
SCIENCE CHINA
Technological Sciences

• RESEARCH PAPER • September 2025, Vol. 68, Iss. 9, 1920101:1–1920101:17
https://doi.org/10.1007/s11431-025-2974-2

Hylanemos: An integrated solution for materials simulations based
on Kohn-Sham DFT

Jianshu JIE1,2*, Ming XU1,2*, Chun WANG1,2, Shiqiang FAN1,2, Fan ZHANG1,2,
Haifeng ZHENG1,2, Yaokun YE2,3, Ruiqi ZHANG2,3, Jiahua LIU2,3, Kangming HU1,2,
Shucheng LI1,2, Qinghua LIU1,2, Yipu ZHANG1,2, Linping SUN1,2, Xiaohe SONG1,2,

Sibai LI1,2, Yunxing ZUO1,2 & Jiaxin ZHENG2,3*

1 Shenzhen Eacomp Technology Co., Ltd., Shenzhen 518055, China
2 Peking University Shenzhen Graduate School - Eacomp Technology Joint Battery Materials Simulation Laboratory, Shenzhen 518055, China

3 School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China

Received April 14, 2025; accepted June 5, 2025; published online August 22, 2025

Abstract The Kohn-Sham density functional theory (KS-DFT) has played an important role in materials simulation for a long
time. To better serve the industry, it is desirable to have an integrated solution that supports different calculation tasks by KS-
DFT with different corrections and modifications. In this work, we present Hylanemos, a plane wave pseudopotential (PW-PP)
KS-DFT package written entirely in the Julia programming language, which could offer such a solution. First, we analyze the
code design to get the flexibility needed to implement such a solution. Then, we show that its accuracy and speed are
comparable to widely-used packages. Next, we show its ability to perform common tasks such as single point (SP) calculations,
geometry optimization, and transition state calculations. Finally, the LDA+Gutzwiller (LDA+G) method is presented, a feature
not commonly found in DFT packages. In addition, we have also developed a set of ultrasoft (US) PP through parameter
adjustment and optimization. This set of PP, called Eacomp PP, has a low cutoff energy (<18 Ha) and exhibits excellent
performance in our benchmarks. Combining a performant package and optimized potentials will facilitate our in-depth efforts
in promoting industrialization.

Keywords ab initio software, Kohn-Sham density functional theory, high-performance computing, generalized self-consistent
method

Citation: Jie J S, Xu M, Wang C, et al. Hylanemos: An integrated solution for materials simulations based on Kohn-Sham DFT. Sci China Tech Sci, 2025,
68(9): 1920101, https://doi.org/10.1007/s11431-025-2974-2

1 Introduction

Ab initio calculations based on Kohn-Sham (KS) density
functional theory (DFT) [1,2] have been widely used both in
academia and in industry. In DFT, the total energy is a
functional of the electron density, and the KS method in
troduces a non-interacting reference system (KS system)
with the same electron density as the real system. There are
two main benefits of using a non-interacting system. First,
the wavefunction can be expressed as a single Slater de

terminant and solved using the rather mature self-consistent
field (SCF) method. Second, the energy functional can be
easily written out except for the exchange-correlation (XC)
term, so we only need to find an approximated functional for
the XC energy and the difference between the true system
and the KS system instead of an approximated functional for
the total energy. It has been proved by practice that even
basic KS-DFT with a simple XC functional can result in
good agreement with experiments for many simple systems,
and KS-DFT has been widely used in academia for a long
time.

There are different implementation techniques for the

© Science China Press 2025 tech.scichina.com link.springer.com

* Corresponding author (email: jiejianshu@eacomp.com; xuming@eacomp.com;
zhengjx@pkusz.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11431-025-2974-2&domain=pdf&date_stamp=2025-07-17
https://doi.org/10.1007/s11431-025-2974-2
https://doi.org/10.1007/s11431-025-2974-2
https://doi.org/10.1007/s11431-025-2974-2
http://tech.scichina.com
http://link.springer.com

KS-DFT. For real industrial usage on crystal materials, KS-
DFT based on plane waves (PW) with pseudopotentials (PP)
[3,4] or projector-augmented-wave (PAW) [5] potentials are
two common solutions. Corresponding software packages
such as CASTEP [6], Quantum ESPRESSO (QE) [7],
ABINIT [8], VASP [9], and PWmat [10,11] are widely used.
Packages, like QuantumATK [12] and ABACUS [13,14],
which originally supported KS-DFT based on atomic orbital
basis sets, also began to support PW-PP calculations re
cently. These packages usually perform not only the simple
total energy calculation with KS-DFT but also some tasks
based on the total energy calculation, such as geometry op
timization and molecular dynamics (MD).

