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Organic semiconductors (OSCs) are showing great promise in
large-area wearable devices, optoelectronic displays, logic cir-
cuits, and next-generation optoelectronic applications [1-9].
Examples include organic field-effect transistors (OFETSs),
organic light-emitting diodes (OLEDs), organic photovoltaic
cells (OPVs), and sensing devices. However, OSCs encounter
significant challenges in widespread commercialization [10-13].
Compared with their inorganic counterparts connected by
strong covalent bonds, the structural characteristics of OSCs
films are predominantly governed by van der Waals interactions
[14-19], rendering their optoelectronic properties typically
dependent on the synergistic effects between intrinsic properties
and extrinsic effects, such as impurities and defects [20-26].

Ubiquitous oxygen represents one of the most prevalent
extrinsic impurities readily encountered in OSCs. Owing to its
high electronegativity, oxygen demonstrates a strong propensity
toward redox interactions within OSCs. Oxygen doping has
gained great interest in organic electronic community, involving
its effects on charge transporting and applications in devices
[27-35]. For a long time, oxygen has been considered a charge-
carrier trap that heavily deteriorates performance and stability.
Consequently, researchers have predominantly focused on
developing strategies to suppress oxygen incorporation and
mitigate its detrimental effects in OSC systems [20,35-37]. In
recent years, quite different viewpoints have emerged that oxy-
gen doping shows a completely opposite effect at trace level, i.e.,
trace oxygen improves the performance and stability of organic
electronic devices by pre-emptying the electrons from the
donor-like traps [38]. And some strategies have been developed
to modulate oxygen doping at trace level, achieving optimized
device mobility and stability [38-43].

Although significant progress has been made in this research
field, the oxygen doping mechanism and its effect on optoelec-
tronic devices are not yet fully understood. An important
research direction is to address the fundamental challenges
associated with understanding oxygen doping mechanisms in
OSCs, coupled with the development of targeted modulation
strategies.

Herein, this perspective delineates the mechanistic under-

pinnings of trace oxygen doping phenomena in OSCs, discuss-
ing the state-of-the-art modulation strategies to enhance device
performance. Through systematic analysis of structure-property
relationships, we discuss oxygen relevant modifications in
charge transport dynamics and operational reliability of organic
electronic devices. Building on this foundation, the perspective
proposes a development framework for oxygen element doping
engineering while outlining emergent challenges in interfacial
stabilization protocols.

MECHANISTIC INSIGHTS OF TRACE OXYGEN
DOPING IN OCSs

OSCs are essential components in OFET devices, governing
their performance and stability [44-50]. The presence of
extrinsic impurities substantially accelerates the performance
deterioration of OSCs during device operation and ambient
exposure. Among the many involuntary introduced extrinsic
factors, ubiquitous environmental oxygen molecules readily
permeate both the OSCs bulk and their interface with the
dielectric layer, owing to their high electron affinities and small
molecular volume [51-56]. They are regarded as the most
common causes of charge-carrier traps in many OSCs, critically
deteriorating device performance [57-64]. Zhang’s group [27]
observed that prolonged air exposure of the device led to
adsorption and gradual penetration of oxygen molecules into the
organic semiconductor channel. These traps minority electrons
injected under positive gate bias, thereby leading to non-ideal
device characteristics. A novel method for analyzing trap states
in semiconducting molecular crystals is introduced by Podzor-
ov’s group [35]. Their studies revealed that exposure to oxygen
and subsequent oxygen diffusion result in the creation of oxy-
gen-induced trap states, which significantly decreases both dark
conductivity and photoconductivity of rubrene by over tenfold.
Photo-oxidative degradation occurs when OSCs undergo che-
mical structural changes exposured to light (mainly UV-visible)
and oxygen that breaks conjugated m-systems. It disrupts charge
transport pathways and decreases conductivity [65-67]. An
antioxidant strategy based on nickel chelate (Ni(dtc),) with the
addition of 2-10 wt% of Ni(dtc), was proposed by Brabec’s
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group [67], which can significantly retard the photobleaching
rate of the films by both sacrificial and non-sacrificial mechan-
isms. This strategy effectively inhibited the photo-oxidative
degradation of conjugated polymers and their fullerene blend
systems. Durrant et al. [52] compared the photochemical sta-
bility of two donor polymers in neat and blend films. They
employed transient absorption measurements and a molecular
singlet oxygen indicator to demonstrate that the polymer with
the higher yield of long-lived triplets exhibits higher yields of
photochemical single oxygen in both neat films and blend films.

