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Organic semiconductors (OSCs) are showing great promise in 
large-area wearable devices, optoelectronic displays, logic cir
cuits, and next-generation optoelectronic applications [1–9]. 
Examples include organic field-effect transistors (OFETs), 
organic light-emitting diodes (OLEDs), organic photovoltaic 
cells (OPVs), and sensing devices. However, OSCs encounter 
significant challenges in widespread commercialization [10–13]. 
Compared with their inorganic counterparts connected by 
strong covalent bonds, the structural characteristics of OSCs 
films are predominantly governed by van der Waals interactions 
[14–19], rendering their optoelectronic properties typically 
dependent on the synergistic effects between intrinsic properties 
and extrinsic effects, such as impurities and defects [20–26]. 

Ubiquitous oxygen represents one of the most prevalent 
extrinsic impurities readily encountered in OSCs. Owing to its 
high electronegativity, oxygen demonstrates a strong propensity 
toward redox interactions within OSCs. Oxygen doping has 
gained great interest in organic electronic community, involving 
its effects on charge transporting and applications in devices 
[27–35]. For a long time, oxygen has been considered a charge- 
carrier trap that heavily deteriorates performance and stability. 
Consequently, researchers have predominantly focused on 
developing strategies to suppress oxygen incorporation and 
mitigate its detrimental effects in OSC systems [20,35–37]. In 
recent years, quite different viewpoints have emerged that oxy
gen doping shows a completely opposite effect at trace level, i.e., 
trace oxygen improves the performance and stability of organic 
electronic devices by pre-emptying the electrons from the 
donor-like traps [38]. And some strategies have been developed 
to modulate oxygen doping at trace level, achieving optimized 
device mobility and stability [38–43]. 

Although significant progress has been made in this research 
field, the oxygen doping mechanism and its effect on optoelec
tronic devices are not yet fully understood. An important 
research direction is to address the fundamental challenges 
associated with understanding oxygen doping mechanisms in 
OSCs, coupled with the development of targeted modulation 
strategies. 

Herein, this perspective delineates the mechanistic under

pinnings of trace oxygen doping phenomena in OSCs, discuss
ing the state-of-the-art modulation strategies to enhance device 
performance. Through systematic analysis of structure-property 
relationships, we discuss oxygen relevant modifications in 
charge transport dynamics and operational reliability of organic 
electronic devices. Building on this foundation, the perspective 
proposes a development framework for oxygen element doping 
engineering while outlining emergent challenges in interfacial 
stabilization protocols. 

MECHANISTIC INSIGHTS OF TRACE OXYGEN 
DOPING IN OCSs 
OSCs are essential components in OFET devices, governing 
their performance and stability [44–50]. The presence of 
extrinsic impurities substantially accelerates the performance 
deterioration of OSCs during device operation and ambient 
exposure. Among the many involuntary introduced extrinsic 
factors, ubiquitous environmental oxygen molecules readily 
permeate both the OSCs bulk and their interface with the 
dielectric layer, owing to their high electron affinities and small 
molecular volume [51–56]. They are regarded as the most 
common causes of charge-carrier traps in many OSCs, critically 
deteriorating device performance [57–64]. Zhang’s group [27] 
observed that prolonged air exposure of the device led to 
adsorption and gradual penetration of oxygen molecules into the 
organic semiconductor channel. These traps minority electrons 
injected under positive gate bias, thereby leading to non-ideal 
device characteristics. A novel method for analyzing trap states 
in semiconducting molecular crystals is introduced by Podzor
ov’s group [35]. Their studies revealed that exposure to oxygen 
and subsequent oxygen diffusion result in the creation of oxy
gen-induced trap states, which significantly decreases both dark 
conductivity and photoconductivity of rubrene by over tenfold. 
Photo-oxidative degradation occurs when OSCs undergo che
mical structural changes exposured to light (mainly UV-visible) 
and oxygen that breaks conjugated π-systems. It disrupts charge 
transport pathways and decreases conductivity [65–67]. An 
antioxidant strategy based on nickel chelate (Ni(dtc) 2) with the 
addition of 2–10 wt% of Ni(dtc) 2 was proposed by Brabec’s 
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group [67], which can significantly retard the photobleaching 
rate of the films by both sacrificial and non-sacrificial mechan
isms. This strategy effectively inhibited the photo-oxidative 
degradation of conjugated polymers and their fullerene blend 
systems. Durrant et al. [52] compared the photochemical sta
bility of two donor polymers in neat and blend films. They 
employed transient absorption measurements and a molecular 
singlet oxygen indicator to demonstrate that the polymer with 
the higher yield of long-lived triplets exhibits higher yields of 
photochemical single oxygen in both neat films and blend films. 

