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Dams and reservoirs play an essential role in regulating and
managing water resources. Since the middle of the 20th century,
the growing demand for water and hydropower has led to an
unprecedented boom in reservoir construction worldwide [1,2].
Meanwhile, reservoir construction has also resulted in a variety
of ecological and socioeconomic impacts [3-5]. Reservoirs trans-
form natural flow regimes into conditions favored by human
demand. The associated flow regulations, especially in reservoirs
constructed in recent decades (e.g., after 2000) with greater sea-
sonal variability [6,7], represent a strong human-induced alter-
ation of the hydrologic cycle. As reservoir construction continues
to boom in many parts of the world, an up-to-date and open-
access inventory of reservoirs worldwide remains critically
desired.

There have been several open-access global datasets that inven-
tory reservoir locations and properties. Some of the most compre-
hensive ones are the Global Reservoir and Dam database (GRanD)
[8], the Georeferenced global Dams And Reservoirs (GeoDAR) [9],
and the Global Dam Tracker (GDAT) [10] (albeit GDAT provides
no reservoir polygons). These datasets were largely compiled using
dam registers from regional water agencies, intergovernmental
organizations (e.g., the United Nations AQUASTAT), and/or non-
governmental international agencies (e.g., the International Com-
mission on Large Dams (ICOLD)). Completeness of the existing
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datasets, therefore, depends on the integrity and up-to-dateness
of the source registers. While the source registers may document
historical reservoirs well, it is more challenging to document
newer reservoirs as thoroughly because there is usually a latency
between dam construction and the update of registration, in addi-
tion to data opaqueness preventing timely access to the informa-
tion about new reservoirs. These limitations imply that the
abundance of recently constructed reservoirs is likely under-
documented by the existing reservoir datasets and that there is a
pressing need for systematically mapping newer reservoirs
through a method that is not contingent on the quality of the avail-
able registers. That is, for reservoirs constructed after 2000, there is
a potential for higher missing proportions within the existing dam
and reservoir datasets. In addition, existing studies are still very
restricted in understanding the contribution of new reservoirs to
terrestrial water storage on a global scale. There is an evident
gap in accurately quantifying the impact of newly constructed
reservoirs on the global hydrological cycle, particularly in terms
of their role in modulating terrestrial water storage dynamics.

To fill this gap, we here present a global reservoir inventory of
the post-2000 impoundment (hereafter “GREI-p2k”) using satellite
remote sensing products. GREI-p2k consists of the maximum water
extent of each detected post-2000 reservoir larger than 0.50 km?
(considering the robustness of reservoir identification due to the
remote sensing data resolution), together with the reservoir stor-
age capacity. The primary source data for reservoir detection and
mapping are the Global Surface Water (GSW) database [11] and
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the Global Land Analysis and Discovery (GLAD) database [12].
Here, the identification of new reservoirs depends on the judg-
ments of inundation frequency contrasts between the two epochs
of before and after damming (1984-1999 and 2000-2020) based
on the GSW Occurrence Change Intensity (OCI) data, and this pro-
vides an essential rationale for establishing the year of 2000 as the
baseline of new reservoirs. The storage capacity of each post-2000
reservoir was estimated using NASADEM [13], which depicts
under-water topography in early 2000 (see Supplementary materi-
als). In addition, we identify hotspots of newly impounding reser-
voirs and discuss the potential driving forces from the perspective
of water policies. Notably, the GREI-p2k data will be publicly avail-
able (https://doi.org/10.57760/sciencedb.15520). GREI-p2k may
provide a comprehensive view of the accumulative distribution
of terrestrial water storage through the construction of reservoirs
after 2000. The endeavor represents a significant advancement in
the fields of reservoir mapping and water resource management.

We map 6,760 post-2000 reservoirs (Fig. S1 online), with a total
water area of 53,183.90 km? and a total reservoir storage capacity
of 1,287.69 km?>, of which 139 reservoirs have a storage capacity
greater than 1 km3, accounting for 69.45% of the total capacity
(see Fig. S2 online). On a global scale, Asia has the world’s largest
number of new reservoirs (4,092) and the highest storage capacity
increase (831.15 km?, 64.55%), followed by Africa. Global patterns
by country show that new reservoirs are mainly located in China
(1,567), India (960), and Brazil (612) (Fig. 1b). In contrast, the num-
ber of new reservoirs in Africa is relatively small, with more than
half of the countries having a count lower than 10. China, Brazil,
and Ethiopia are the top three countries with the largest reservoir
storage capacity, accounting for 30.57%, 11.28%, and 7.18% of the
global storage capacity, respectively (Fig. 1c, d).

Information on reservoir storage capacity at the basin scale is
essential for managing local water resources and assessing changes
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in the hydrological cycle (Fig. 1e). The Yangtze River basin has the
highest new reservoir storage capacity (171.44 km?) and the most
intensive dam construction (e.g., Three Gorges Dam), followed by
the Nile River basin (110.05 km?). Most (10) of the top 15 basins
in terms of total reservoir storage capacity are clustered in South
and Southeast Asia (e.g., the Indus River and Yangtze River basins)
due to high population densities in these regions and, thus, greater
water and energy demands. In contrast, basins in North America
rank behind those of other continents overall in terms of either
new reservoir number or storage capacity.

