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Abstract In this paper, we study the efficiency issue of inexact Newton-type methods for
smooth unconstrained optimization problems under standard assumptions from theoretical
point of view by discussing a concrete Newton-PCG algorithm. In order to compare the
algorithm with Newton’s method, a ratio between the measures of their approximate effi-
ciencies is investigated. Under mild conditions, it is shown that first, this ratio is larger than
1, which implies that the Newton-PCG algorithm is more efficient than Newton’s method,
and second, this ratio increases when the dimension n of the problem increases and tends
to infinity at least at a rate ln n/ ln 2 when n → ∞, which implies that in theory the Newton-
PCG algorithm is much more efficient for middle- and large-scale problems. These theo-
retical results are also supported by our preliminary numerical experiments.
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1 Introduction

We consider local algorithms for solving middle- and large-scale unconstrained opti-
mization problems

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is smooth and its Hessian ∇2f is available. A popular choice
for the purpose is truncated Newton methods in which the Newton equation is allowed
to be solved approximately. In fact, some variants of the linear conjugate gradient or
preconditioned conjugate gradient (CG or PCG) methods are usually used for the purpose,
and thus we have the Newton-CG method or Newton-PCG method. Over the past two
decades, a great achievement has been obtained in this field: many elegant and powerful
algorithms have been developed and a solid convergence theory has been derived (see
refs. [1–9]). However, we hardly see any theoretical analysis on the efficiency issue of
such algorithms, and in particular there is no any clear conclusion that the Newton-PCG
method is more efficient than Newton’s method in theory.

In order to show the theoretical superiority in efficiency, a particular Newton-PCG
method is constructed in refs. [10, 11]. Their main contribution is to confirm that Newton-

Copyright by Science in China Press 2005



A theoretical analysis on efficiency of some Newton-PCG methods 1047

PCG method can be more efficient than Newton’s method under rather strong conditions
from theoretical point of view. In fact, the method is compared with Newton’s method in
the following two aspects:

(1) Computation cost: Notice that the cost in every iteration of both Newton’s method
and the method in ref. [10] consists of two parts: forming the Newton equation by com-
puting the derivative information of the objective function (i.e. evaluating a Hessian and
a gradient) and solving the Newton equation by CF method or PCG method. It is proved
that, for the method in ref. [10], the average cost of the second part is less than the corre-
sponding one of Newton’s method while the cost of the first part keeps the same.

(2) Convergence rate: It is proved that, if Newton’s method is precisely quadratically
convergent, the method in ref. [10] is also precisely quadratically convergent.

In a word, in theory the method in ref. [10] is more efficient than Newton’s method, but
only for the particular problem (1.1) that meets the following two restrictions:

(1) The cost of arithmetic computation to solve the Newton equation is dominant and
the cost to compute a Hessian and a gradient is negligible.

(2) Newton’s method is precisely quadratically convergent.

Also, the method of ref. [10] has not been verified by any numerical computation.

This paper removes the above restrictions and shows the theoretical efficiency of Newton-
PCG method for the general problems (1.1).

Removing the first restriction implies that the cost to compute the derivative information
has to be reduced. This can be implemented by the fact (see, e.g. Subsection 12.3 of ref.
[7]) that in a PCG step the Hessian-vector product ∇2f · q can be approximated by a
difference quotient of ∇f along the direction q, which needs only one extra gradient
evaluation. As such difference quotient provides only some approximation to the product
∇2f · q, in order to support this modification, the theoretical discussion and numerical
experiments are necessary.

Removing the second restriction implies that the problem (1.1) is solved under the stan-
dard assumptions, which only ensure that the local convergence rate of Newton’s method
is at least quadratic. So we have to investigate the progress of the preconditioned conju-
gate gradient subiterations under some uncertain circumstance, and find how the progress
is influenced by the preconditioner and the subiterations. This is completed by a careful
theoretical analysis via introducing a concept “progress index”.

Instead of proposing an all-purpose and fully complete algorithm, the main aim of this
paper is to discuss the efficiency problem for the Newton-PCG method based on the def-
inition of the efficiency measure given by Ostrowski in ref. [12]. We are going to build
an algorithm model that contains several parameters. Note that, according to ref. [12], the
efficiency of an algorithm is a local property in a neighborhood of a solution because it de-
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pends on the local convergence rate and is irrelevant to its global performance. Therefore,
for simplicity, our algorithm model is a local one without any globalization strategy. For
the algorithm model, by an extension of the efficiency measure in ref. [12] and using the
“progress index” introduced in this paper, a lower bound of its efficiency is obtained. This
bound depends on the parameters in the algorithm model. Maximizing this bound leads
to a concrete realization of the algorithm model. The theoretical superiority of Newton-
PCG method in efficiency is shown by proving that this concrete algorithm is significantly
more efficient than Newton’s method for middle- and large-scale problems in terms of the
efficiency bound.

Compared with ref. [10], this paper is not only able to deal with the general problem
(1.1) without the above two restrictions, but also an improvement on the result of ref. [10]
even for the particular problem (1.1) with the above two restrictions. Furthermore, dif-
ferently from ref. [10], the theoretical conclusion of this paper is supported by numerical
experiments.

This paper is organized as follows: In Section 2, an algorithm model with some param-
eters is established. Its efficiency is estimated in Section 3. A concrete realization of the
model is proposed in Section 4. In Section 5, the efficiency of the concrete algorithm is
studied. Some conclusions are given in Section 6.