Previous understanding of oxygen effects experimentally relies
on the conventional deoxygenation methods [28,67-69], e.g.,
annealing and sublimation. Very recently, it is reported that
trace-level oxygen is still presented in the majority of the pur-
ified OSCs [38], implying that trace oxygen residues are una-
voidable in these processes. Some reports demonstrated that this
trace oxygen molecules have positive impacts on OSCs by
optimizing conductivity, passivating defects, and morphological
control via crystallization kinetics [27,38-43]. Zhang et al. [27]
found that moderate exposure to ambient air (containing H,O
and O, molecules) can effectively induce doping in organic
materials at the electrode interface, passivating defect states
generated during electrode deposition, thereby enhancing charge
carrier injection efficiency and improving the ideality of device

performance. Havinga’s group [42] revealed that pristine tetra-
cyanoquinodimethane (TCNQ) films demonstrated minimal
switching characteristics. However, following ambient air
exposure over time, these films exhibited a remarkable
enhancement in switching performance, achieving a switching
ratio of three orders of magnitude.

Huang et al. [38] discovered that trace oxygen (~10"° em™) is
inherently presented in a wide range of OSCs even after rigorous
purification (Fig. 1) by quasi-in-situ ultraviolet photoelectron
spectroscopy (UPS), the time of flight secondary ion mass
spectrometry (TOF-SIMS) and electron paramagnetic resonance
spectroscopy (EPR). This residual oxygen interacts with OSCs,
forming superoxide anion radicals (O,”) and organic radical
cations (ORCs). The authors developed an effective de-doping
method (i.e., deoxygenation) based on soft plasma and a re-
doping method by illumination in oxygen. The p-type properties
of OSCs gradually disappeared during the de-doping process
and reversed under the re-doping process. It indicates that
oxygen is the origin of the p-type transport behaviour of OSCs.
This insight is completely opposite to the previously reported
carrier trapping and can clarify some previously unexplained
organic electronics phenomena. This work expands the explor-
able property space of organic semiconductor materials, opening
new avenues for investigating their intrinsic optoelectronic

a b Cc
Sublimated DNTT
10°4¢

— ° DNTT

3

< ? DNTT*

>

b=

%]

3

= 1025 ‘

- >

L)
Raf > Er e 106
LUMoO DMPO-"O0OH —
T T T T T T T
0 50 100 150 2 0 ;) 4 -6
Sputter time (s) Binding energy (eV)
P O 1
d e o h |
' s ] Re=m
I
Lo s M\_s [ R R PTCDI-C, !
Rigara el ot soonllissooc Tt |
| R =C¢Fy3 R =CyHy R=H : | l
: DHF-4T C1o-DNTT DNTT Pentacene : : :
I I i
| I
I b O Ll '
e CCC 2 |
| | & ] !
Mesess oen ! |
! I
I Il CgH S L |
S
| re J s J CeHr | | !
I
i TIPS-Pentacene Rubrene Cg-BTBT : i l
L L '
Figure 1 (a) Intensity of the TOF-SIMS data for the C and O elements of the fresh DNTT single crystal. Inset is the 3D reconstruction of the depth profile.

(b) Valence photoemission spectrum and secondary electron spectrum extracted from the UPS measurement of the fresh DNTT film. Ionization energy (IE),
vacuum level (Ey,), and injection barrier (Ejpjet) are exacted from the UPS result, and the energy gap (E,) is obtained from the UV-vis absorption spectrum.
The energy position of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital(LUMO), and the Fermi level (Eg) are thus
determined. (c) EPR signals of ORCs and DMPO-'OOH (the adduct of DMPO with O,") in fresh DNTT film, suggesting the innate oxygen doping in OSCs.
Different OSCs of (d) p-type and (e) n-type. Reprinted with permission from Ref. [38]. Copyright 2024, Springer Nature.
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properties and controllable doping.

