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Abstract Some inequalities for moments of partial sums of a B-valued strong mixing field are established and their
applications to the weak and strong laws of large numbers and the complete convergences are discussed.
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Suppose that (B, || + Il ) is a separable Banach space with its dual B*, and (2, %, P)isa
probability space. For any f€ B”* and x € B, by fx we mean f(z). For a B-valued random
variable X on (2, U, P), define | X | ,=(E|| X | 27 Given two o-fields % % in %, let

$(F,9) =supl! P(B1 A)-P(B)|; A€ % B€ Y P(A) # 01,

s (79 =sup| AL EZBLEX L o0y (o By, X € LB,
Al X,

where L,(#, B) denotes L, space of #measurable B-valued random variables, and L,(% B) is
denoted simply by L,(B) or just L,. Here and in the sequel measurability and integrability mean
the strong measurability and strong integrability, respectively. Clearly, pr(% ¥)<<pa(%, %)
where R is the real space, and if B=R, then pg(¥%, ¥) is the usual p-mixing coefficients. It is
well known that p;.(7, ¥)<<2$2(%, #). The following Property 1 tells us that it is also true for
general Banach space B.

Property 1. Given two o-fields 7, ¥ in U and p, g > 1 with % + —é— =1, for any f€

L,(%,B") and X€ L, (%, B), we have
|Ef X —EfEX (K 28V2(FEND N I X,
Property 2.  Suppose that f€ L,(#, B") and X€ L,(% B), where p*q>1 with 1/p
+1/q=1. Then
2,2
|EfX —EfEX 1<4p!" “(FZD N FI, 01X,
The proofs of Properties 1 and 2 are similar to those of Lemmas 1.2.7 and 1.2.8 of ref. [1],
so they are omitted here.
Let d be a positive integer and, let N¢ be the d-dimensional lattice equipped with the coor-
dinatewise partial order, <. Let | X,; # € N¢| be a d-dimensional discrete field of B-valued
random variables on ({2, U, P). It will be called “centered” if EX, =0. For any AC N9, set
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Sy = ZneAX"’ | A | = the cardinal number of A. For any n € N¢, let (n)={mE N, m

<nl, S,=S¢,, Inl=1(n)|=nynynyand || n || denotes the Euclidean norm. Occasion-
ally, n, k&, n, etc. will also denote positive integers, the reader will not be confused from their
context.

For two nonempty disjoint sets S, TCCN?, we define dist(S, T) asmin { | j—k | }; j€
S, RET}. Let 6(S) be the o-field generated by { X, ; k€ S}, and define ¢(T) similarly.

We define two mixing coefficients of | X,; 2€ N?|. For any real number s=>1, define pz
(s) =suppp(s(S), a(T)), where the supremum is taken over all pairs of sets S, T such that
dist(S, T)==s, and define ¢ * (s) similarly.

Many limit results were obtained for real mixing random sequences in the past twenty years
(cf. ref.[1] and references therein) and for some real mixing random fields recently (cf. refs.
[2—4]). But, to the best of our knowledge, little is known of B-valued mixing random se-
quences or fields. The main purpose of this paper is to establish some moment inequalities just as
the Rosenthal -type inequalities for block sums of p* -mixing or ¢ * -mixing fields which are useful
tools in studying the limit properties of these mixing random fields. The main results are stated in
sec. 1. In sec. 2, we give some applications to weak laws of large numbers, Marcinkiewicz-Zyg-
mund strong laws of large numbers and complete convergences.

1 Inequalities for moments of partial sums

The first inequality seems simple but will be useful in proving our main inequalities.
Theorem 1. Ler %, ¥ be two o-fields in U, and let p > 1 be a real number and p : =
max | pa(# ¥, pp(%F) | . Suppose that one of the following two conditons is satisfied :

(a) B” has the Radon-Nikodym (R-N) property and pr" a<1/4, where ; + -q" =1,

(b) B is reflexive (i.e., B™* =B) and p<1.

Then there exists a constant C, = C(p, p) depending only on p and p such that
EIXI*<CEIX+YI[? (1)
holds for any X&€ L,(#,B), Y& L, (% B) with EX=EY=0.

To prove Theorem 1, we need some lemmas. The first one is well known.

Lemma 1. Given 1<Xp< o0, for any probability space (2,% P) L,(%, B)" = L, (%,
B*) if and only if B* has the R-N property, where —;— + —;— =1 and L,(%, B)" denotes the
daul space of L,(#, B).