2 An algorithm model

Obviously, we cannot analyze the efficiency quantitatively without specifying a partic-
ular type of Newton-PCG method. So, to start with this research, we are going to describe
a local Newton-PCG algorithm model in this section. The algorithm model consists of
cycles. Every cycle contains two kinds of steps:

(1) CF step: solving the Newton equation,

∇2f(x) · s = ∇f(x), (2.1)

by the Cholesky factorization method;

(2) PCGd step: solving the Newton equation (2.1) by the preconditioned conjugate gra-
dient method, where the matrix-vector product∇2f(x)q is approximated by the difference
quotient

∇2f(x)q ≈
∇f(x+ hq) −∇f(x)

h
.

More precisely, as an approximate solution to the Newton equation (2.1), we find s̃ by
the following algorithm PCGd(C , x, lc, e, h), where C is the preconditioner, x is the
current point, lc is the maximum number of subiterations, h is the step size, and e is a
scalar used in the termination criterion which is introduced by the following consideration:
Suppose that {xk} is generated by xk+1 = xk + sk, where sk is an approximate solution
to the Newton equation (2.1). According to ref. [2], the progress of every step can be
controlled by the corresponding residual r(sk). For example, Theorem 3.3 in ref. [2]
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says that {xk} converges with at least q-order 1 + e if and only if the residual satisfies
‖rk(sk)‖ = O(‖∇f(xk)‖

1+e). This observation motivates us to use e in the formula
(2.2) below.

Algorithm PCGd(C, x, lc, e, h)

Step 0. Initial data: set initial s0 = 0 and r0 = ∇f(x). Set i = 0.

Step 1. Termination test: if the approximate residual ri at si satisfies

‖ri‖ 6 ‖∇f(x)‖1+e or i = lc, (2.2)

go to Step 4.

Step 2. Subiteration:

(a) set zi = Cri, ti = zT
i ri;

(b) if i = 0, then q0 = −z0; else

βi = zT
i wi−1/q

T
i−1wi−1, (2.3)

and

qi = −zi + βiqi−1; (2.4)

(c) set si+1 = si + λiqi, where λi = ti/q
T
i wi and

wi =
∇f(x+ hqi/‖qi‖) −∇f(x)

h
‖qi‖; (2.5)

(d) set
ri+1 = ri + λiwi. (2.6)

Step 3. Set i = i+ 1 and go to Step 1.

Step 4. Set s̃ = si, and stop. 2

Our algorithm model has the parameters
p, l = (l1, · · · , lp), and α = (α1, · · · , αp), (2.7)

where p is such a nonnegative integer that each cycle contains p+1 steps—–one CF step is
followed by p PCGd steps; the positive integers l1, · · · , lp are respectively the maximum
numbers of subiterations in these p PCGd steps; the positive scalars α1, · · · , αp are used
in the termination test of these PCGd steps. Using Algorithm PCGd(·), the following
algorithm model, called Algorithm CP(p, l, α), is established.

Algorithm CP(p, l, α)

The algorithm consists of cycles. Each cycle generates p+ 1 iterates x1, x2, · · ·, xp+1

from a starting point xCF . For the first cycle, the starting point is the initial point (guess)
x0. For the later cycles, the starting point is the last iterate xp+1 obtained by the previous
cycle. All of the cycles have the same structure. Thus, to show the algorithm model, it is
enough to describe one cycle in detail.
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The cycle

Step 0. Initial data: set the starting point x0 = xCF ∈ Rn. Set k = 0.

Step 1. Termination test: if k = p+ 1 or ∇f(xk) = 0, stop.

Step 2. Switch test: if k = 0, go to Step 3; otherwise go to Step 4.

Step 3. CF step: find the solution sk to the Newton equation

∇2f(xk)s = −∇f(xk) (2.8)

by Cholesky factorization ∇2f(xk) = LkDkL
T
k . Set

B = LkDkL
T
k . (2.9)

Set m = 0, and go to Step 5.

Step 4. PCGd step: set m := m+ 1. Select the step size h such that

0 < h 6 ‖∇f(xk)‖
max{ lm

αm
, 2

αm
}. (2.10)

Find s̃ by Algorithm PCGd(B−1, xk, lm, lm/αm, h). Set sk = s̃.

Step 5. Update the iterate: set xk+1 = xk + sk. Set k := k + 1 and go to Step 1.

2

By repeating the cycles described above, we get the sequence {xk} generated by Algo-
rithm CP(p, l, α):

{xk} = {x
0(p+1)
CF , x0(p+1)+1, · · · , x0(p+1)+p, x0(p+1)+p+1 = x

1(p+1)
CF , · · · ,

x(j−1)(p+1)+(p+1) = x
j(p+1)
CF , xj(p+1)+1, · · · , xj(p+1)+i,

· · · , xj(p+1)+p, xj(p+1)+(p+1) = x
(j+1)(p+1)
CF , · · ·}, (2.11)

where the subscript CF is to show that at such points we take a CF step to obtain the next
point. For brevity, we often express the above sequence as

{xk} = {xj,i} = {x0,0, x0,1, · · · , x0,p, x1,0, · · · , xj,0, xj,1,

· · · , xj,i, · · · , xj,p, xj+1,0, · · ·}. (2.12)

3 An efficiency analysis on algorithm CP(p, l,α)

The efficiency of Algorithm CP(p,l,α) is analyzed in this section under the following
standard assumptions:

Assumption 1. ∇2f(x) is Lipschitz continuous with the constant L in a neighbor-
hood of the solution x∗ to (1.1).

Assumption 2. ∇2f(x∗) is symmetric positive definite.