MODULATING STRATEGIES FOR ELECTRONIC
PROPERTIES OF OSC AND DEVICES

Building upon the mechanistic insights into oxygen doping and
its pivotal role in OSCs, innovative strategies for trace oxygen
modulation were presented, providing guidelines for leveraging
oxygen as a tuneable functional component in OSCs and device
design. It is conducive to addressing challenges related to long-
term stability and reproducibility. Neher’s group [36] blended
poly(3-hexylthiophene) (P3HT) with polystyrene (PS) at a ratio
of 0.05/0.95, spin-coated the blends on substrate in a nitrogen
glovebox (O,/H,O < 1ppm), and subsequently annealed the
blends under vacuum. This process significantly enhanced the
blends performance. They attributed the improved stability to
the “encapsulation” effect of the insulating PS matrix on P3HT,
which effectively suppresses oxygen penetration into the semi-
conducting polymer. Jurchescu et al. [37] identified the most
probable and severe degradation pathways in organic transistors
by real-time monitoring of trap density of states (DOS), guided
by density functional theory (DFT) calculations during device
operation, and they devised the most efficient packaging strategy
for each type of device, resulting in high-performance, envir-
onmentally and operationally stable small molecule and polymer
transistors. However, the conventional annealing and encapsu-
lation strategies do not effectively address the aforementioned
stability issues induced by the “inherent” trace oxygen.

The soft plasma treatment and photo-oxygen synergistic
technique were used to precisely control the oxygen doping in
OSCs and devices. A nondestructive soft plasma treatment (H,,
N, or Ar) was developed by Huang et al. [38] to remove trace-
level oxygen (i.e., de-doping) in OSCs. To achieve reversible
oxygen doping/de-doping processes, the researchers also devel-
oped a light-oxygen synergistic technique for oxygen re-doping:
exposing the de-doped organic devices to light of specific
wavelengths under an O, atmosphere, which enables the con-
trollable oxygen adsorption and charge transfer. Based on this
strategy, OFETs no matter with negative threshold voltage (V)
or positive Vr could be modulated to turn on at approximately
0V, without the observed decrease in mobility. And the con-
ductivity of C,;o-DNTT could be tuned in a large range.
Attractively, the polar type of the transport behaviors can be
modulated by this de-doping and re-doping strategy. For
example, OFETs of TIPS-pentacene show p-type behavior both
in air and vacuum, but they can be modulated to be n-type via
our de-doping process, and certainly can be recover to p-type
again by our re-doping process. In addition, it is well known that
the N2200 is a high-performance n-type OSC, which can be
endowed with p-type behavior via the re-doping strategy, and
certainly can be converted to n-type again by de-doping process.

It is widely recognized that O, introduces defects into OSCs,
degrading OFET performance [70-72], suggesting that high-
purity inert gases (Ar, N,) should be used as carrier gases during
OSC crystal growth. However, Sun et al. [40] developed an
oxygen-induced lattice strain (OILS) strategy by originally
introducing oxygen into OSC crystals to generate lattice strain in
the growth process. Lattice compression in OSC crystals induces
closer m-mt stacking distances, which increases frontier orbital
overlap and strengthens intermolecular charge transfer integrals.
These synergistic effects notably improve the electrical perfor-
mance and stability of the OSCs crystal. The contact resistance is
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lowered to 25.5 kQ) cm, while the maximum mobility soars up to
153 cm® V™'s7! in the OILS DNTT crystal. To fully elucidate
the impact of lattice strain on the morphological stability of OSC
crystals, the authors transferred both OILS DNTT crystals and
strain-free DNTT crystals onto identical SiO,/Si substrates for
in-situ investigation of the morphological stability of DNTT
crystals under high temperatures. After annealing at 160 °C for
5 min, the strain-free DNTT crystals exhibited severe cracking,
degradation, and destruction, whereas the OILS DNTT crystals
maintained excellent crystalline morphology. This demonstrates
a significant enhancement in the morphological stability of OILS
DNTT crystals. This work builds an important bridge between
microstructure and material properties, providing new insights
for developing high-mobility and high-stability OFETs.

The high contact resistance (R) at metal/semiconductor
nanointerfaces significantly limits device integration and min-
iaturization by reducing charge injection/extraction efficiency
and exacerbating power dissipation. Conventional approaches
struggle to simultaneously achieve strong orbital coupling and
low Schottky barrier height. Fu et al. [41] developed an oxygen-
induced nanointerface engineering strategy to lower the elec-
trode-OSC energy barrier through controlled oxygen and
achieved an ultralow channel width-normalized R. (R-W) of
89.8kQ cm and a high mobility of 11.32cm®V™'s™". This
approach effectively reduces the contact resistance and the
metal-semiconductor interface barrier height, leading to a
remarkable enhancement in charge carrier mobility.

