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Suppose that ( B ,  ( 1  ( 1  ) is a separable Banach space with its dual B * , and (0 ,  %, P )  is a 

probability space. For any f'E B * and x E B, by fx we mean f ( x ) . For a B-valued random 

variable X on ( 0 ,  111, P ) ,  define 1 )  X I (  = (E 1 )  X 11 P)l'P. Given two a-fields 9' in %, let 

# ( F , Y )  : - s u p { \  P(B I A ) - P ( B )  I ;  A E Z  B €9, P ( A ) # O \ ,  

where Lp (,% B )  denotes L/, space of .%measurable B-valued random variables, and Lp (q,  B ) is 

denoted simply by Lp ( B ) or just Lp . Here and in the sequel measurability and integrability mean 

the strong measurability and strong integrability, respectively. Clearly, pm ( K  Y ) < pB ( K  .Y ) 

where R is the real space, and if B = W, then p~ (% 9 ) is the usual p-mixing coefficients. It is 

well known that pi (:F, 9") <2 (.F, i,) . The following Property 1 tells us that it is also true for 

general Banach space B . 
1 1  Property 1 .  Given two 0- fields .% ,CP in "U and p, q > 1 with - + - = 1, for any f 
P q 

Lp(:c B *  ) and  X E  L,(F< B ) ,  we have 

I E f X  - Ef EX 1<2#'/*(%9') 1 1  f 1 1 ,  11 X 11 ,. 
Property 2 .  Suppose that f E Lp (.% B * ) and  X E L, ( 9, B B) , where P q > 1 with 1/ P 

+ l / y = l .  Then 
2 * 2  

I E f X -  E f  EX 1 < 4 ~ :  '(.%.SP) 1 1  f 1 1  , 1 1  X I /  ,. 

The proofs of Properties 1 and 2 are similar to those of Lemmas 1.2.7 and 1 . 2 . 8  of ref. [ I ] ,  

so they are omitted here. 

Let d be a positive integer and, let N~ be the d-dimensional lattice equipped with the coor- 

dinatewise partial order, <. Let 1 Xk ; k E N~ 1 be a d-dimensional discrete field of B-valued 

random variables on ( a, IU, P ) . It will be called "centered" if EXk = 0. For any A c N ~ ,  set 
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S A  = x,l,AX,l. I A I =  thecardinalnumberof A .  Forany  EN^, let ( n ) = / m E ~ ~ , m  

< n I , S ,  = S ( ,  ) , I n I = 1 ( n ) I = n 1 n2.e- nd and 1 1  n 11 denotes the Euclidean norm. Occasion- 

ally, n ,  k,  n ,  etc. will also denote positive integers, the reader will not be confused from their 

context. 

For two nonempty disjoint sets S ,  T C N ~ ,  we define dist( S ,  T )  as min 1 1 1  j - k 11  1 ; j E 
S ,  k E T 1 . Let a ( S )  be the a-field generated by / Xk ; k E S 1 ,  and define a (  T )  similarly. 

We define two mixing coefficients of X g  ; k f N~ 1 . For any real number s 1, define p;( 
( s) = suppu ( a ( S ) , o ( T )  ) , where the supremum is taken over all pairs of sets S ,  T such that 

dist ( S , T )  2 s , and define 9 " ( s ) similarly. 

Many limit results were obtained for real mixing random sequences in the past twenty years 

(cf. ref. [ I  ] and references therein) and for some real mixing random fields recently (cf. refs. 

[2-41).  But, to the best of our knowledge, little is known of B-valued mixing random se- 

quences or fields. The main purpose of this paper is to establish some moment inequalities just as 

the Rosenthal -type inequalities for block sums of p * -mixing or # * -mixing fields which are useful 

tools in studying the limit properties of these mixing random fields. The main results are stated in 

sec. 1 .  In sec. 2 ,  we give some applications to weak laws of large numbers, Marcinkiewicz-Zyg- 

mund strong laws of large numbers and complete convergences. 

1 Inequalities for moments of partial sums 

The first inequality seems simple but will be useful in proving our main inequalities. 

Theorem 1 .  Let :& 55 be two  a- fields in  OU, and Let p > 1 be a real number and p : = 

max 1 p~ (% Y 1, p~ f l  1 . Suppose that one of the following two  conditons is satisfied : 
2 2 1 1  

(a )  B * has the Radon-NikodYrn ( R - N )  property and p? < l /4 ,  where - + - = 1, 
P 4 

(b )  B is reflexive ( i . e . ,  B " "  = B )  and p < l .  