Our main purpose in this section is to derive a lower bound for the efficiency measure
of Algorithm CP(p, l, α), which will be given in Theorem 3.4 below.

An early study on the efficiency of an algorithm appeared in ref. [12], where an intuitive
and clear definition was given.
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Definition 3.1. Efficiency ΓO (Ostrovski[12]). Suppose that the sequence {xk} gen-
erated by an algorithm converges to the solution x∗ (at least) with q-order %, and the
computation cost,Q[xk, xk+1], required to compute xk+1 from xk, does not depend on k,
i.e. Q[xk, xk+1] = Q, where Q is a constant. Then the efficiency ΓO of the algorithm (at
least) is

ΓO =
%

Q
. (3.1)

The definition of the efficiency ΓO is rather restrictive and cannot be used in this re-
search. We now extend this efficiency measure by introducing “progress index” and “gen-
eralized convergence order”.

Definition 3.2. Progress index. Let both xCF and xc be near the solution x∗. The
progress index ν from xCF to xc with respect to x∗ is defined as

ν = ν[xCF, xc, x
∗] =

ln ‖xc − x∗‖

ln ‖xCF − x∗‖
. (3.2)

Definition 3.3. Generalized convergence q-order. Suppose that the sequence {yk}

converges to x∗. Then its generalized convergence q-order is defined as
%({yk}) = lim inf

k→∞
ν[yk−1, yk, x∗], (3.3)

where ν[·, ·, ·] is the progress index defined by (3.2).

Remark. It is not difficult to see that if the sequence {yk} converges to x∗ precisely
(or at least) with q-order %, then its generalized convergence q-order %({yk}) is equal to
(or not smaller than) %. Therefore the generalized convergence q-order is an extension of
the usual convergence q-order.

Note that if a sequence {xk} is generated by an algorithm, its any subsequence {yk} can
also be considered as a sequence generated by this algorithm. Keeping this observation in
mind, Definition 3.1 can be extended as

Definition 3.4. Efficiency Γ . The efficiency Γ of an algorithm is defined by

Γ = inf{xk}sup{yk}⊂{xk}

ln %({yk})

lim supk→∞Q[yk−1, yk]
, (3.4)

where {xk} is any sequence generated by the algorithm and converges to solution x∗,
{yk} is any subsequence of {xk}, %({yk}) is the generalized convergence q-order of
{yk}, andQ[yk−1, yk] is the computation cost required to compute yk from yk−1.

For Newton’s method, its efficiency is trivial.

Theorem 3.1 The efficiency Γ = Γ
Newton of Newton’s method with Cholesky fac-

torization satisfies

Γ
Newton

>
ln 2

QHg +QCF

def
= vN, (3.5)

whereQHg = QH +Qg, QH andQg are respectively the computation costs to evaluate a
Hessian and a gradient, andQCF is the computation cost to solve the Newton equation by
Cholesky factorization.
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Consider a subsequence of the sequence (2.11) or (2.12) which consists of the last
iterates in every cycle, i.e.

{yj} = {x(j−1)(p+1)+p+1} = {x
j(p+1)
CF } = {xj,0}, j = 0, 1, 2, · · · . (3.6)

Our next lemma and theorem are concerned with the generalized convergence q-order of
the above sequence.

Lemma 3.2. Suppose that Assumptions 1 and 2 are valid. Consider the sequence
(2.12) generated by Algorithm CP(·, ·, ·). Then for any fixed i with 1 6 i 6 p+ 1,

lim
j→∞

ν[xj,0, xj,i, x∗] > νi, (3.7)

where νi = νi(l1, · · · , li−1, α1, · · · , αi−1) is recursively defined by
ν1 = 2, (3.8)

νq+1 = ψ(lq , αq, νq), q = 1, · · · , p (3.9)

with

ψ(ξ, η, ζ) =

{
ζ + min(1, ζ/η)ξ, if ξ 6 max(ζ, η);

2ζ, otherwise.
(3.10)

Proof1). To give a brief outline, first we state a proposition that is used in the proof.

Proposition. Assume that the progress index ν from xj,0 to xj,m (m = 1, · · · , p)

with respect to x∗ satisfies

ν = ν[xj,0, xj,m, x∗] > 1.

Assume also that the increment s̃ = sj,m at xj,m is obtained by a PCGd step in Algorithm
CP(·, ·, ·), where the step size h satisfies

0 < h 6 ‖∇f(xj,m)‖max{ lm
αm

, 2
αm

}.

Then there exists δ > 0 such that when ‖xj,0 − x∗‖ 6 δ and ‖xj,m − x∗‖ 6 δ, the
residual r(s̃) = ∇2f(xj,m)s̃+ ∇f(xj,m) satisfies

‖r(s̃)‖ 6 γ‖∇f(xj,m)‖1+lm/ max{ν,αm},

where γ is a constant which depends only on ∇2f(x∗) and the Lipschitz constant L.

According to the termination condition (2.2), there are two possibilities: either

‖ri‖ 6 ‖∇f(xj,m)‖1+lm/αm (3.11)

with i < lm, or the number of the subiterations is

i = lm. (3.12)

The above proposition can be proved in the case (3.11) and the case (3.12) respectively.