The following is the interpolation theorem!®! .

Lemma 2. Let 1<<p,, q;<<0,i=0,1, and let T be a linear operator mapping from L,,
+ L, intoL, + L, with its restriction to LP,,( LPl) being a continuous mapping from LPO(LPI)
into Lqﬂ( Lql ). If 0<<O<1 and

1_1-4,0
r; pi qi
Then T is a continuous mapping from L’u into L,1 and

i=0,1.
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The following lemma is an extension of Lemma 1 of reference [6].

Lemma 3 Suppose B* has the R-N property. Given 1< p< 0 and two o-fields %, ¥ in
aAd, if p 1= max | ps(F %), p(Fe, P} <1, then there exists C= C(p, p) such that the fol-
lowing implication holds. If X€ L,(#, B), Y& L,(%.,B) with EX=EY =0, then there is
aZ<€ L,(% B) such that

X=E{Z1Ftand Y =EIZ1F.}, 1 ZI,<CUIXN,+1YIl,.

Proof. Let A be a linear operator defined by A(*) =E{E{|#. | |F | and let E(*) de-

note the linear operator of taking the expected value E{+}. Clearly, | A—E || Lx(B)"’Ln(B)gz’
lA-El L _(8y~1._1»=2 and (A - E)*=A* - E for each £2>1. First, we show that
A -EI| L(B)~L,(B) < p. (2)
For any €€ L,(%., B), by a well-known consequence of the Hahn-Banach theorem and Lemma
1, there existsa £" € L,(%, B") with || £¢* || ;=1 such that
[Ele1 71 -E¢ll, = [E[6-E¢14], = Efe"(E[¢ ~E¢ | #])I

=E|E[¢" (£ ~E&§) | ]} = E{¢" (& - E&)|

=E£"§-E&Es<<plle™ . llella=pl &2
It follows that for any £€ L,(B), Il (A= E)(&) | ;<o I El&I. | | ,<p |l €|l 5, which im-
plies (2) immediately. Now, for 1< p<oo, Lemma 2.2 implies

A = Ell e, SCHCA = EY N ot PRI A = E oy )3
<p*(15)257, 1 < p<2;
A =l SCICA = EY Dl oy JPCIA* —E Ny )13
o2 5, 2< p < 0.
In particular, for centered & we have | A% || ;<25 1o (1" 5) [ &1 , for 1< p<<2 and [ A%
<2t "%p%k I &1l , for 2<<p<oo. Since the estimate also holds for 2 =0 and, by symmetry,
also for A* (&) =E|E{&|F 1% |,
Z = Z‘Ak(X -EiY 1)+ g(A*)’“(Y—E!X L F.t).

k=0
is well defined and satisfies the asserted property by the triangle inequality and a simple computa-
tion.
Proof of Theorem 1. Suppose that (a) is satisfied. By a well-known consequence of Hahn-
Banach theorem and Lemma 1, we get
X, <Ihxl,+Yl,=EfX+EgY, (3)
where f€ L, (#,B"), g€ L, (% B™) with A = gl . = 1. It follows from Property 2
that
EXH,+ 0 Yll, =E(f+g)(X+Y)-EfY -EgX
<lf+gl IX+ Y, +IEfY 1+ EgX |
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2,2 2,2

NX+ Y, + a0 el fl I Y, + 40505 gl I X1,
2,2

<2 I X+ Y], + 4o 3CIX N, + 1Y,

Putting C, =2(1- 4p%/\% ) " yields (1). Now suppose that (b) is satisfied. Since B is reflex-
ive, B and B~ have the R-N property, and (3) remains true. By assumption EX=EY =0, we
can replace f and g in (3) by centered variables f; = f—Ef and g, = g — Eg, respectively. Not-
ing B"" =B, by the definition of pg(*, ), we have g,- (4, 9)=pg(%#F) and g ($F)=pp
(# 9 <1. By Lemma 3, there exists h&€ L (% B" ), such that
lrll,<4C(q,p),Eth 1 F}t = f1, Elh | ¥} = g;.
Theorefore
EfX +EgY =E{(E[r 1 FDX} + E{(E[R 1 £. D Y| = ER(X + Y)
<E{hrl - I X+YII<ITRI IX+Y),<4C(g, ) I X+ Y ,.

The proof is completed.

The following is the Rosenthal type inequality for p ™ -mixing random fields.