Over the years, there have been many advances in KS-DFT
and related algorithms. Two different approaches are adopted
to bridge the gap that the basic KS-DFT with simple XC
functionals is insufficient to accurately calculate some
complex systems. In the first approach, new XC functionals,
such as meta-generalized gradient approximation (GGA)
functionals [15] and hybrid functionals [16,17], are devel
oped. In the other approach, many corrections are proposed,
such as the LDA+U [18–20] method and the LDA+G [21–
23] method. Also, some corrections or modifications have
been introduced to reduce the computational cost. For ex
ample, dipole corrections [24] are introduced so that a
smaller vacuum layer can be used, and implicit solvent
models [25] are introduced to make adding many solvent
molecules into the system unnecessary. Moreover, some
modifications are introduced to calculate systems under
different physical conditions, such as those with magnetic
structure constraints [26]. Some algorithms closely related to
DFT are proposed, which usually adopt KS-DFT-like solu
tions. For example, the density functional perturbation the
ory (DFPT) [27] and linear-response time-dependent DFT
(TDDFT) [28] are also available in many DFT packages.
Also, algorithms that are beyond DFT but use DFT as a part
are proposed. For example, currently, GW calculations
[29,30] usually take the output orbital information of a KS-
DFT calculation as input and are available in DFT packages
like VASP and QE. New algorithms based on total energy
calculations are further proposed, such as the dimer method
[31–33] and the nudged elastic band (NEB) method [34].

We believe an integrated solution for materials simulations
based on KS-DFT, with many different algorithms out of the
box, is of great value to the industry. However, it is difficult
to implement such a solution without a flexible design. Many
packages created in earlier years have been rewritten either
partly or completely to accommodate later advances. In a
worse scenario, some features, such as the dimer method and
implicit solvent models, are usually absent in many widely
used packages.

In this paper, we will first discuss the flexibility required
for an integrated solution and how we can achieve such

flexibility when designing the code. Next, we will present a
new codebase entitled Hylanemos, a Julia implementation of
the flexible and integrated framework. We made an arguably
comprehensive comparison in both accuracy and efficiency
between Hylanemos and some widely used packages. We
also show that Hylanemos is capable of running critical tasks
in industrial applications and has some features rarely seen in
existing packages.

The Julia programming language is chosen for the fol
lowing reasons. First, the performance of Julia is comparable
to that of Fortran, C, or C++, which is crucial in materials
simulations due to the high computational cost. Second, with
the support of an interactive mode, it is arguably easier to
develop and debug Julia code. Third, with the evolution of
programming techniques, new concepts such as modules and
polymorphism are introduced into old languages like For
tran. These concepts must be introduced in a way that does
not break the existing code. As a result, sometimes it is not
easy to use them. For example, polymorphism in Fortran is
very tricky to use. Being a relatively new language, Julia
does not suffer from these historical burdens, which makes it
easier to use. Last, though the ecosystem of Julia is not as
mature as that of Fortran or C, the ability to directly call C
and Fortran libraries in Julia code makes up for this short
coming. In summary, Julia’s combined advantages in per
formance and easy-to-use make it an ideal choice for
implementing our project.

2 Flexibility in an integrated solution

2.1 An integrated solution

In materials simulations, a common computation task in
volves conducting one or more single-point (SP) calcula
tions. A SP calculation is carried out on a specific structure
under defined environmental conditions to obtain properties
of interest. The PW-PP KS-DFT method is a notable ap
proach for conducting SP calculations, and it can be used to
determine the total energy and electronic structure.