In order to prove Lemma 3.2, we should find the lower bounds to ν[xj,0, xj,i, x∗], i =

1, · · · , p+ 1. It is easy to see that

ν[xj,0, xj,1, x∗] > 2 + θj
1 = ν1 + θj

1, (3.13)

1) For the detail of the proof, see Deng, N. Y., Zhang, J. Z., Zhong, P., On efficiency of Newton-PCG methods with
difference quotient—–a detailed version, available at http://www.cityu.edu.hk/ma/staff/zhang/DZZ.PDF.
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where ν1 is defined by (3.8), and limj→∞ θj
1 = 0. For ν[xj,0, xj,2, x∗], we first estimate

ν[xj,1, xj,2, x∗]. The Proposition with m = 1 says that

xj,2 = xj,1 + sj,1, (3.14)

where

‖r(sj,1)‖ = ‖∇2f(xj,1)sj,1 + ∇f(xj,1)‖

6 γ‖∇f(xj,1)‖
1+

l1
max{ν[xj,0,xj,1,x∗],α1} , (3.15)

and γ is a constant. Next, using (3.14)–(3.15), we deal with two cases separately:

(1) When l1 6 max{ν[xj,0, xj,1, x∗], α1}, it can be shown that, for ν[xj,0, xj,1, x∗] 6

α1 and ν[xj,0, xj,1, x∗] > α1, we respectively have

ν[xj,0, xj,2, x∗] > ν1 + (ν1/α1)l1 + θj
3 (3.16)

and

ν[xj,0, xj,2, x∗] > ν1 + l1 + θj
5, (3.17)

where limj→∞ θj
3 = 0 and limj→∞ θj

5 = 0.

(2) When l1 > max{ν[xj,0, xj,1, x∗], α1}, it can be shown that

ν[xj,0, xj,2, x∗] > 2ν1 + θj
7, (3.18)

where limj→∞ θj
7 = 0.

Thus, combining (3.16), (3.17) and (3.18) yields

ν[xj,0, xj,2, x∗] > ν2 + θj
8, (3.19)

where ν2 = ν2(l1, α1) is defined by (3.8)–(3.10), and limj→∞ θj
8 = 0.

Up to now, we have got the estimates (3.13) and (3.19), namely ν[xj,0, xj,1, x∗] and
ν[xj,0, xj,2, x∗]. In a similar way, we can obtain

ν[xj,0, xj,i, x∗] > νi + θj
i , i = 3, · · · , p+ 1,

where νi = νi(l1, · · · , li−1, α1, · · · , αi−1) is defined by (3.8)–(3.10), and limj→∞ θj
i =

0. 2

Theorem 3.3. The subsequence defined by (3.6) is convergent provided that x0 is
close enough to x∗. Furthermore, its generalized convergence q-order, %({yj}), satisfies

%({yj}) > νp+1 = νp+1(l, α), (3.20)

where νp+1(l, α) is defined by (3.8)–(3.10) with l = (l1, · · · , lp) and α = (α1, · · · , αp).

Proof. The equalities (3.8)–(3.10) imply that ν i > 2, i = 1, · · · , p + 1. Therefore,
using Lemma 3.2 repeatedly, we conclude that the subsequence (3.6) is convergent when
x0 is close enough to x∗. In addition, noticing Definition 3.3, the conclusion (3.20) is a
direct result of the particular case of Lemma 3.2 with i = p+ 1. 2

The next theorem gives a lower bound of the efficiency Γ to Algorithm CP(·, ·, ·).
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Theorem 3.4. Suppose that Assumptions 1 and 2 are valid. Then the sequence (2.12)
generated by Algorithm CP(·, ·, ·) is convergent provided that x0 is close enough to x∗.
Furthermore, the efficiency Γ of Algorithm CP(·, ·, ·) satisfies

Γ > Γ (p, l, α)
def
=

ln νp+1(l, α)

QHg +QCF + pQg + (
∑p

t=1 lt)(Qg +Q−
I )
, (3.21)

whereQHg, QCF and νp+1(l, α) = νp+1(l1, · · · , lp, α1, · · · , αp) are respectively defined
in Theorem 3.1 and (3.8)–(3.10), and Q−

I is the maximum computation cost of one subit-
eration in a PCGd step.

Proof. Similar to the proof of Theorem 3.3, the convergence property of the sequence
(3.12) comes from Lemma 3.2 directly. So we only need to show (3.21). In fact, we con-
sider the subsequence (3.6). By Theorem 3.3, we conclude that its generalized conver-
gence q-order satisfies

%({yk}) > νp+1, (3.22)

where νp+1 is defined in Lemma 3.2. On the other hand, Q[yk−1, yk] is the sum of the
computation costs of one CF step and p PCGd steps. In a CF step, it is required to form
the Newton equation via evaluating a Hessian and a gradient and to solve this equation by
Cholesky factorization. So the computation cost isQHg +QCF. However, in a PCGd step,
we need not evaluate the Hessian any more. In fact, in the t-th PCGd step, an upper bound
of the computation cost is Qg + lt(Qg +Q−

I ). Therefore,

Q[yk−1, yk] 6 QHg +QCF + pQg + (

p∑

t=1

lt)(Qg +Q−
I ). (3.23)

Combining Definition 3.4, (3.22) and (3.23), we get the inequality in (3.21). The theorem
is proved. 2

4 A concrete algorithm

In order to propose an implementable and efficient version from the algorithm model,
Algorithm CP(·, ·, ·), it is natural to specify its parameters p, l and α such that these
parameters maximize the corresponding efficiency Γ , or its lower bound Γ = Γ (p, l, α)

given in Theorem 3.4. Note that, besides the parameters p, l and α, Γ also depends on
the quantities QH, Qg, QCF and Q−

I . For simplicity, these quantities are measured by the
corresponding numbers of multiplicative operations involved, i.e.