Then there exists u constant C p  = C ( p, p ) depending only on p and p such that 

E I /  X II G CpE II X + Y II (1) 
holds for uny X E- L p  (9, B ) , Y E  Lp (9, B ) wi th  E X =  EY = 0 .  

T o  prove Theorem 1, we need some lemmas. The first one is well known. 

Lemma 1 .  Giver! 1 < p < m, for any  probability space ( 0, % P )  Lp (% B ) * = L, (Z  
1 1  B " ) i f  and only i f  B * has the R-N property, where - + - = 1 and Lp (z B ) * denotes the 
P 4 

daul space o f  L p  (.g, B ) . 

The following is the interpolation t h e ~ r e m ' ~ ] .  

Lemma 2.  Let 1< p, , q,  < 03 ,  i = 0 ,1 ,  and let T be a linear operator mapping from Lpo 

+ LqO into Lp, + L,, with its restriction to Lpo ( Lpl  ) being a continuous mapping from Lpo ( Lp, ) 

into L ,  ( L q  ) . I f  0<8<1 and 
0 1 

Then T is a cor~tinuous mapping from L, into Lrl and 
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I T I L L  < I I  T I I  t- :L I I  T I I  -L . 
qo q1 

The following lemma is an extension of Lemma 1 of reference [ 6 ] .  
Lemma 3 Suppose B  * ha5 the R-N property. Given 1 < p < and two  a- fields i n  

' I l l ,  if ,o : = max { pn (.y, F* ) , p~ (s* ,@ 1 < 1 ,  then there exists C = C ( p ,  p  ) such that the fol- 

Lowing tmpLicutzon holds. If X  E Lp (9, B ) , YE Lp (F* , B ) wi th  EX = E  Y  = 0, then there is 

a ZE Lp(OU, B )  such that 

X = E { Z l + j  c ~ n d Y = E i Z l F * } ,  I I Z I I p < C ( I I X I I p +  I I  Y I Ip ) .  

Proof.  Let A be a linear operator defined by A  ( ) = E  E  1 . I F* 1 I F and let E ( . ) de- 

note the linear operator of taking the expected value E i .  I .  Clearly, I I  A  - E I /  L , ( B ) + L , ( B ) < ~ .  

/ I  A  - E  I I  L_(B)-. , ._(U)<2 and ( A  - E )  = Ak - E for each k 3 1 .  First, we show that 

I 1  A  - E  I 1  L2(n)+L2(B) < P. (2) 

For any E €  L2(.F*, B ) ,  by a well-known consequence of the Hahn-Banach theorem and Lemma 

1, there exists a f  * € L2($ B * ) with / I  f  * 1 )  2 = 1 such that 

I I E ~ E  I ~ q /  - E ~ I I ,  = ( I E [ E - E €  I F ]  112 = E I C * ( E [ E - E ~ I F ] ) I  

= E I E [ E * ( ~ - E E )  I FIT] = E I E * ( E  - E E H  

= E E " E - E E * E E < ~ I I  f *  1 1 2 1 1  e l l2  = e l l 2 .  
It follows that for any EE L 2 ( B ) ,  11 ( A  - E ) ( f )  1 1  2<p 1 )  E I  1 11 2<p 1 1  f  11 2 ,  which im- 
plies (2) immediately. Now, for 1 < p < m , Lemma 2 . 2  implies 

2 1 
In particular, for centered € we have 1 1  A*€ 1 p<2>-1p2k ( ' 7  ) 11 E 1 1  for 1< p<2 and 11 A'C 

2 2 
/ (  p<21 -5pd / /  f  ( 1  for 2 G p  < 0 3 .  Since the estimate also holds for k = 0 and, by symmetry, 

also for A "  ( E )  = E I E I E I . ~ ~  I.F* 1 ,  
c=z 

.z = g A k ( x  - E I  Y 1.71) + c(A*)*(Y - E I X  I F* \ ) .  
k = Il k = O  

is well defined and satisfies the asserted property by the triangle inequality and a simple computa- 

tion. 

