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Agricultural soil has numerous links with climate change. It
comprises a substantial part of farming systems that are affected
by climate change and can significantly impact food security [1].
An increase in the soil carbon (C) stock is associated with an
increase in the crop yield. Moreover, agricultural soil remains a
source for all three major greenhouse gases (GHGs), i.e., carbon
dioxide (CO2), methane and nitrous oxide, which contributes
directly to climate change. In addition, enhancing soil C sequestra-
tion in agricultural land could offset GHG emissions, promote more
sustainable and climate-resilient agricultural systems, and ulti-
mately achieve C neutrality [2]. Therefore, soil C sequestration in
croplands is an important part of natural climate solutions.

Croplands sequester C by balancing the loss of soil C with the
sequestration of input organic C. Compared with conventional til-
lage, the conversion to no-till land, with a soil structure maintained
by a lack of plowing over time, increases soil C accumulation [3].
Moreover, no-till practices may enhance the retention of crop resi-
dues on the soil surface and reduce the susceptibility of soil aggre-
gates to disruption [4], resulting in benefits for the soil organic C
stability. Hence, this may be a potential option for enhancing soil
organic carbon (SOC) pools.

The no-till approach, the central practice of conservation agri-
culture, has been widely implemented as a universal soil health
principle over the last few decades. However, the impact of no-till
on soil C accumulation can vary in different situations. Six et al. [4]
reported that SOC storage at depths of 0–30 cm increased in humid
climates, while no-till adoption in dry climates resulted in C loss
[4]. An investigation of temperate and tropical regions suggested
that converting from conventional tillage to no-till increased SOC
in the following descending order: tropical moist > tropical
dry > temperate moist > temperate dry [5]. However, in cooler
and/or wetter climates where the adoption of no-till decreased
crop productivity and C inputs declined by more than 15%, SOC
stocks decreased [6].

Despite the rapid expansion of no-till agriculture, the global dis-
tribution of potential soil C sequestration in no-till systems and
consequently its overall contribution to mitigating future climate
change remain unclear. Globally, the conversion of all croplands
into conservation tillage could be projected to sequester a large
amount of atmospheric CO2-C over the next 50 years [2], while
the potential for soil C sequestration is poorly understood in
regions where no-till practices are generally beneficial for soil C
accumulation relative to conventional tillage. Our previous
research showed that the global patterns of soil C sequestration
due to conversion to conservation agriculture are associated with
extensive humidity patterns [7]. We found that in regions with
humidity (HI) � 89, SOC will most likely increase with conversion
to conservation practices [7], and these regions occupy approxi-
mately 70% of the global cropland area. In contrast, in regions with
HI > 89, C sequestration under conservation agriculture is lower
than that achieved by local conventional tillage. In these areas,
implementing conventional agriculture is more appropriate [7].
Thus, we focused on quantifying the potential for SOC sequestra-
tion if conservation agriculture practices (no-till with residue
retention and crop rotation) are implemented in the recommended
regions (HI � 89) under various climate scenarios.

To this end, we first developed linear mixed models to quantify
how environmental variables and agronomic practices impact SOC
sequestration in arid regions (Eq. (1)) during the conventional til-
lage to conservation agriculture based on our primary findings
and datasets from Sun et al. [7] (Tables S1 and S2 online) [7]. Then,
we simulated the global SOC sequestration potential by adopting
conservation agriculture for the next 50 years with projected
ing, and
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Fig. 1. Simulated changes in global DSOCR under RCP2.6, RCP4.5 and RCP8.5 with
different climate models. No significant differences were found between each GCM
and the different RCPs.

L. Yu et al. Science Bulletin 69 (2024) 2030–2033
climate data derived from four global climate models (GCMs)
under three representative concentration pathways (RCPs),
namely, RCP2.6, RCP4.5, and RCP8.5 (Table S3 online).

DSOCR ¼ A0 �MATþ A1 � CSþ A2 �HIþ A3 � Ninput þ e;
for HI � 89; ð1Þ

where DSOCR is the annual gain or loss of the SOC stock under con-
servation agriculture practices relative to conventional tillage, MAT
is the mean annual temperature (℃), CS is the clay plus silt content
(%), HI is the humidity index (mm �C�1) [7], and Ninput is the annual
nitrogen fertilizer rate (kg N a�1). The sources of the global input
data are described in Supplementary materials 1.2 (online). More-
over, A0, A1, A2, and A3 are model parameters, and e is a constant
(Table S4 online). The stability of these parameters and the spatial
representation and applicability of the observed data were evalu-
ated via bootstrapped estimates (Fig. S1 online). Eventually, the
explanation of the fixed effects on DSOCR in Eq. (1) was significant
(p < 0.01), with a small bias to the 1:1 line (Fig. S2 online). The dura-
tion of no-till is also well known as a vital factor affecting soil C
sequestration. However, the duration factor was not included in
the mixed effects model. Globally, there is no statistically significant
relationship between changes in SOC and no-till application dura-
tion [7]. The primary reason is that the reported duration of no-till
effects on SOC accumulation stabilization ranges from 25 to 30 years
[8] to as long as one hundred or more years to eventually reach a
new equilibrium [9], depending on climate and soil.

The simulation results showed that, globally, conservation prac-
tices are likely to cause a consistent accumulation of soil organic C
to a depth of 0–30 cm under all three climate change scenarios
over the 2020s–2060s (Fig. 1). There was no notable difference in
soil C sequestration due to no-till among the three RCP scenarios,
although soil C sequestration under RCP8.5 was slightly greater
than that under RCP2.6 and RCP4.5. The projected soil C stocks
fluctuated less or slightly over the 60-year period, with values of
0.37 (0.17–0.47) Mg C ha�1 a�1, 0.38 (0.18–0.49) Mg C ha�1 a�1

and 0.38 (0.17–0.51) Mg C ha�1 a�1 under the RCP2.6, RCP4.5
and RCP8.5 scenarios, respectively (Table S5 online).