Theorem 2. Let B be of type p and let | X,; B € N%| be a B-valued centered random
field . Suppose that one of the following conditions is satisfied :

(a) B” has the R-N property and limpg () =0,

(b) B is reflexive and limpp (z)<1.
Then for any r==p, there exists a positive constant B, depending only on r, p and pp (*) such
that for any finite set SCN¥,

X, '<B,(ZE AL (ZE B P)'/”). @

E

ke S kES RES
Remark. If B is a p-uniformly smooth space, then it is reflexive and of type p.

Proof .  First, we prove that for any ¢ >1 there exists a positive constant D, = D(q, p,p"~
(*)) such that

E

2

j€S

q q/p
<DqE(Z I X, ||P) . (5)
€S
) - N 2,2 1 1 1 .
If (a) is satisfied, we can assume that (pp (1))¢"a < e where ; + q_ =1. Otherwise, we

2,2
define J as the smallest integer for which (pp (]))5A7<%. For each 1€ {1, -+, J 19, let T(1)

={k€S; k,=I,mod J for u=1,---,d}. X;’sin T(I) are at least J apart from each other,
and then we can consider each T(!) separately. Similarly, if (b) is satisfied, we can assume that
ps(1)<1. Now, suppose that {¢;; 7 € N?} is a sequence of independent and identically dis-

tributed random variables such that P(¢;=1) =P(¢; = - 1) = —;—, all j. {e;} will also be inde-
pendent of the X;. Let Y = >, X;,Z = >, X;,. Then Y + Z = > X;,Y
j€5.61=l JES, tl.=—l j€S

-Z= Zej {X;!. Noting that for fixed {¢;| the distance between the two sets {j;&; =1} and
i€s
{jse;= — 1} is one, by Theorem 1 we have

EXIIY+Z|]q<quEx”Yl]q+Ex|]Z||qf<Cqu|lY—Z“q.
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It follows that El Y + Z | *<C,E I Y=Z |19, i.e. E] 3% < C,E] De5%; " Noting that
j€S Jj€S

there exists a positive constant ¢’; depending only on p and the space B such that

E. Ze,-xj’p < c’z( DX f’)q/p,

j€Ss jes

we finish the proof of (5).
We first show (4) for B=R and p=2. For any r==2, there exists £ € N and 1<X¢ <2 such

that » =2%g, so (4) is equivalent to

2 § 2
E| > X ' ZE|X,\“+(ZE|X].|2) q{. (6)

i€s j€eS j€S

When & =1, noting that ¢/2<1, from (5) (p=2) we have

q
E| 20X, " <D2q1~:( §;X§)
jES i

k-1

< Ck,q

<2971D,, (Z(X2~EX2 ) (ZEXZ)
J€S j€S
q/2 q
<297'D,, DqE(Z(Xf- ~1~:X§)2) + (ZEX}) ;
i€s j€Ss
q
<24‘1D2Q;DQE(_€ZS(Xf - Exf)“m) + (EZSExf)
q
<Cy | 2JE 1 X, 179 + (ZEX?) }
Jj€ES j€S

Hence (6) holds when £ =1. When £2>2, assuming that (6) holds for any integer less than &,
we will prove that (6) remains valid for £ itself. From (5) (p =2) and the hypothesis of induc-

tion, it follows that
k-1

k 2
B 35,7 <Dy 35x3)
j€S JES
k-1

b1 2 2 g
<20 ’”Dz*qlE(Z(Xf—EXf)) +(ZEX§) f

j€s €S

k-1 k-1
<2? 9Dy {Coy D EI X2 -EX2 12 4

jES
2k~2q Zk-lq
+ Cm.q( ;E(Xf - EX?)Z) + (Z;EXf) }
] 21(_24 Zk—lq
SAp | 2B X 1774 (ZE(XE —EXf)z) + (ZEX}) . (D
j€Ss jES j€S

Suppose that {X;;7€ N} is a field of independent random variables and X ; has the same distri-
bution as X for each j. Then by the Rosenthal inequality and the Marcinkiewicz-Zygmund in-
equality for independent random variables, it follows that

2 q 2,2
(}_,E(X2 EX?) ) = (E(Z(X§~EX§)) )
j€S JES

gE(Z(X§~EX§>)2 <2 "”! (ZXZ) (ZEE)Z "{

j€s j€s j€ES
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e 2y 2t
<B.. B[ 2% |+ (2ex) |
JES JES
2lz~lq
— % —
B A DB X 179 + (ZE;@) l
Jj€Ss jES
. , levlq
=B | D2 E1 X, 179+ ZEXf) : (8)
JES j€S