For n-type OSCs, oxygen doping, whether in trace amounts or
in large quantities, has a negative impact. n-type OSCs
encounter key challenges such as poor reliability, low perfor-
mance, and a limited material pool, with electron transport
instability being the fundamental cause [23,73-75]. These chal-
lenges are largely due to chemical degradation and electron
trapping induced by external oxidizing agents [23,51-56].
Although n-type OSCs can be designed to have high electron
affinity to improve their anti-oxidative properties, organic
radical anions generated during device operation are thermo-
dynamically unstable and easily react with oxygen and water,
especially reactive oxygen species (ROS) [76-78], leading to the
low stability of n-type OSCs and their electronic devices. Yuan
et al. [39] have developed a general strategy using vitamin C
(VC) to scavenge ROS that significantly improve the stability of
n-type OSCs and their device performance, for example, OFET
(Fig. 2). The researchers discovered that spin-coating VC onto
the surface of PTCDI-Cg (a typical n-type organic semi-
conductor molecule, Fig. 1e) thin films can significantly reduce
their photo-oxidation rate and markedly enhance the material’s
oxidative stability. Subsequently, the research team employed
OFETs as model devices to explore the application of VC on
organic electronics. To suppress VC crystallization, the
researchers blended VC with polyurethane (PU) and spin-coated
the mixture onto OFETSs based on nine different n-type mole-
cular semiconductor. Compared to pristine devices, all VC-PU-
treated OFETs exhibited substantial performance enhancements,
with electron mobility improvements reaching up to 38-fold.
The operational stability and photo-oxidation resistance of n-
type OFETs were significantly enhanced, with the superior
device performance maintained in air for over 255 days.

The author found that VC scavenges reactive oxygen species
and inhibits their generation by sacrificial oxidation and non-
sacrificial triplet quenching in a cascade process, which not only

September 2025 | Vol.68 No.9
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Figure 2 (a) Schematic diagram of OFETs with and without VC-PU protection. (b) Diagram of the stabilization mechanism. (c) Schematic of organic
complementary inverters. The dotted red line marks the n-channel OFET (N-OFET) part covered by VC-PU. (d) Static voltage transfer curves of inverters
with and without VC-PU at Vgq =60 V. Reprinted with permission from Ref. [39]. Copyright 2024, Springer Nature.

lastingly prevents molecular structure from oxidation damage
but also passivates the latent electron traps to stabilize electron
transport. This antioxidant strategy demonstrated excellent
uniformity and batch-to-batch reproducibility in large-area
OFET arrays. Complementary inverters fabricated using this
approach likewise exhibited higher gain and superior environ-
mental stability. This study presents a way to overcome the long-
standing stability problem of n-type OSCs and devices.

SUMMARY AND OUTLOOKS

With the rapid advancement of organic electronic devices,
researchers have recognized that trace oxygen molecules engage
in intricate physicochemical interactions with organic semi-
conductor materials, having profound impact on charge trans-
port properties and long-term operational stability of OSCs and
their electronics. The deep understanding and modulation
strategies of these interactions between trace oxygen and organic
molecular systems will provide new insights for charge transport
and powerful practical methodologies for molecular doping
technology. This perspective summarizes research on the
mechanisms of oxygen doping in OSCs and recently related
modulation strategies. The role of oxygen in OSCs can be
multiple involving carrier trapping, photo-oxidation and
acceptor doping, in light of the material systems, environment
and interactions. The ingenious utilization of trace oxygen
through delicate modulation strategies can significantly enhance
the performance and stability of OSCs and devices.

September 2025 | Vol.68 No.9
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In the future, the oxygen doping technology would be more
generalized to apply into diverse optoelectronic materials,
including conducting polymers, luminescent molecules, as well
as emerging material systems such as perovskites and two-
dimensional (2D) materials. Such technology would enable their
optimized application in photovoltaics, OLEDs, and other
optoelectronic devices, provided that targeted modulation stra-
tegies are carefully designed based on material-specific electronic
structures and doping mechanisms. The stability problems of
doping interfaces would be emergent challenges due to the dif-
fusion tendency of small oxygen molecules.
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