QH(Qg) = the number of multiplicative operations to

evaluate a Hessian ∇2f (a gradient ∇f ), (4.1)

QCF =
1

6
n3 +

3

2
n2 −

2

3
n, Q−

I = n2 + 8n+ 3. (4.2)

This leads to the following
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Algorithm CP

It is the same as Algorithm CP(p, l, α) except that the parameters and h in (2.10) are
specified as follows:

(1) Find the global solution σ∗ to the one-dimensional optimization problem

max v(σ) =
ln(2 + σ)

QCF +QHg + p̄(σ)Qg + σ(Qg +Q−
I )
, (4.3)

s.t. σ is a nonnegative integer, (4.4)

whereQHg = QH +Qg, QH, Qg, QCF andQ−
I are defined in (4.1) and (4.2), p̄(σ) is the

smallest integer not smaller than ln(2+σ)

ln 2
− 1.

(2) Define p: p = p∗ = p̄(σ∗).

(3) Define l = l∗ = (l∗1 , · · · , l
∗
p) as follows: if σ∗ = 1, l1 = l∗1 = 1; if σ∗ > 2,

lm = l∗m =

{
2m, m = 1, · · · , p− 1;

σ∗ − 2p + 2, m = p.

(4) Define α = (α1, · · · , αp) = α∗ = (α∗
1, · · · , α

∗
p): αm = α∗

m = 2m, m =

1, · · · , p.

(5) Select h in (2.10) such that

0 < h 6 ‖∇f(xk)‖. (4.5)

Note that since max{ lm
αm
, 2

αm
} 6 1, for m = 1, · · · , p, (4.5) implies (2.10) when xk

is close to x∗. In order to show the optimality of the selections p∗, l∗ and α∗ given in the
above algorithm, we need the following

Lemma 4.1. Using the convention
n2∑

n1

· · · = 0, if n1 > n2, (4.6)

the function νp+1 = νp+1(l, α) defined in Lemma 3.2 has the following properties:

(1) Suppose that α and l respectively satisfy

αm 6 2 +

m−1∑

t=1

lt, m = 1, · · · , p, (4.7)

and

lm 6 2 +
m−1∑

t=1

lt, m = 1, · · · , p. (4.8)

Then

νp+1(l, α) = 2 +

p∑

t=1

lt. (4.9)
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(2) For any l = (l1, · · · , lp), define l′ = (l′1, · · · , l
′
p) by

l
′

m = min

{
lm, 2 +

m−1∑

t=1

l′t

}
, m = 1, · · · , p. (4.10)

Then

νp+1(l, α) = νp+1(l
′, α) 6 2 +

p∑

t=1

l′t. (4.11)

Furthermore, if α = (α1, · · · , αp) satisfies

αm 6 2 +

m−1∑

t=1

l′t, m = 1, · · · , p, (4.12)

then (4.11) is strengthened to

νp+1(l, α) = νp+1(l
′α) = 2 +

p∑

t=1

l′t. (4.13)

Proof1). Its outline is as follows: In order to show the conclusion (1) of Lemma 4.1,
it is sufficient to prove, by induction, that

νq+1(l1, · · · , lq, α1, · · · , αq) = 2 +

q∑

t=1

lt, q = 0, 1, · · · , p.

For the conclusion (2) of Lemma 4.1, we prove (4.13) first, and then prove (4.11) by
showing that νp+1(l, α) = νp+1(l1, · · · , lp, α1, · · · , αp) is nonincreasing with respect to
αt (t = 1, · · · , p). 2

Theorem 4.2. The parameters p∗, l∗ and α∗ given in Algorithm CP maximize Γ (p, l,

α), i.e. the lower bound of the efficiency of Algorithm CP(p, l, α) given in Theorem 3.4.

Proof1). Here we only list its two steps. The first step is to show, by the conclusion
(1) of Lemma 4.1, that for (p∗, l∗, α∗), we have

Γ (p∗, l∗, α∗) = v∗, (4.14)

where v∗ is the optimal value to the problem (4.3)–(4.4).

The second step is to define Ω, l
′

= (l
′

1, · · · , l
′

p) and α
′

= (α
′

1, · · · , α
′

p) by

Ω = {(p, l, α) | p ∈ R1, l = (l1, · · · , lp) ∈ Rp, α = (α1, · · · , αp) ∈ Rp,

p > 0 integer, l1, · · · , lp > 0 integers, α1, · · · , αp > 0 scalars},

l
′

m = min

{
lm, 2 +

m−1∑

t=1

l
′

t

}
, m = 1, · · · , p,

and

α
′

m = 2 +

m−1∑

t=1

l
′

t, m = 1, · · · , p,

1) For the detail of the proof, see Deng, N. Y., Zhang, J. Z., Zhong, P., On efficiency of Newton-PCG methods with
difference quotient—–a detailed version, available at http://www.cityu.edu.hk/ma/staff/zhang/DZZ.PDF.
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and then prove, by the conclusion (2) of Lemma 4.1, that

Γ (p, l, α) 6 Γ (p, l′, α) 6 Γ (p, l
′

, α
′

) 6 v∗. (4.15)

2

Theorem 4.3. Algorithm CP is well defined if the initial point x0 is close enough to
the solution x∗.

Proof. To prove that Algorithm CP is well-defined, we only need to show the exis-
tence of the global solution σ∗ to the problems (4.3)–(4.4). In fact, it is easy to see that
the objective function v(σ) satisfies

v(0) =
ln 2

QCF +QHg

> 0, (4.16)

and v(σ) 6
1

Q−
I

· ln(2+σ)

σ
, which implies that

lim
σ→∞

v(σ) = 0. (4.17)

Combining (4.16) and (4.17) yields the existence of a finite global solution σ∗ to (4.3)–
(4.4). 2

5 Comparison of efficiencies

In this section, we compare the efficiency of Algorithm CP with that of Newton’s
method under Assumptions 1 and 2 given in Section 3. For Newton’s method, a lower
bound of the efficiency is given in Theorem 3.1. The corresponding result for Algorithm
CP is shown in the following theorem.