Putting (8) into (7), we know that (6) remains valid for £. This proves (4) for B= R and
p=2. Now, suppose that r==p. Then

EEh;sgaqzmxwﬂ’

n€ S nE S

<ClE| S, "+(ZE|| X, ||P)” :
nE s n€ S

where &, = || X, | ?—E || X, Il . It is easily seen that {&,;7 € N%} is a real p " -mixing field
with pp ()<\pp (7). If p<r<2p, by (5) (where p =2), it follows that

S|’ < c,E( zea)”’

E

n€S n€ S

<COEIE175<COEIX, I
ne$ nE€ S
The above inequality is obviously true for » = p. Now, suppose r==2p. Since (4) is true for real

fields (where p =2), it follows that

>k,

ng s

LA

(2}:51)2” +SEle 5

n€ S n€ S

E <,

Let {&; 7€ N4} be independent random variables such that for each 7, én has the same distribu-
tion as &,. Then

r

(ZEE%)“ =(ZE§%,)ﬁ = (E(Zén)z)ﬁ

n€ S n€Ss ne S

3 (EEE
n€ S n€ s
where the last inequality is by the Rosenthal-type inequality for independent random variables!”! .
It follows that

<E "<c.,

b

);+ZE|§,,|5

n€ s

~ |5 z ,
E| Dk, "<C,.,, (ZEI g, |) + DEI& 17
ne S n€ S n€ S
- 5
<c,, (ZEH X, ||P) + SEI X, ur].
n€E S n€ S

The proof is completed.

The Rosenthal-type inequality remains true for the maximal partial sums, if the random field
is ¢ " -mixing.
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Theorem 3. Let B be of type p and let | X,; k€ N?}| be a B-valued centered random
field. For each m,n &€ N*, set S,(m) = ZXm+k. Suppose that one of the following condi-

Ein

tions is satisfied :

(a) B™ has the R-N property and lim$~ (r) =0;
(b) B is reflexive and lim$”~ (z’)<%.

Then for any r=2p, there exists a positive constant B, depending only on r, p and ¢~ () such
that for any m, n € N¢,

r/P
Emax|| Su0m) 1< B SEI X |7+ (BN Xacs 1) ).

b<n k<n
Proof. By Theorem 2 and the fact pj (£)<<2¢"/?(¢), it is enough to prove the follow-
ing lemma.
Lemmad4. Let {X,;n€ N?l be a B-valued random field with $* (1)< 1. Then there
exists a constant C=C($" (1), q) such that for any n € N%,
E max ISl ¢<< C maxE ISl e

Proof. Let S,=0if k2, =0 for some 1<</<d. Given n, we may assume that X, =0 for
EEn. Let 0<e<1—-¢"(1) and

1
d, (e) :EE(Ekmax’z I Supkyik, = Siskyoan, I q)q,

20 Ry

M =max
J<i

 max H Sk ok i - d, (e)l,

]M1 (< max | S, |- dyi() >

l

? ax “ S,, s ’m’kd - Si'kz’m’kd ” < dn’,‘(E) .

Then P(B;)=1-e, and

P( max [| S, b e | = x) > 2 P(E:, max IS, a1 2 7).

otk =1 20" "%

On EB;, we have max; ...z, I Sk, | =Zx. It follows that

Pimax 15, 0,1 = 2] Z20P(ELB) = 23P(B) - $* (DIP(E)

2 Ry

>} min P(B,) — $* (1)‘P(M > 1),

I<isin

which implies P(M, Zx)<{{1—e— ¢ " (1){" 1P(maxk2,...,kd I S kyaty | =x). Noting that

1 L
d,,,i<2€7;max1§—,-g,,l(E maxkz‘.,.,ki “ Si’kz’.“'kd “ q)q, we COnClude that
1

1 q
P max!l S, =z +2¢ ¢ max (E max I Siyky, ik, ”q) {

ko,

1< xénl 2 ky

<il-e— ¢ (D)7'P

max I Su bk, I = x)

Ry
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It follows that
EmkaxH S, 1< C max E max | S, 1.

1€k K, kyoiky
By induction on d, we have proved the lemma.