Regarding industrial usage, an all-in-one solution is pre
ferred over a complicated set of tools. An integrated solution
should offer flexibility in three key areas: the ability to carry
out various tasks based on SP calculations, the option to
perform SP calculations using different methods, and the
capability to apply different adjustments and modifications
in a specific manner to conduct SP calculations.

In practice, the flexibility of the second layer is of less
importance. It is acceptable for only one or a few SP cal
culation methods to be supported. Many KS-DFT packages
can be regarded as integrated solutions based on KS-DFT.
However, the flexibility in the other two layers is often in
sufficient in these packages. For instance, in the task layer,
the dimer method is absent in many packages, and in the

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:2

correction and modification layer, the implicit solvation
model is typically implemented by third-party software, such
as VASPsol [35] for VASP and Environ [36] for QE.

In the following section, we will first inspect the three
layers and determine the requirements for achieving suffi
cient flexibility in each layer. Next, we will analyze the PW-
PP KS-DFT method within the correction and modification
layer. Lastly, we will explore the important aspects of general
module design that are crucial for ensuring flexibility across
all three layers.

Before discussing the details of each layer, we would like
to emphasize the importance of the overall three-layer ar
chitecture. These three layers do exist in most KS-DFT
packages, but they are usually neither clearly stated nor se
parated. An explicit and well-defined three-layer architecture
will offer distinct advantages. It enables us to fully use the
dependencies between these layers to facilitate the im
plementation of new algorithms, which will be shown in the
following sections.

2.2 Flexibility for different tasks

Task workflow can be categorized into three types based
on their relationship to SP calculations, as illustrated in
Figure 1. Type I tasks entail a single SP calculation, with the
output used directly or after postprocessing. Type II tasks
involve the construction of multiple structures, each under
going SP calculations. This approach is commonly used for
tasks related to the finite difference method, such as me

chanical properties or phonon spectra calculation.
Type III tasks are the most intricate, as they involve

structural evolution using various methods, which differ
greatly among different tasks. For instance, in geometry
optimization, a single structure is employed. Conversely, the
dimer method utilizes two initial structures that evolve to
gether, while the NEB method involves several initial
structures that evolve independently.

For Type I tasks, only one single-point calculation is
needed, so they do not pose a challenge to code design. Type
II tasks can be accomplished using a simple loop, as outlined
below.

(1) Build all structures and designate the first structure as
the current one.

(2) Perform a single-point calculation on the current
structure.

(3) If all structures have been calculated, stop. Otherwise,
set the next structure as the current one and return to step (2).

For straightforward Type III tasks, such as MD or geo
metry optimization using simple algorithms, the same loop
can be employed with slight adjustments.

(1) Create the initial structure and designate it as the cur
rent one.

(2) Perform a single-point calculation on the current
structure.

(3) If certain stopping criteria have been met, stop. If not,
modify the structure using an algorithm, designate the new
structure as the current one, and return to step (2).

The approach described above is commonly used in many

Figure 1 (Color online) The uppermost framework. The blue rounded rectangles denote quantities in the calculation process, the green rounded rectangles
denote the results we want, i.e., the tasks, and the rectangles denote actual treatments in the calculation.

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:3

existing packages, such as VASP. There may be some con
siderations for adopting this approach. In this approach, the
code for implementing the structure evolution algorithm
does not necessarily need to depend on the SP calculation
subroutine. Besides, all type II and type III tasks can be
implemented within a single function, at least in theory.

However, such considerations are questionable. Firstly, the
structure evolution algorithms belong to the task layer, while
the subroutines conducting SP calculations belong to the SP
layer. This fact indicates a well-behaved dependency be
tween them, which can be used to implement complex al
gorithms more clearly. Secondly, there are many different
algorithms for structure evolution, especially for geometry
optimization and transition state search. Implementing all
these algorithms in one function is not advisable since im
plementing complex algorithms in this manner can be challenging.

