* and SLy4, respectively. Here, the nuclear defor-
mations have not yet been taken into account. The values
of asym(A) obtained in this approach are close to the results
of ref. [15] in which the symmetry energy coefficients are
extracted from the measured massed together with the for-
mulaasym(A) = S 0(1+κA−1/3)−1 [27] for describing the mass-
dependence. Here,S 0 is the volume symmetry energy co-
efficient of the nuclei (i.e. the nuclear symmetry energy at
normal density) andκ is the ratio of the surface-symmetry co-
efficient to the volume-symmetry coefficient. The shades rep-
resent the uncertainty of the extracted symmetry energy coef-
ficients [15]. From Figure 3, one can see that the results from
the formulaasym(A) = 31.1(1+ 2.31A−1/3)−1 are larger than
those from SkM* and smaller than those from SLy4, because
the corresponding values ofS 0 are 30.0 and 32.0 MeV for
SkM* and SLy4, respectively [28], andS 0 = 31.1 MeV for
the solid curve. Here, we would like to state that the Coulomb
energy term (see eq. (7)) is not involved in the calculation of
the density distributions and the corresponding macroscopic
energyẼ of a nucleus. Considering the isospin dependence
of the surface diffuseness obtained in the ETF2 approach, the
Coulomb energy from the ETF2 approach could not be sim-
ply written asacZ2/A1/3 which is assumed for extracting the
symmetry energy coefficientasym in ref. [15].

Now we come to the cases for deformed nuclei. With the
same approach, the macroscopic energyẼ of a nucleus with a
certain quadrapole deformationβ2 can be calculated. Figure
4 shows the values ofESky/A as a function of isospin asym-
metry for a series of nuclei withA = 100 under given nuclear
quadrupole deformations. One sees thatESky/A changes with
nuclear deformations, which could be due to the influence of

surface-symmetry term and nuclear surface diffuseness. Sim-
ilar to the spherical cases, the symmetry energy coefficients
asym in the liquid drop formula can also be extracted for the
deformed nuclei. We show in Figure 5 the symmetry energy
coefficients of nuclei as a function of quadrupole deforma-
tion with SkM* and SLy4. The squares, circles, triangles
and crosses denote the results for the isobaric nuclei with
A = 40, 100, 150, 208, respectively. One sees that symme-
try energy coefficients decrease with the increase of|β2 |. The
large ground state deformations for some nuclei can cause
the change of the symmetry energy coefficients by about 0.5
MeV. Therefore, the influence of nuclear deformations should
be further considered if one wants to determine the symmetry
energy coefficients more precisely from the masses.

Here, the curvatureκ
β
=
∂2asym

∂β2
2
|β2=0 of the symmetry energy

coefficients in Figure 5 is simultaneously studied. Figure 6
shows the curvature of the symmetry energy coefficient as
a function of mass number. The squares and stars denote
the results of SkM* and SLy4, respectively. From Figure 6,
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Figure 3 (Color online) Symmetry energy coefficients of nuclei as a func-
tion of mass number. The solid curve denotes the results ofasym(A) =
S 0(1 + κA−1/3)−1 with S 0 = 31.1 MeV andκ = 2.31 which is taken from
ref. [15]. The squares and stars denote the results with SkM*and SLy4,
respectively.
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Figure 5 (Color online) Symmetry energy coefficients of nuclei as a function of quadrupole deformation.

40 80 120 160 200
−0.15

−0.10

−0.05

0.00

40 80 120 160 200

−1.0

−0.9

−0.8

−0.7

−0.6
WS*

 

 

b
2

A

(a) (b)

 SkM*

 SLy4

(M
e

V
)

A

κ
β

Figure 6 (Color online) (a) Curvatureκ
β

of the symmetry energy coefficients as a function of mass number. (b) Curvature of the parabolab2 in the WS mass
formula [25] for describing the deformation energies of nuclei.

one finds that the absolute value ofκ
β

decreases with the mass
number, which is similar to the trend of the coefficient b2

(see Figure 6(b)) of the nuclear deformation energy in the
Weizsäcker-Skyrme mass formula [25, 29]. The influence of
the quadrupole deformations on the symmetry energy coeffi-
cients gradually decreases with the increase of nuclear size.
b2 in Figure 6(b) denotes the (quadrupole) deformation en-
ergy coefficient which has a relationship with nuclear sur-
face of finite nuclei and is therefore related to the surface-
symmetry energy of nuclei.

To understand the deformation dependence of the symme-
try energy coefficient, we further study the influence of nu-
clear surface diffuseness onasym. In Figure 7(a), we show the
calculated surface diffuseness of neutrons and protons for the
isobaric chainA = 100 at spherical cases. Here, the Skyrme
force SkM* is adopted. The open and solid circles denote
the results for protons and neutrons, respectively. One sees
that the isospin dependence of the surface diffuseness is ev-
ident. For neutron-rich nuclei, the symmetry potential will
“push” the extra-neutrons to the very low density region [30].
If setting the surface diffusenessan = ap = 0.4 fm in the cal-
culations, we find that the values ofasym slightly increase and
the deformation dependence of the symmetry energy coeffi-

cientasym becomes weak (see Figure 7(b)). It indicates that
the isospin dependence of the difference between the proton
and neutron diffuseness plays a key role for the deformation
dependence of the symmetry energy coefficient of finite nu-
clei.

4 Summary

In summary, by using the Skyrme energy density functional
plus the extended Thomas-Fermi (ETF2) approximation, the
symmetry energy coefficients of nuclei have been studied
with the restricted density variational method. Considering
nuclear quadrupole deformations in the calculations, we find
that the calculated symmetry energy coefficient depends on
not only the mass numberA but also the nuclear deforma-
tions. The large deformations of nuclei can cause the change
of symmetry energy coefficient by about 0.5 MeV. In the tra-
ditional liquid drop model, it is usually thought that only the
surface energy and Coulomb energy terms are dependent on
nuclear deformations. From the microscopic Skyrme energy
density functional plus the ETF2 calculations, it is found that
the isospin dependence of the difference between the proton
and neutron diffuseness plays a key role for the deformation
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Figure 7 (Color online) (a) Nuclear surface diffuseness for nuclei withA = 100. (b) The same as Figure 5, but setting the surface diffusenessap = an = 0.4
fm in the calculations.

dependence of the symmetry energy coefficient of finite nu-
clei. These investigations are not only important for the study
of symmetry energy, but also for the improvement of nuclear
mass models.
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