Proof of  Theorem 1 . Suppose that (a )  is satisfied. By a well-known consequence of Hahn- 

Banach theorem and Lemma 1, we get 

/ I  X  / I ,  < / I  X I /  , + I I  Y / I p  = Ef X  + EgY, (3)  
where f E L ,  ($7, B * ), g € Id, ( x  B * ) with ( 1  f 11 , = 11 g ( 1  , = 1. It follows from Property 2 
that 

l l X i / , +  1 1  Y I l , = E ( f + g ) ( X + Y ) - E f Y - E g X  

< l l f + g I l , l I X +  Y ~ I p + l E f Y 1 + 1 E g X 1  
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L A 2  - 1  . 
Putting Cp = 2 ( 1 - 4p P 9 ) yields (1) . Now suppose that ( b) is satisfied. Since B is reflex- 

ive, B and B * have the R-N property, and (3 )  remains true. By assumption E X  = E Y = 0 ,  we 

can replace f and g in (3 )  by centered variables f l  = f - Ef and g l =  g - E g ,  respectively. Not- 

ing B " "  = B ,  by thedefinitionof es ( . ,  .), wehave , 0 ~ + ( ~ 9 ' ) = ~ ~ ( X . 3 )  and p B - ( z . 3 ) = p B  

(9.9 < 1. By Lemma 3, there exists h E L, ( %, B ), such that 

1 1  h 1 1  , < 4 C ( q , p ) , E { h  I % /  = f , ,  E l h  I Y /  = g , .  

Theorefore 

Ef X + E g Y  = E { ( E [ h  I 9 ] ) X \  + E { ( E [ h  I g* ] ) Y I  = E h ( X  + Y )  

<E(  l lh l l  . / / X +  YIl / < / 1 h ~ ~ , ~ ~ X +  Y l I p < 4 C ( q , p ) l 1 X +  Y I I p .  

The proof is completed. 

The following is the Rosenthal type inequality for p " -mixing random fields. 

Theorem 2.  Let B be of type p and  let 1 Xk ; k E N~ / be a B-valued centered random 

field. Suppose that one of the following conditions is satisfied : 

(a )  B has the R-N property and  limp; ( r ) = 0, 

(b )  B is reflexive and  limp; ( r )  < 1.  

Then for any r > p ,  there exists a positive constant B, depending only on r ,  P and p i  (. ) such 

that for any finite set sc Nd, 

Remark. If B is a p-uniformly smooth space, then it is reflexive and of type p .  

Proof. First, we prove that for any q > 1 there exists a positive constant D, = D ( q ,  p ,  p 

( .  ) ) such that 

2 , , 1  1 1 1  If (a) is satisfied, we can assume that ( p i  (1 ) ) ;  9' < -, where - + 7 = 1. Otherwise, we 
4 Q 9 

2 ~ 2  1 
define J as the smallest integer for which ( p i  ( J )  ); 9' < - . For each 1 E 1 I , . . .  , J / d ,  let T ( l ) 

4 
=IRES;  k u ~ E u m o d J f o r u = l , ~ - - , d l .  X, ' s in  T ( 1 )  a r ea t l e a s t J  apartfromeachother,  

and then we can consider each T (  1 ) separately. Similarly, if ( b )  is satisfied, we can assume that 

p i  (1 )  < 1. Now, suppose that 1 E, ; j E N~ 1 is a sequence of independent and identically dis- 

1 
tributed random variables such that P(E, = 1)  = P (  E~ = - 1 )  = - 2 ' all j . 1 1 will also be inde- 

pendentof the x , .  Let Y = x X,,Z = x x,. Then Y + Z = ):x,,Y 
j€S.c = I  J E  S. r.= - 1  1fS 

- Z = CE, { Xj / . Noting that for fixed { E, 1 the distance between the two sets { j ; E, = 11 and 
I €  s 

1 ] , E l  ' . = - 1 I is one, by Theorem 1 we have 

ExII Y + z I I ~ < c , { E ~ I I  Y I I ~ + E ~ I I Z I I ~ \ < C , E X I I  Y - z I I q .  
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It follows that E 11 Y + 2 11 C CqE 11 Y - Z 11  ,, i. e. E 1 11' < C , E I  x e j X j  11'. Noting that 
I €  S j €  S 

there exists a positive constant c f l  depending only on p  and the space B such that 

we finish the proof of ( 5 )  . 
We first show ( 4 )  for B = R and p = 2 .  For any r>2,  there exists k E N and l< < 2 such 

that r = 2 k q ,  so (4 )  is equivalent to 

When k = 1 ,  noting that q /2<1,  from ( 5 )  ( p = 2 )  we have 

. . 
Hence (6)  holds when k = 1. When k 2 2 ,  assuming that (6) holds for any integer less than k ,  
we will prove that (6) remains valid for R itself. From (5) ( ~ ' 2 )  and the hypothesis of induc- 
tion, it follows that 