Let’s take geometry optimization as an example, one of the
most important tasks for DFT packages. In VASP, a con
jugate gradient algorithm with line search is implemented,
which combines cubic interpolation, the Brent algorithm,
and interval enlargement. We will first examine how to im
plement such an algorithm in Hylanemos, which is presented
below in a simplified version as shown in Function 1. We
omit simple functions such as data translation between SP

data and optimization data structure and convergence checks
for brevity.

The algorithm is complex but clear. We will first find the
direction using the conjugate gradient algorithm at each
optimization step. Simultaneously, we obtain a step size.
However, we will only use it as an initial guess to get a trial
point. We gather sufficient data for a cubic interpolation from
the initial and trial points, enabling us to identify the third
point within the current optimization step.

If the interpolated point meets the required criteria, we
shall stop here and adopt it as the initial point in the next
optimization step. Conversely, we will first construct an in
itial interval from two of the three obtained points. The de
tails of the choice are not included here for brevity. An
important subsequent step involves determining whether the
interval confidently contains a minimum, which is decided
by whether it contains a root for the derivative. This can be
done by checking whether the derivatives at the two end
points of the interval have the opposite signs.

If there is no guarantee that a root lies within the interval,
we will first gradually enlarge the interval. This process
continues until we can confirm the existence of a root within
the interval.

After we have found an interval with a root in it, we per
form a modified Brent algorithm to find the root, which is, in
fact, a sophisticated combination of bisection, linear inter
polation, and inverse quadratic interpolation. The modifica
tion is that we will perform a check for each Brent iteration.
If some other quick return conditions are satisfied, we will
exit the Brent iteration and use the last point as the initial
point for the next optimization step.

After understanding the algorithm, let’s examine its im
plementation in VASP. Remember that in VASP, all structure
evolution algorithms are written in a simple for-loop way, as
shown in Function 2.

As a result, we shall focus on the logic within the cg_vasp!
function, as shown in Function 3.

At first sight, there may seem to be no relation between this
code and the above code in Hylanemos, but a careful ex
amination will show their equivalence. As shown in the

Function 1 Hylanemos CG geometry optimization

function cg_hylanemos!(com::OptCommData, cg::CGData, br::BrentData,
sp::SPData)

solve!(sp)
status 1
for iter = 1 : com.iter_max

find_dir!(cg, com, ld, sp)
l, s = get_step(cg)
make_step!(br, l, s)
solve!(sp)
status 2
l, s = get_cubic(br)
make_step!(br, l, s)
solve!(sp)
if good_enough(br)

status 1
continue

end
while !is_bracket(br)

status 3
enlarge_interval!(br)
solve!(sp)

end
while true

status 4
brent!(br)
solve!(sp)
if good_enough(br) || quick_exit_brent(br)

status 1
break

end
end

end
end

Function 2 VASP structure evolution

function evo_vasp!(evo::EvoData, sp::VaspSPData)
for iter = 1 : evo.iter_max

solve!(sp)
if evo.alg == “cg”

cg_vasp!(evo.cg, sp)
elseif evo.alg == “dampMD”

dampmd_vasp!(evo.dampmd, sp)
numerous else ifs
else

some algorithm
end

end
end

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:4

comments in the Hylanemos code, we must be in one of the
four statuses after performing an SP calculation and related
checks.

(1) Status 1. We are about to enter a new optimization step.
(2) Status 2. We have finished the calculation of the trial

point.
(3) Status 3. We are about to perform interval enlarge

ments.
(4) Status 4. We are about to perform a step in Brent’s

iterations.
Possible hopping among the statuses is as follows.
(1) Status 1 will jump to status 2.
(2) Status 2 may jump to any of the other three statuses.

Note that the SP calculation for the cubic interpolated point
will be performed for status 2. If the point is good enough, it
will jump to status 1. If not, then if the initial interval defi
nitely contains a root, it will jump to status 4. Otherwise, it
will jump to status 3.

(3) Status 3 may jump to status 4 or stay at status 3, de
pending on whether an appropriate interval has been found.

(4) Status 4 may jump to status 1 or stay at status 4, de
pending on whether a root has been found or whether some
quick-returning conditions are satisfied.

We then prove that these statuses and hopping exist in the
VASP code, except that status 3 and status 4 are merged into
one status.