Previous understanding of oxygen effects experimentally relies 
on the conventional deoxygenation methods [28,67–69], e.g., 
annealing and sublimation. Very recently, it is reported that 
trace-level oxygen is still presented in the majority of the pur
ified OSCs [38], implying that trace oxygen residues are una
voidable in these processes. Some reports demonstrated that this 
trace oxygen molecules have positive impacts on OSCs by 
optimizing conductivity, passivating defects, and morphological 
control via crystallization kinetics [27,38–43]. Zhang et al. [27] 
found that moderate exposure to ambient air (containing H 2O 
and O 2 molecules) can effectively induce doping in organic 
materials at the electrode interface, passivating defect states 
generated during electrode deposition, thereby enhancing charge 
carrier injection efficiency and improving the ideality of device 

performance. Havinga’s group [42] revealed that pristine tetra
cyanoquinodimethane (TCNQ) films demonstrated minimal 
switching characteristics. However, following ambient air 
exposure over time, these films exhibited a remarkable 
enhancement in switching performance, achieving a switching 
ratio of three orders of magnitude. 

Huang et al. [38] discovered that trace oxygen (~1015 cm−3) is 
inherently presented in a wide range of OSCs even after rigorous 
purification (Fig. 1) by quasi-in-situ ultraviolet photoelectron 
spectroscopy (UPS), the time of flight secondary ion mass 
spectrometry (TOF-SIMS) and electron paramagnetic resonance 
spectroscopy (EPR). This residual oxygen interacts with OSCs, 
forming superoxide anion radicals (O 2−) and organic radical 
cations (ORCs). The authors developed an effective de-doping 
method (i.e., deoxygenation) based on soft plasma and a re- 
doping method by illumination in oxygen. The p-type properties 
of OSCs gradually disappeared during the de-doping process 
and reversed under the re-doping process. It indicates that 
oxygen is the origin of the p-type transport behaviour of OSCs. 
This insight is completely opposite to the previously reported 
carrier trapping and can clarify some previously unexplained 
organic electronics phenomena. This work expands the explor
able property space of organic semiconductor materials, opening 
new avenues for investigating their intrinsic optoelectronic 

Figure 1 (a) Intensity of the TOF-SIMS data for the C and O elements of the fresh DNTT single crystal. Inset is the 3D reconstruction of the depth profile. 
(b) Valence photoemission spectrum and secondary electron spectrum extracted from the UPS measurement of the fresh DNTT film. Ionization energy (IE), 
vacuum level (E vac), and injection barrier (E inject) are exacted from the UPS result, and the energy gap (E g) is obtained from the UV-vis absorption spectrum. 
The energy position of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital(LUMO), and the Fermi level (E F) are thus 
determined. (c) EPR signals of ORCs and DMPO-•OOH (the adduct of DMPO with O 2−) in fresh DNTT film, suggesting the innate oxygen doping in OSCs. 
Different OSCs of (d) p-type and (e) n-type. Reprinted with permission from Ref. [38]. Copyright 2024, Springer Nature.  
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properties and controllable doping. 

MODULATING STRATEGIES FOR ELECTRONIC 
PROPERTIES OF OSC AND DEVICES 
Building upon the mechanistic insights into oxygen doping and 
its pivotal role in OSCs, innovative strategies for trace oxygen 
modulation were presented, providing guidelines for leveraging 
oxygen as a tuneable functional component in OSCs and device 
design. It is conducive to addressing challenges related to long- 
term stability and reproducibility. Neher’s group [36] blended 
poly(3-hexylthiophene) (P3HT) with polystyrene (PS) at a ratio 
of 0.05/0.95, spin-coated the blends on substrate in a nitrogen 
glovebox (O 2/H 2O ≤ 1 ppm), and subsequently annealed the 
blends under vacuum. This process significantly enhanced the 
blends performance. They attributed the improved stability to 
the “encapsulation” effect of the insulating PS matrix on P3HT, 
which effectively suppresses oxygen penetration into the semi
conducting polymer. Jurchescu et al. [37] identified the most 
probable and severe degradation pathways in organic transistors 
by real-time monitoring of trap density of states (DOS), guided 
by density functional theory (DFT) calculations during device 
operation, and they devised the most efficient packaging strategy 
for each type of device, resulting in high-performance, envir
onmentally and operationally stable small molecule and polymer 
transistors. However, the conventional annealing and encapsu
lation strategies do not effectively address the aforementioned 
stability issues induced by the “inherent” trace oxygen. 