Suppose that 1 XI ; j E PId 1 is a field of independent random variables and X j  has the same distri- 

bution as X, for each j .  Then by the Rosenthal inequality and the Marcinkiewicz-Zygmund in- 

equality for independent random variables, it follows that 

b 1 

<2(' D~~~ 2 2I-'q C6-l, ZE I X: - EX, I 
j E  S 



No. 7 ROSENTHAL TYPE INEQUALITIES 741 

Putting (8 )  into (7), we know that ( 6 )  remains valid for k . This proves ( 4 )  for B = R and 

p = 2 .  Now, suppose that r > p  . Then 

where F, = /I  X, II - E II X, I/ P. It is easily seen that { en ; n E N~ j is a real ,n * -mixing field 

with p : ( r ) < p i ( r ) .  If p < r < 2 p ,  by ( 5 )  (where p = 2 ) ,  it follows that 

The above inequality is obviously true for r = p . Now, suppose 7->2p. Since (4) is true for real 

fields (where p = 2 ) ,  it follows that 

Let 1 E ; n E N~ I be independent random variables such that for each n, En has the same distribu- 

tion as En . Then 

where the last inequality is by the Rosenthal-type inequality for independent random variab~es'~].  

It follows that 

The proof is completed. 

The Rosenthal-type inequality remains true for the maximal partial sums, if the random field 

is # * -mixing. 
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Theorem 3.  Let B be of type p and Let 1 Xk ; k € lVd 1 be a B-valued centered random 

field.  For each m , n E N ~ ,  set S, ( m ) = ZX,,, + . Suppose that one o f  the following condi- 
k < n  

tions is satisfied : 

(a) B " has the R-N property and lim$ * ( r ) = 0 ; 
1 ( b )  B is reflexive and lim# * ( r )  < q 

Then for any  r > p ,  there exists a positive constant B ,  depending only on r ,  P and # * ( . ) such 

that for any  m , n E N ~ ,  

Proof. By Theorem 2 and the fact Pi ( r )<2$  * '"( r ) , it is enough to prove the follow- 

ing lemma. 

Lemma 4 .  Let 1 X, ; n € N~ } be a B-valued random field w i th  # * ( 1 ) < 1 .  Then there 

exists u constant C = C ( $ * ( 1 ) , q )  such that for any  n € lVd, 

E max /I Sk / (  < C maxE ( 1  Sk ( 1  q .  
k < n  k< n 

Proof. Let Sk = O if k L  = 0 for some I< Z<d . Given n , we may assume that Xk = 0 for 

k g n .  Let O < E < ~ - $ * ( I )  and 

M :  =max ,Gt k2.  max ... , k  11 s,,,~,.. .,kd II - d n , j ( E ) l ,  I d 

Then P ( B i ) 3 1  - E ,  and 
n 

man I S.,,, 2 , . . ,  I1 2 r > C P ( E , .  max 11 Snl, k 2 , . . . , k d  ll > x), 
i = l  

k2:... kd 

On E,B, ,  we have maxk,, ..., kd  11 Snl. k 2 ,  ..., kd 11 2-1.. It follows that 

min P (Bi )  - # *  ( 1 )  
I<c<nl  

which implies P( M X Z x  ) < i 1 - E - $ * ( 1 ) 1 - 'P(rnaxk2, ..., ad II Snl, k2, ..., kd I/ 2 x  ) - Noting that 
1 1 

d,,  ,<2e ; m a ~ l ~ , s , ,  (E  maxk2, ..., hi 11  Sr, k 2 ,  ..., k‘i II we conclude that 
1 

1 

P max / I  Sk / I  2 x + 2 ~ - 9  max E max 11  Si, k 2 ,  ..., k, I 
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It follows that 

Emax  1 1  Sk 1 1  < C max E max I I  Sh I 1  
l < k , < n ,  k2, ""kd 

By induction on d ,  we have proved the lemma. 

For p * -mixing random fields we also have the following inequalities for the maximal partial 

sums. 

Theorem 4 .  Let B be of  type p and let { Xk ; k E N~ 1 be a B-valued centered random 

field.  For each m , n E N d ,  set S, ( m ) = ZX, + k .  Suppose that one of  the following condi- 
k < n  

tions is satid fied : 

(a)  B " has the R-N property and limp; ( r ) = 0, 
(b )  B is reflexive and limp; ( r ) < 1 .  

k , n E iVd . Then for a n y  r > p ,  There exists a positive constant B, depending only on r ,  p and 

p i ( . )  such that f o r a n y k ,  n E N d ,  

Proof.  By induction on d and using the arguments in Corollary 3 of ref. [8] ,  the proof is 

easy. One can refer to the author's another paper'). 