On a continental scale, soil C sequestration in the four conti-
nents of Asia, Africa, South America, and Oceania showed a positive
trend from the 2020s to the 2060s (Fig. 2; Figs. S3 and S4 online;
Table S5 online). Among them, cropland soils in Asia and Africa
benefitted the most from conservation farming, as they received
more C. A notable increase in soil C sequestration of 0.45–
0.47 Mg C ha�1 a�1 was predicted in Asia under RCP2.6 (Fig. S3
online; Table S5 online) and RCP8.5 (Fig. S4 online; Table S5 online)
from the 2020s to the 2060s. A similar soil C uptake of 0.43–
0.47 Mg C ha�1 a�1 could occur in Africa. In contrast, cropland soils
in Europe could receive C at a risk of C loss, especially under RCP2.6
and RCP4.5 (Table S5 online).

All three climate change scenarios could cause cropland expan-
sion in areaswithHI� 89. The extentwas projected to increase from
11.3 (�108 ha) in the 2020s to 11.4, 12.0, and 12.5 (�108 ha) in the
2060s under RCP2.6, RCP4.5, and RCP8.5, respectively (Table S9
online). The drying and drought areas of Asia, North America and
Europe could increase to varying degrees, especially under RCP8.5.
However, the areas in Africa, South America and Oceania experi-
enced almost no change. Asia contributed the most to the soil C
stocks, atmore than40%,whileOceania contributed the least, at only
approximately 5%. Overall, our results indicated that the projected
annual global rate of SOC accumulation ranges from 0.42 (0.23–
0.65), 0.44 (0.24–0.69), and 0.45 (0.23–0.73) Gt C under the
RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, on a global scale
(Table S7 online). Graham et al. [2] reported that no-till practices
without crop residue retention could increase the global soil C adop-
tion in the top 20 cm by 0.08–0.17 Gt C a�1 under RCP8.5 forcing
from2015 to 2100 [2]. The positive effects of no-till with crop reten-
2031
tion on soil C sequestration were remarkably greater than those of
no-till without crop retention practices [10]. Thus, the simulation
results of Graham et al. [7] were lower than those of this study.

The no-till practices in the top ten countries, which encompass
the world’s largest cropland area, show that India, Nigeria, Aus-
tralia, Brazil, Argentina, China and the USA may experience overall
C sequestration, while Canada and Russia may experience the low-
est increase in SOC over the next 50 years (Figs. S5–S7 online).
However, the average increase rates of soil C sequestration in
Canada and Russia under RCP4.5 and RCP8.5 could be greater
(Table S8 online) due to the rapid extent of cropland in the areas
with HI � 89 within these two countries (Table S10 online). More-
over, Ukraine could gain C at a risk of C loss (Table S6 online). The



Fig. 2. Estimates of DSOCR (Mg C ha�1 a�1) on each continent under RCP4.5. The DSOCR values of all continents showed significant increasing trends (P < 0.01) over time.
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cropland soil C stocks of the ten countries accounted for approxi-
mately 58% of the global C stock. Among them, India contributed
the most, at approximately 23%, while Canada and Russia con-
tributed the least, at no more than 2%.

We first used a data-oriented approach to evaluate the potential
impact of conservation practices on soil C sequestration over the
next 50 years. Limited by the availability of observation and input
data, the simulations were subject to high uncertainties. First, soil
C saturation was not considered in this simulation. Since soil C sat-
uration was probably reached in various systems during the peri-
ods in which the field studies occurred, it was not possible to
identify a saturation year or annual sequestration rate by not
reporting annual SOC changes, and the soil C saturation under
no-till practices is challenging and complex due to its high depen-
dence on the C saturation of conventional tillage [7]. Thus, the
regional soil C saturation under no-till conditions remains uncer-
tain with the existing datasets and was therefore is not considered
in this study. Second, because of data availability constraints, our
model did not account for the influence of the initial SOC content.
Recent research has indicated that in areas experiencing drought,
with a soil pH � 7.3 and initial SOC � 10 g kg�1 in China, the opti-
mal SOC and crop yield could be achieved when conservation prac-
tices were implemented continuously for more than 10 years, with
nitrogen input levels varying between 100 and 200 kg ha�1 [11].

Furthermore, we focused on C sequestration within the 0–30 cm
layer.While changes in SOCmainly occur in the tillage layer, studies
2032
suggest that changes in deep soil C should not be ignored. In the ini-
tial years of conservation tillage, SOC decreases mainly due to an
increase in surface SOC storage and a reduction in deep-layer SOC
storage.However, over time, the SOC loss in no-tillage systemsgrad-
ually decreases, with the net change approaching zero after 14 years
[12]. Long-term field experiments have also indicated that no-till
under residue incorporation, relative to plow tillage, exerts a mini-
mal impact on soil C storage at depths of 0–50 cm [13]. Agricultural
management practices are complex on a global scale, and future
research should focus on the impact of long-term implementation
of conservation agriculture on SOC change.

Our results are crucial for understanding the potential of soil
carbon sequestration under global conservation agriculture and
climate change mitigation. Achieving this potential depends on cli-
matic conditions, socioeconomic contexts, adaptation strategies,
and risk management practices. Applying these findings in practice
requires collaborative initiatives among farmers, policy-makers,
and stakeholders, including farmer training, gap identification,
and adoption [14,15]. Further research should focus on areas at risk
of both carbon loss and yield reduction to achieve a win-win out-
come of SOC sequestration and enhanced agricultural productivity
following adoption in the future.
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