The soft plasma treatment and photo-oxygen synergistic 
technique were used to precisely control the oxygen doping in 
OSCs and devices. A nondestructive soft plasma treatment (H 2, 
N 2 or Ar) was developed by Huang et al. [38] to remove trace- 
level oxygen (i.e., de-doping) in OSCs. To achieve reversible 
oxygen doping/de-doping processes, the researchers also devel
oped a light-oxygen synergistic technique for oxygen re-doping: 
exposing the de-doped organic devices to light of specific 
wavelengths under an O 2 atmosphere, which enables the con
trollable oxygen adsorption and charge transfer. Based on this 
strategy, OFETs no matter with negative threshold voltage (V T) 
or positive V T could be modulated to turn on at approximately 
0 V, without the observed decrease in mobility. And the con
ductivity of C 10-DNTT could be tuned in a large range. 
Attractively, the polar type of the transport behaviors can be 
modulated by this de-doping and re-doping strategy. For 
example, OFETs of TIPS-pentacene show p-type behavior both 
in air and vacuum, but they can be modulated to be n-type via 
our de-doping process, and certainly can be recover to p-type 
again by our re-doping process. In addition, it is well known that 
the N2200 is a high-performance n-type OSC, which can be 
endowed with p-type behavior via the re-doping strategy, and 
certainly can be converted to n-type again by de-doping process. 

It is widely recognized that O 2 introduces defects into OSCs, 
degrading OFET performance [70–72], suggesting that high- 
purity inert gases (Ar, N 2) should be used as carrier gases during 
OSC crystal growth. However, Sun et al. [40] developed an 
oxygen-induced lattice strain (OILS) strategy by originally 
introducing oxygen into OSC crystals to generate lattice strain in 
the growth process. Lattice compression in OSC crystals induces 
closer π-π stacking distances, which increases frontier orbital 
overlap and strengthens intermolecular charge transfer integrals. 
These synergistic effects notably improve the electrical perfor
mance and stability of the OSCs crystal. The contact resistance is 

lowered to 25.5 kΩ cm, while the maximum mobility soars up to 
15.3 cm2 V−1 s−1 in the OILS DNTT crystal. To fully elucidate 
the impact of lattice strain on the morphological stability of OSC 
crystals, the authors transferred both OILS DNTT crystals and 
strain-free DNTT crystals onto identical SiO 2/Si substrates for 
in-situ investigation of the morphological stability of DNTT 
crystals under high temperatures. After annealing at 160 °C for 
5 min, the strain-free DNTT crystals exhibited severe cracking, 
degradation, and destruction, whereas the OILS DNTT crystals 
maintained excellent crystalline morphology. This demonstrates 
a significant enhancement in the morphological stability of OILS 
DNTT crystals. This work builds an important bridge between 
microstructure and material properties, providing new insights 
for developing high-mobility and high-stability OFETs. 

The high contact resistance (R c) at metal/semiconductor 
nanointerfaces significantly limits device integration and min
iaturization by reducing charge injection/extraction efficiency 
and exacerbating power dissipation. Conventional approaches 
struggle to simultaneously achieve strong orbital coupling and 
low Schottky barrier height. Fu et al. [41] developed an oxygen- 
induced nanointerface engineering strategy to lower the elec
trode-OSC energy barrier through controlled oxygen and 
achieved an ultralow channel width-normalized R c (R c·W) of 
89.8 kΩ cm and a high mobility of 11.32 cm2 V−1 s−1. This 
approach effectively reduces the contact resistance and the 
metal-semiconductor interface barrier height, leading to a 
remarkable enhancement in charge carrier mobility. 