2 Some applications 

Using Theorem 2, we can get the following theorem on the weak laws of large numbers. 

Theorem 5 .  Let l< p < 2 and let B be a Banach space wi th  B * having the R-N property. 
Then B being of  stable type p zs equivalent to the statement that : 

(1) for every sequence of identically distributed B-valued X ,  variables 1 X, X, ; n 2 1 1 
wi th  limp; ( r )  = 0 und lim, ,, t P P (  I /  X I /  > t ) = 0, there exists a sequence 1 M ,  / i n  B such 

that ( S ,  - M ,  ) /  T I  ""+0 in probubiltty, where M, can be chosen to be n E  ( XI 1 1 1  X I /  < 
71 ' l P  1 ) ; 

B being of  type p is eyuivulerzt to the statement that 

( 2 )  for esxry sequence of  identically distributed B-valued random variables 1 X, X, ; n > l /  

w i th  limp; ( r )  = O ,  ( S ,  - ES,)/nl '~+O i n  probability i f  E 1 1  X 1 1  '< a. 
Furthermore , 2 f L3 is reJZexiw, the condition limp; ( r ) = 0 can be replaced by limp; ( r ) < 1.  

The following is the result on strong laws of large numbers and complete convergences. Let 

X,<X denote sup,P( I /  X, / I  > t ) < C P (  I /  X I 1  > t )  for some C>O and all t>O. 

Theorem 6 .  Let 1< p < 2 and B be a Banach space wi th  B having the R - N  property. 
The following are equivalent. 

( i )  B is of stuhle type p . 

(ii) For r > 1 und every B-valued centered random field { X, ; n E Nd / with lim ( r )  = 0 
a nd 

1 )  Zhang, I.. X . ,  Convergence rates in the strong laws of nonstationary p" -mixing random fields, Preprint, 1996. 
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X, < X ,  Ell X 11 rPlogd-l( 1 1  X 11) < 00,  

we have 

I (  Sk 1 1  > E I n I l lP < GO for any E > 0 

(iii) For every B-valued centered random field X, ; n E Nd 1 with limp; ( r )  = 0 and 

X, < X,  E 11  X I I  PlogPV(d-l)( I I  X I I  ) < 03 for someP > d ( p  - I ) ,  (11) 

we have 

): I n I - 'P  maxIISkII > E  I n I ' ' ~  < G O  f o r a n y ~ > O .  ( k<* 
(12)  

(iv) For r 3 1  and every B-valued centered random field X ,  ; n E Nd 1 with lim+* ( r )  = 0 
and (9 ) ,  we have (10) .  

( v )  For every B-valued centered random field { X, ; n E N~ / with limp; ( r ) = 0 and 
( l l ) ,  wehave 

s, l i m p  = 0, a . s .  
n I n ll'P 

(13) 

(vi) For every B-valued centered random field { X, ; n E Nd 1 with lim# * ( r ) = 0 and 

X, < X ,  E 1 1  X 1 1  Plogd-l( 1 1  X 1 1  ) < 00, (14) 

we have (13) .  Furthermore, i f  I3 is reflexive, then the conditions liii (s) T O ,  lim#" ( r )  = O  

can be replaced by limp;( ( r ) < l , l im# ( r )  < l / 4  respectively in  each statement. 

Proof. (iii)*(v), (iv)*(vi) are obvious and, it is easily seen that each of (ii)-(vi) im- 

plies the following statement. 

(vii) For every bounded sequence { sk ; k 2 1  1 in B, we have 

c;; 1 
lim n l / p  = 0,  a .  s . ,  
n--2 

where { E~ I is a Rademacher sequence, which implies ( i )  . On the other hand, by using Theorems 

3 and 4 we can prove (i)*(iv) and (i)*(ii), (iii) . The proof is omitted here. One can refer to 

the author' s another paper and sec. 8 . 3  of reference [ 1 ] . 
Open Problems. (a) Can condition that I3 has the R-N property ( o r  B is reflexive) be 

removed or not ? 
(b )  Are (12) and (13)  also true with condition (11)  being replaced by (14) ,  i f  neces- 

sary, with some more conditions on the convergent rates of  p i  ( r ) ?  

(c)  If  condition X, < X  is replaced by the saying that 1 X,  X, 1 are identically distributed, 

is each of statements (ii)-(vi) in Theorem 6 equivalent to the statement that B is of type p? It 

is known that it is true in the case of independent fields. 
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