First, cg.ltrial means whether we have just finished the SP
calculation for the trial point. Thus, when it is true, we are in
status 2. In this case, the large if block will not be executed,
and we will call zbrent!. Note that the zbrent! function in
VASP contains cubic interpolation and the so-called Brent
algorithm, which again contains interval enlargement and the
real Brent algorithm. Here we are doing the cubic inter
polation. Then, we set cg.lbrent to be true, indicating we are

about to perform the so-called Brent algorithm, i.e., jumping
to status 3/4. However, if we find the cubic interpolated point
is good enough, we set cg.lbrent to be false because we
should jump to status 1 instead. In either case, we will not
stay in status 2, so we set cg.ltrial to be false.

Then let’s consider the situation when cg.ltrial is false. We
may be either in status 1 or 3/4. In either case, we will first
calculate beta for the conjugate gradient because the calcu
lation is computationally inexpensive and will not cause any
issues even if we do not use its result. After that, we need to
determine our current state. When cg.lbrent is true and the
quick-returning conditions are not satisfied, we are in status
3/4, and the following code within the large if block is not
executed. Again, we call the zbrent! function, this time for
the interval enlargement or the real Brent algorithm. If the
current point (note now it is generated by the Brent algo
rithm, instead of cubic interpolation) is good enough, we
shall jump from status 4 to status 1, so cg.lbrent should be set
to false. Since we are not jumping to status 2, cg.ltrial should
also be set to false.

When cg.ltrial is false, and the trial_con is determined to
be false, we are in status 1. We then generate the trial point
from the CG beta and move to status 2 by setting cg.ltrial to
be true. It should be noted that since the zbrent! function in
VASP contains multiple utilities, it must be reset here. This
reset ensures that the cubic interpolation utility will be exe
cuted next time.

From the above analysis, it can be seen that the two code
segments achieve the same functionality. However, the code
in VASP is much more obscure. The main reason is that
mathematical optimization algorithms are usually designed
assuming the gradient is available whenever needed. In our
case, the SP calculation must be performed to get the force
and stress. Thus, the simple for-loop architecture in VASP
requires that during the execution of optimization functions
like cg_vasp!, the gradient for only one point is available,
which prohibits the direct translation of most mathematical
optimization algorithms. As demonstrated above, we must
carefully identify all possible statuses and hopping within the
algorithm, and then we use numerous if-else blocks in the
code to handle different possibilities.

We can point out two details where the VASP im
plementation appears rather idiosyncratic. First, integrating
cubic interpolation, interval enlargement, and the real Brent
algorithm in one single zbrent! function seems odd. How
ever, separating them would introduce even more branches in
the code, further reducing its readability. Besides, after each
Brent algorithm, we shall skip subsequent steps if the last
point has been good enough or some quick-returning con
ditions are satisfied. In Hylanemos, these two examinations
are placed together. In VASP, the good_enough function is
called near the end, while the quick_exit_brent function is
called near the beginning. There are two reasons for this

Function 3 VASP CG geometry optimization

function cg_vasp!(cg::VaspCGData, sp::VaspSPData)
if !cg.ltrial

cg.beta = calc_beta(cg)
trial_con = cg.lbrent && quick_exit_brent(cg)
if !trial_con

make_trial_step!(cg)
reset_zbrent!(cg)
cg.ltrial = true
return

end
end
zbrent!(cg)
if cg.ltrial

cg.lbrent = true
end
if good_enough(cg)

cg.lbrent = false
end
cg.ltrial = false

end

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:5

separation. First, the good_enough function in VASP serves
not only to assess whether a point obtained from the Brent
algorithm is satisfactory but also to determine the adequacy
of the cubic interpolated point. Thus, it must be put and
called near the end. The other reason is that the quick_
exit_brent function requires the gradient at the new point.
Therefore, it can only be calculated after the SP calculation,
i.e., near the beginning.