For p” -mixing random fields we also have the following inequalities for the maximal partial
sums.

Theorem 4. Let B be of type p and let | Xy3 B € N%| be a B-valued centered random
field. For each m, n € N*, set S,(m) = EX,Mk. Suppose that one of the following condi-

k<n
tions is satidfied :
(a) B* has the R-N property and limpg () =0,
(b) B is reflexive and limppg () <1.
k,n€ N?. Then for any r> p, There exists a positive constant B, depending only on r, p and
op (*) such that for any k, n € N4,

r/P
E max || S;(m) | ’<B,§(I n ir{1<axE|| D, S 1|")

+1nl ([lognl]"'[lognd])'rz1<axE|| X ..

Proof. By induction on d and using the arguments in Corollary 3 of ref.[8], the proof is

easy. One can refer to the author’s another paper! .

2 Some applications

Using Theorem 2, we can get the following theorem on the weak laws of large numbers.

Theorem 5. Ler 1<<p<2 and let B be a Banach space with B" having the R-N property.
Then B being of stable type p is equivalent to the statement that :

(1) for every sequence of identically distributed B-valued X, wvariables { X, X,; n=1}
with limpy; () =0 and lim, .o t?’P( || X || >¢) =0, there exists a sequence {M,} in B such
that (S, = M, )/ n''?——0 in probability, where M, can be chosen to be nE(XI{ || X || <
n'rly;

B being of type p is equivalent to the statement that

(2) for every sequence of identically distributed B-valued random variables { X, X, ; n=>1}

with limpf; () =0, (S, —ES, )/ n"?—>0 in probability if E|| X || ?< 0.

Furthermore, if B is reflexive, the condition limpg (t) =0 can be replaced by limpg (7) <1.

The following is the result on strong laws of large numbers and complete convergences. Let
X, <X denote sup,P( || X, || >¢)<XCP( || X || >¢) for some C>0 and all z>0.

Theorem 6. Let 1<Xp <2 and B be a Banach space with B having the R-N property.
The following are equivalent .

(i) B is of stable type p.

(ii) For r>1 and every B-valued centered random field {X,;n€ N*} with lim pg () =0
and

1) Zhang, I.. X., Convergence rates in the strong laws of nonstationary p" -mixing random fields, Preprint, 1996.
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X, <X, Ell X ?log? "( I XII) < oo, (9
we have
Z | n I"ZP(I&ax | S ll >eln Il/”) < o0 foranye > 0. (10)
(iii) For every B-valued centered random field {X,; n€ N?| with limpp (z) =0 and
X, <X, El X[ ?g?V 4 V([ X])< o for someB>d(p-1), (11)
we have
Zlnl_lP(r&ax”Sk” >e|n|1/")<°°foranye>0. (12)

(iv) For r=1 and every B-valued centered random field {X,;n € N*} with lim$”* (t) =0
and (9), we have (10).

(v) For every B-valued centered random field {X,; n € N*| with limpg () =0 and
(11), we have

lim =0, a.s. (13)

wola VP
(vi) For every B-valued centered random field {X,;n€ N*| with lim$* (¢) =0 and
X, <X, EIl X Plog "( X 1) < o, (14)
we have (13). Furthermore, if B is reflexive, then the conditions limpg () =0,lim$" (¢)=0
can be replaced by limpg (t)<1,lim$ " (7)<1/4 respectively in each statement .
Proof. (iii)=(v), (iv)=>(vi) are obvious and, it is easily seen that each of (ii)—(vi) im-
plies the following statement.
(vii) For every bounded sequence |x,;%=1! in B, we have
. Z:= 1 SFL
lim — 75—

=0, a.s.
new /P ’ ’

where l¢e,! is a Rademacher sequence, which implies (i). On the other hand, by using Theorems
3 and 4 we can prove (i)=(iv) and (i)=(ii), (iii). The proof is omitted here. One can refer to
the author’s another paper and sec. 8.3 of reference [1].

Open Problems. (a) Can condition that B” has the R-N property (or B is reflexive) be
removed or not?

(b) Are (12) and (13) also true with condition (11) being replaced by (14), if neces-
sary, with some more conditions on the convergent rates of pg(7)7

(¢) If condition X,<X is replaced by the saying that {X, X, | are identically distributed,
is each of statements (ii)—(vi) in Theorem 6 equivalent to the statement that B is of type p7 It
is known that it is true in the case of independent fields .
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