For n-type OSCs, oxygen doping, whether in trace amounts or 
in large quantities, has a negative impact. n-type OSCs 
encounter key challenges such as poor reliability, low perfor
mance, and a limited material pool, with electron transport 
instability being the fundamental cause [23,73–75]. These chal
lenges are largely due to chemical degradation and electron 
trapping induced by external oxidizing agents [23,51–56]. 
Although n-type OSCs can be designed to have high electron 
affinity to improve their anti-oxidative properties, organic 
radical anions generated during device operation are thermo
dynamically unstable and easily react with oxygen and water, 
especially reactive oxygen species (ROS) [76–78], leading to the 
low stability of n-type OSCs and their electronic devices. Yuan 
et al. [39] have developed a general strategy using vitamin C 
(VC) to scavenge ROS that significantly improve the stability of 
n-type OSCs and their device performance, for example, OFET 
(Fig. 2). The researchers discovered that spin-coating VC onto 
the surface of PTCDI-C 8 (a typical n-type organic semi
conductor molecule, Fig. 1e) thin films can significantly reduce 
their photo-oxidation rate and markedly enhance the material’s 
oxidative stability. Subsequently, the research team employed 
OFETs as model devices to explore the application of VC on 
organic electronics. To suppress VC crystallization, the 
researchers blended VC with polyurethane (PU) and spin-coated 
the mixture onto OFETs based on nine different n-type mole
cular semiconductor. Compared to pristine devices, all VC-PU- 
treated OFETs exhibited substantial performance enhancements, 
with electron mobility improvements reaching up to 38-fold. 
The operational stability and photo-oxidation resistance of n- 
type OFETs were significantly enhanced, with the superior 
device performance maintained in air for over 255 days. 

The author found that VC scavenges reactive oxygen species 
and inhibits their generation by sacrificial oxidation and non- 
sacrificial triplet quenching in a cascade process, which not only 
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lastingly prevents molecular structure from oxidation damage 
but also passivates the latent electron traps to stabilize electron 
transport. This antioxidant strategy demonstrated excellent 
uniformity and batch-to-batch reproducibility in large-area 
OFET arrays. Complementary inverters fabricated using this 
approach likewise exhibited higher gain and superior environ
mental stability. This study presents a way to overcome the long- 
standing stability problem of n-type OSCs and devices. 

SUMMARY AND OUTLOOKS 
With the rapid advancement of organic electronic devices, 
researchers have recognized that trace oxygen molecules engage 
in intricate physicochemical interactions with organic semi
conductor materials, having profound impact on charge trans
port properties and long-term operational stability of OSCs and 
their electronics. The deep understanding and modulation 
strategies of these interactions between trace oxygen and organic 
molecular systems will provide new insights for charge transport 
and powerful practical methodologies for molecular doping 
technology. This perspective summarizes research on the 
mechanisms of oxygen doping in OSCs and recently related 
modulation strategies. The role of oxygen in OSCs can be 
multiple involving carrier trapping, photo-oxidation and 
acceptor doping, in light of the material systems, environment 
and interactions. The ingenious utilization of trace oxygen 
through delicate modulation strategies can significantly enhance 
the performance and stability of OSCs and devices. 

In the future, the oxygen doping technology would be more 
generalized to apply into diverse optoelectronic materials, 
including conducting polymers, luminescent molecules, as well 
as emerging material systems such as perovskites and two- 
dimensional (2D) materials. Such technology would enable their 
optimized application in photovoltaics, OLEDs, and other 
optoelectronic devices, provided that targeted modulation stra
tegies are carefully designed based on material-specific electronic 
structures and doping mechanisms. The stability problems of 
doping interfaces would be emergent challenges due to the dif
fusion tendency of small oxygen molecules. 
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有机半导体中的痕量氧掺杂: 机理解析与精准调控 

杨菲玲1,2, 王中武1, 陈小松1, 王官洁3, Sooncheol Kwon3, 黄忆男1*, 
李立强1,2*, 胡文平1 

摘要 有机半导体是一类新型半导体材料 ,  在可穿戴电子、柔性显 
示、生物传感等领域具有广阔的应用前景. 有机半导体的聚集态结构 
由弱范德华力支配, 其性能极易受到外源杂质等非本征因素的影响. 近 
年来, 有机半导体中杂质来源及其影响机制的研究取得了显著进展. 氧 
是有机半导体中最常见的外来杂质, 长期被视为电荷陷阱, 导致迁移率 
下降并影响器件稳定性. 最近的研究报道了氧掺杂在痕量水平上产生 
截然相反的作用, 即痕量氧掺杂能够显著提高有机电子器件的性能和 
稳定性. 在未来, 深入理解痕量氧与有机分子体系相互作用机制并发展 
分子水平的氧掺杂调控策略将为有机固体电荷输运研究提供新见解和 
强有力的应用技术. 本文阐明了有机半导体中痕量氧掺杂现象的基本 
原理, 并探讨了最先进的氧掺杂调控技术及其对器件性能和稳定性的 
影响. 最后, 提出了氧元素掺杂工程的发展框架, 同时概述了其在新兴 
材料与器件领域中应用的新挑战. 
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