Theorem 5.1. The efficiency Γ = Γ
CP of Algorithm CP satisfies

Γ
CP

> v∗, (5.1)

where v∗ = v(σ∗) is the optimal value and σ∗ is the global solution to the problem (4.3)–
(4.4).

Proof. By (4.14) and Theorem 3.4, we have

Γ
CP

> Γ (p∗, l∗, α∗) = v∗. 2

For Algorithm CP and Newton’s method, Theorem 5.1 and Theorem 3.1 respectively
give the lower bounds of their efficiency measures

v∗ and vN = ln 2/(QHg +QCF),

where v∗ is the optimal value to (4.3)–(4.4). In order to compare their efficiency measures,
the ratio

R∗ = R∗(QH, Qg, n)
def
= v∗/vN (5.2)

is introduced. Note that both Algorithm CP and Newton’s method are the members of
our algorithm model Algorithm CP (p, l, α). The estimates of their efficiency measures
v∗ = Γ (p∗, l∗, α∗) and vN = Γ (0, ·, ·) are obtained in the same way, where Γ (·, ·, ·)
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is defined in (3.21). Therefore, in a sense, this ratio reflects the relationship between
their efficiency measures. If this ratio is larger than one, we can reasonably regard that
Algorithm CP is more efficient than Newton’s method. The larger this ratio is, the much
more efficient Algorithm CP will be. The remainder of this section will estimate this ratio
from theoretical point of view.

It is not difficult to observe that R∗ defined by (5.2) is the optimal value to the one-
dimensional optimization problem

max R(σ,QH, Qg, n) =
QCF +QHg

QCF +QHg + p(σ)Qg + σ(Qg +Q−
I )

·
ln(2 + σ)

ln 2
, (5.3)

s.t. σ is a nonnegative integer, (5.4)

where p(σ) is defined in the problems (4.3)–(4.4). The estimates toR∗ = R∗(QH, Qg, n)

below are based on this observation. The next theorem gives a sufficient condition which
ensures that R∗ > 1.

Theorem 5.2. If

n > 11 and QH > 2.42 Qg,

we have

R∗(QH, Qg, n) > 1. (5.5)

Particularly, for the case QH = Qg = 0, if n > 11 we have

R∗(0, 0, n) > 1. (5.6)

Proof. To prove (5.5), it is sufficient to prove that, when n > 11 andQH > 2.42 Qg,

R(1, QH, Qg, n) > 1, (5.7)

whereR(·, ·, ·, ·) is defined by (5.3). Or by the fact

R(1, QH, Qg, n) =
ln 3

ln 2
·

QCF +QH +Qg

QCF +QH + 3Qg +Q−
I

, (5.8)

we only need to show that(
ln

3

2

)
QCF− (ln 2)Q−

I > 0, and
(

ln
3

2

)
QH−

(
2 ln 2 − ln

3

2

)
Qg > 0. (5.9)

It can be verified that the above two inequalities are valid when n > 11 and QH >

2.42 Qg. Therefore, (5.7) is true, and the conclusion (5.5) is proved. The conclusion (5.6)
is obtained from (5.5) immediately. 2

Next we investigate the behavior of R∗ = R∗(QH, Qg, n) when n increases.

Theorem 5.3. For the case QH = Qg = 0, R∗(QH, Qg, n) = R∗(0, 0, n) is the
optimal value of the problem

max R(σ, 0, 0, n) =
ln(2 + σ)

ln 2
·

1

1 + σφ(n)
, (5.10)

s.t. σ is a nonnegative integer, (5.11)
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where

φ(n) = Q−
I /QCF. (5.12)

Furthermore, when n > 11, R∗(0, 0, n) is strictly increasing with respect to n.

Proof. By (5.3)–(5.4), R∗(0, 0, n) is obviously the optimal value of the problems
(5.10)–(5.12). So we only need to show that when n > 11,

R∗(0, 0, n + 1) > R∗(0, 0, n). (5.13)

Denoting the global solution to (5.10)–(5.12) by σ∗(n), (5.13) is equivalent to
ln(2 + σ∗(n+ 1))

ln 2
·

1

1 + σ∗(n+ 1)φ(n + 1)
>

ln(2 + σ∗(n))

ln 2
·

1

1 + σ∗(n)φ(n)
.

(5.14)
Now we prove (5.14). Since σ∗(n+ 1) is the global solution corresponding to n+ 1,
ln(2 + σ∗(n+ 1))

ln 2
·

1

1 + σ∗(n+ 1)φ(n+ 1)
>

ln(2 + σ∗(n))

ln 2
·

1

1 + σ∗(n)φ(n+ 1)
.

However, as (5.6) implies that when n > 11, σ∗(n) > 1 and φ(n) is strictly decreasing
with respect to n > 1, we have

ln(2 + σ∗(n))

ln 2
·

1

1 + σ∗(n)φ(n+ 1)
>

ln(2 + σ∗(n))

ln 2
·

1

1 + σ∗(n)φ(n)
.