Major hotspots of new reservoir construction are observed in
the Nile River basin (including Sudan, Egypt, and Ethiopia)
(Fig. 1al), northern India (Fig. 1a2), southern China (e.g., the
Yangtze River basin and the Pearl River basin) (Fig. 1a3), and Brazil
(Fig. 1a4). Brazil dominated the abundance of post-2000 reservoirs
in South America, accounting for 55.30% of the reservoir count and
80.12% of the storage capacity in the continent. The dam construc-
tion boom could be associated with the increasing agricultural and
heavy industrial interests in Brazil [ 14]. While the main motivation
for building more dams in the Nile River basin of Africa is to meet
the hydropower demand with rapidly increasing electrification
rates in recent decades [15]. For example, the Grand Ethiopian
Renaissance Dam (GERD) in the Nile River basin, with its electricity
production, alleviates Ethiopia’s severe energy shortages and fully
supports rural and urban development throughout the country.
This trend will likely continue as the population grows and econo-
mies develop in Africa. A similar situation occurred in India (espe-
cially the northern part), which is facing a severe shortage of rural
electricity, as well as a severe shortage of water for agriculture and
household use. Hence, new reservoirs have been built to alleviate
the water and electricity shortage. In addition, most of the
newly-constructed large reservoirs are concentrated in the upper
Yangtze River and the Pearl River, which are featured by large ele-
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vation drops and greater stream powers [6]. This could be attribu-
ted to the water development policies in China, as exemplified by
the construction of the Three Gorges Reservoir.

To highlight the improvement in inventorying new reservoirs,
we compare GREI-p2k with GeoDAR v1.1, which harmonized
GRanD v1.3 and large dams that were geocoded using the ICOLD
register. GeoDAR contains 21,515 reservoir polygons, among which
1,193 (of which 920 are larger than 0.5 km?) were documented to
be constructed around the year 2000 or after. GREI-p2k adds
another 5,726 post-2000 reservoirs, improving the abundance of
post-2000 reservoirs in GeoDAR by nearly four times (Fig. 2a).
These additional reservoirs have a total water area of
22,378.93 km? and a storage capacity of 455.28 km?, complement-
ing the post-2000 reservoirs in GeoDAR by 82.18% and 48.29%,
respectively. Nearly 50% of the added reservoirs are clustered in
China (23.74%), India (14.65%), and Brazil (8.21%) (Fig. 2b), echoing
the global pattern previously described and the value of our new
data in documenting recently emerged reservoirs in hotspot
regions. The histograms in Fig. 2c and d show a significant
improvement of GREI-p2k over GeoDAR in representing both sur-
face area and storage capacity of post-2000 reservoirs, especially
for medium (with storage capacities between 0.01-0.10 km?) and
small-sized reservoirs (with storage capacities less than
0.01 km?). GeoDAR also contains 227 additional post-2000 dams
without reservoir polygons, and 66 of them have been mapped
with reservoir extents in this new post-2000 dataset. Among the
1,030 or so post-2000 reservoirs inventoried in both datasets, the
total area in GREI-p2k is 30,804.99 km?, exceeding that in GeoDAR
by 21%. The larger water area in the former is attributable to the
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usage of maximum water extent observed from 1984 to 2020 as
the reservoir polygons. This in theory supplements GeoDAR with
a more complete reservoir mask.

To further demonstrate the completeness of GREI-p2k, we con-
duct a detailed comparison with the GRanD and GDAT global reser-
voir datasets. GREI-p2k surpasses the existing global reservoir
datasets in terms of the count, area, and storage capacity of reser-
voirs recorded around the year 2000 (Table S1 online). Specifically,
GREI-p2k records almost 13 times greater than GRanD and 15
times greater than GDAT. GREI-p2k also outperforms GRanD and
GDAT by 132 % and 154 % in terms of reservoir area, respectively.
A significant consistency in both area and storage capacity is
observed in the reservoirs overlapping with these datasets in
GREI-p2k, with correlation coefficients (R?) exceeding 0.85
(Fig. S3 online). This is especially notable in the near-unity storage
capacity ratios, validating the reliability and accuracy of GREI-p2k.

In the era of continued dam boom, the conservation of freshwa-
ter ecosystems and natural communities remains a challenge, and
research on the ecological and human-social impacts of new reser-
voirs has so far been limited by insufficient data representation.
The GREI-p2k will help to more comprehensively monitor changes
in the water budgets of reservoirs globally for more effective water
and energy management strategies, as well as to more systemati-
cally assess the impact of dams and reservoirs on the global carbon
cycle.
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Supplementary materials to this short communication can be
found online at https://doi.org/10.1016/j.scib.2024.04.043.

Data availability

The global reservoir inventory of the post-2000 impoundment
(GREI-p2k) is publicly available for download from Science Data
Bank at https://doi.org/10.57760/sciencedb.15520. The database is
supplied in both shapefile and comma-separated values (csv)
formats.
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