Combining the above two inequalities, (5.14) is proved. 2

Remark. Recall that, for the algorithm in ref. [10], the efficiency is established only
for particular problems with the two restrictions mentioned in Section 1, including the
restriction QH = Qg = 0. So the above theorem can be used to show the superiority of
Algorithm CP over the algorithm in ref. [10]. In fact, the efficiency of Algorithm CP is
measured by R∗(0, 0, n) and, as shown by the above theorem, R∗(0, 0, n) is the optimal
value of the problems (5.10)–(5.12). For the algorithm in ref. [10], the counterpart of the
ratio R∗(0, 0, n), say r∗(n), was also examined. In the language of this paper, r∗(n) was
the optimal value of the problem

max
1 + p

1 + (2p+1 + p− 2)QI/QCF

, (5.15)

s.t. p is a nonnegative integer, (5.16)

where

QI = 2n2 + 6n+ 2. (5.17)

Now we show that Algorithm CP is more efficient in the sense that, when n > 12,

R∗(0, 0, n) > r∗(n). (5.18)

Obviously,

{2p+1 − 2 | p = 0, 1, 2, · · ·} ⊂ {σ|σ = 0, 1, 2, · · ·}.

Therefore, the optimal value R∗(0, 0, n) of (5.10)–(5.12) is not smaller than the optimal

www.scichina.com



1060 Science in China Ser. A Mathematics 2005 Vol. 48 No. 8 1046—1064

valueR∗(n) of the problem

max
ln(2 + σ)

ln 2
·

1

1 + σQ−
I /QCF

, (5.19)

s.t. σ ∈ {2p+1 − 2 | p = 0, 1, 2, · · ·}, (5.20)
which is equivalent to

max
1 + p

1 + (2p+1 − 2)Q−
I /QCF

, (5.21)

s.t. p is a nonnegative integer. (5.22)
Therefore, in order to prove (5.18), we only need to show that when n > 12,

R∗(n) > r∗(n). (5.23)
Note that n > 12 implies that

1 + p

1 + (2p+1 − 2)Q−
I /QCF

|p=1 > 1,

and therefore R∗(n) > 1. Thus the conclusion (5.23) comes from the inequality
1 + p

1 + (2p+1 − 2)Q−
I /QCF

>
1 + p

1 + (2p+1 + p− 2)QI/QCF

, ∀p > 1, (5.24)

and the superiority of Algorithm CP is proved.

Now let us deal with the general case QH > 0 and Qg > 0. For simplicity, we assume
that there is a relationship betweenQH and Qg. It is usually assumed that

QH = nQg. (5.25)
Here we consider a more general case

QH = µnQg, (5.26)
where µ ∈ (0, 1] is a constant. In order to estimate R∗, similar to strengthening the
constraint (5.11) to (5.20), we restrict the integer σ in (5.3)–(5.4) in the set {2p+1−2 | p =

0, 1, 2, · · ·}. Thus, under the assumption (5.26), the problem (5.3)–(5.4) is transformed
into the one-dimensional problem

max R(p, µ,Qg, n) =
p+ 1

1 + ϕ(p, µ,Qg, n)
, (5.27)

s.t. p is a nonnegative integer, (5.28)
where

ϕ(p, µ,Qg, n) =
(p+ 2p+1 − 2)Qg + (2p+1 − 2)Q−

I

QCF + (µn+ 1)Qg

. (5.29)

Let p∗ andR∗ = R∗(µ,Qg, n) = R(p∗, µ,Qg, n) be the global solution and the optimal
value to (5.27)–(5.29), respectively. Obviously,

R∗(QH, Qg, n) > R∗(µ,Qg, n). (5.30)
In other words, the ratio R∗ defined by (5.2) has a lower bound R∗. So our task is trans-
ferred to estimating R∗, the optimal value to the problems (5.27)–(5.29).

Theorem 5.4. Suppose that the assumption (5.26) holds. Then for n > 11 and any
µ ∈ [µ, 1], where µ ∈ (0, 1/16), we have

R∗(QH, Qg, n) > R∗(µ,Qg, n) > R∗(µ,∞, n). (5.31)
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Proof. The first inequality of (5.31) is just (5.30). Now we show the second one. It
suffices to prove

R∗(µ,Qg, n) > R∗(µ,Qg, n) > R∗(µ,∞, n). (5.32)
By (5.27)–(5.29), it is easy to see that the objective function R(p, µ,Qg, n) is increasing
with respect to µ. Therefore, for any µ ∈ [µ, 1], the first inequality of (5.32) is valid. In
order to prove its second one, it suffices to show that R∗(µ,Qg, n) is strictly decreasing
with respect to Qg, or to show

∂R(p, µ,Qg, n)

∂Qg

< 0, (5.33)

which is equivalent to
Q−

I

QCF

<

(
1 +

p

2p+1 − 2

)(
1

µn+ 1

)
, (5.34)

whereQCF and Q−
I are defined by (4.2). When µ < 1/16, we have(
1 +

p

2p+1 − 2

)(
1

µn+ 1

)
>

1

(1/16)n + 1
>

Q−
I

QCF

.

Therefore, the second inequality of (5.32) is valid. 2

Theorem 5.5. R∗(µ,∞, n), defined in Theorem 5.4, is strictly increasing with re-
spect to n when n > 2

µ
.

Proof. By (5.27)–(5.29), it is easy to see thatR∗(µ,∞, n) is the optimal value to the
optimization problem

max R(p, µ,∞, n) =
(p+ 1)(µn+ 1)

µn+ p+ 2p+1 − 1
, (5.35)

s.t. p is a nonnegative integer. (5.36)
The objective function can be rewritten as

R(p, µ,∞, n) =
p+ 1

1 + (p+ 2p+1 − 2)φ̃(n)
, (5.37)

where
φ̃(n) =

1

µn+ 1
. (5.38)

When n > 2
µ

, we have

R(1, µ,∞, n) =
2

1 + 3
µn+1

> 1.

Therefore,
R∗(µ,∞, n) > R(1, µ,∞, n) > 1, (5.39)

which implies that p∗ = p∗(n) > 1 when n > 2
µ

. Therefore, noticing that φ̃(n) defined

by (5.38) is strictly decreasing with respect to n > 1, we have that, when n > 2
µ

,

R∗(µ,∞, n+ 1) = R(p∗(n+ 1), µ,∞, n+ 1)

> R(p∗(n), µ,∞, n+ 1)

> R(p∗(n), µ,∞, n) = R∗(µ,∞, n).
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Hence, the conclusion is proved. 2

Theorem 5.6. Suppose that the assumption (5.26) holds. Then for any µ̃ ∈ (0, 1],

R∗(QH, Qg, n)|QH=µnQg

tends to infinity at least at a rate lnn/ ln 2 uniformly for µ ∈ [µ̃, 1] and Qg > 0. More
precisely, for any ε > 0 and µ̃ ∈ (0, 1], there exists N such that when n > N ,

R∗(QH(n), Qg(n), n)|QH(n)=µnQg(n)

lnn/ ln 2
> 1 − ε, (5.40)

provided that µ ∈ [µ̃, 1] and Qg(n) > 0.

Proof. To prove (5.40), by (5.31), it suffices to prove

R∗(µ,∞, n) ∼ lnn/ ln 2. (5.41)

In fact, let us consider maximizing R(p, µ,∞, n) defined by (5.35) with a continuous
variable p. Then its maximizer p̂∗ satisfies the equation

z ln z = β, (5.42)

where

z =
2p+1

e
, (5.43)

and

β =
µn− 2

e
. (5.44)

Notice that zlnz is an increasing function when z > e. So it is easy to see that when
β > e, the solution z∗ to (5.42) satisfies that

β

lnβ
< z∗ <

β

lnβ − ln lnβ
. (5.45)

Therefore, when β → ∞,

z∗ ∼
β

lnβ
, (5.46)

and hence by (5.46), (5.44) and (5.43) with z and p there being replaced by z∗ and p̂∗

respectively, we have that, when n→ ∞,

2p̂∗+1 ∼ µn/ lnn, (5.47)

and

p̂∗ ∼
lnn

ln 2
. (5.48)

Obviously, the optimal solution p∗ to (5.35)—(5.36) satisfies

p̂∗ − 1 ≤ p∗ 6 p̂∗ + 1, (5.49)

which implies that
2p∗+1

6 2 · 2p̂∗+1. (5.50)

Now we are in a position to prove (5.41). By (5.35)—(5.36),

R∗(µ,∞, n) =
p∗ + 1

µn−1

µn+1
+ p∗

µn+1
+ 2p∗+1

µn+1

. (5.51)
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Obviously, by (5.47)—(5.50) we have that, when n→ ∞,

p∗ + 1 ∼
lnn

ln 2
, (5.52)

µn− 1

µn+ 1
+

p∗

µn+ 1
+

2p∗+1

µn+ 1
∼ 1. (5.53)

Thus the validity of (5.41) is obtained from (5.51), (5.52) and (5.53). 2

6 Conclusion

A Newton-PCG algorithm model was taken into consideration for analyzing its effi-
ciency by a measure which is an extension of the efficiency defined by Ostrowski in ref.
[12]. To implement and enhance the performance of such model, we chose particular val-
ues for the parameters in the model and thus a concrete local algorithm is given. In order
to compare this algorithm with Newton’s method, we introduce the ratioR∗ between their
approximate efficiency measures:

R∗ = R∗(QH, Qg, n) ≈
The efficiency of the concrete algorithm

The efficiency of Newton’s method
, (6.1)

where QH = QH(n) and Qg = Qg(n) are respectively the number of multiplicative
operations to evaluate a Hessian ∇2f and a gradient ∇f , and n is the dimension of the
problem. In a sense, the value of R∗ indicates the superiority of the concrete algorithm:
if R∗ > 1, the algorithm is superior to Newton’s method; the larger the value of R∗, the
more remarkable the superiority. Theorem 5.2 shows that, under the mild conditions

n > 11, and QH > 2.42 Qg, (6.2)

we have R∗(QH, Qg, n) > 1, which implies that this particular PCG-Newton algorithm
is better than Newton’s method if the efficiency is concerned. In addition, for the case

QH(n) = µnQg(n) with µ ∈ (0, 1], (6.3)

it is proved in Theorems 5.4–5.5 that, whenn > 2
µ

with µ ∈ (0, 1/16), R∗(QH, Qg, n) =

R∗(µnQg(n), Qg(n), n) has a tendency to increase when n increases. This implies that
the larger the scale of the problem, the better the concrete algorithm. Furthermore, when
n → ∞, Theorem 5.6 shows that if µ in (6.3) satisfies that µ ∈ [µ̃, 1] with µ̃ > 0,
R∗(µnQg(n), Qg(n), n) tends to infinity uniformly at least at a rate lnn/ ln 2. These
theoretical results are supported by our preliminary numerical experiments1). So, this
paper is an essential extension and improvement of ref. [10]. Through this research we
confirm from theoretical point of view that a carefully designed PCG type method indeed
outperforms Newton’s method, especially for medium- and large-size problems, which
reinforces many reports on numerical performances of these two kinds of methods.
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