From the above analysis, it can be seen that the simple for-
loop architecture becomes unwieldy when implementing
complex structure evolution algorithms. Therefore, certain
algorithms, such as the backtrack in geometry optimizations,
are absent in VASP. Some other algorithms are also im
plemented awkwardly, similar to the example we have ana
lyzed. For another example, readers can examine the
implementation of the dimer method [31–33] in either VASP
or VTST and compare it with the algorithm described in the
papers. The equivalence can be proved through a similar but
even harder analysis of statuses and hopping.

With the emergence of various algorithms in type III tasks,
it will become increasingly difficult to accommodate them in
one simple for loop. Utilizing the three-layer architecture in
Hylanemos, we can directly convert each algorithmic logic
into one corresponding function. This approach proves to be
significantly more convenient compared to other methods.

2.3 Flexibility for different SP methods

Even though this layer of flexibility is less important and
often ignored, it is beneficial for an integrated solution to
support it. There are two key points to consider in this regard.
First, some methods may rely on other methods. For ex
ample, a GW [29,30] calculation usually contains a DFT
calculation and another calculation based on the output of
DFT. Second, some common treatments are shared among
different methods, such as the Ewald summation for the ion-
ion interaction calculations, and various dispersion correc
tions proposed by Grimme [37–39].

A multi-layer design is necessary to accommodate various
methods and treatments. The bottom layer provides modules
for common treatments, the intermediate layer for different
methods, and the top layer is a wrapper module that provides
common interfaces for ion-related tasks, such as updating the
current structure, performing the actual calculation, and ob
taining output energy and force.

When working on ion-related tasks, it is crucial to utilize
the common interfaces of the top layer rather than directly
manipulating the underlying structures, which can vary
among different SP calculation methods. Following this
approach, new SP calculation methods can be easily in
corporated by adding a new module in the intermediate layer
and using it in the top layer, without modifying the code for
the ion-related tasks.

2.4 Flexibility in PW-PP KS-DFT

In DFT, the functional for the total energy depends solely on
the electron density. However, in KS-DFT, the used XC
functional may involve multiple parameters. For instance,
some meta-GGA functionals incorporate kinetic energy
density, while hybrid functionals involve the wavefunction.
These parameters are critical for determining the system’s
Hamiltonian. Additional corrections may introduce other
quantities for Hamiltonian determination, such as occupation
matrices in LDA+U. In this paper, all these quantities will be
referred to as variables in the Hamiltonian, or simply vari
ables, which should be treated equally.

However, it is important to note that these variables do not
need to be treated identically. First, their convergence be
haviors differ, so they can be grouped into different sets.
Each set can then be iterated in different layers of self-con
sistent calculations. Second, some variables may be defined
in a reduced space or a space with higher dimensions, cor
responding to different projections of the Hamiltonian.

The LDA+G method is a good example. Even the basic
algorithm of the LDA+G method is too complex to be dis
cussed here, and there are many slightly different im
plementations. In the Supporting Information, we briefly
introduce the basic ideas, and here we only describe two
different implementations. In Bunemann’s implementation
[40], the Gutzwiller-Kohn-Sham (GKS) loop is a loop of the
outer minimizations, with each iteration containing a full
normal KS SCF and an inner minimization with respect to

I ; ', the expansion coefficients for local configurations.
The outer minimizations are iterated with respect to , the
density matrix. In their work, Bunemann mentioned that this
implementation may not be the most efficient, but it is rather
easy to implement in the QE framework. This proves the
need for a more flexible framework. Bunemann proposed
another possible implementation, which is used in Hylane
mos. In this implementation, the GKS loop is an inner loop
within each iteration in the normal KS SCF. Dai has pro
posed another implementation [41], where the overall pro
cess is similar to Bunemann’s implementation, except that
the variable in the outer loop is the renormalization ma
trix R.

Consequently, multiple layers of self-consistent loops may
be involved in the SCF process instead of one single layer in
basic KS-DFT. Moreover, consecutive calculations on dif
ferent spaces may occur within a single iteration. The in
troduction of different corrections leads to varying looping
behaviors, similar to how different type III tasks require
different algorithms.

It should be noted that using a different function for each
correction is not ideal for two reasons. First, multiple cor
rections can be used simultaneously. Second, these correc
tions do not rely on statuses to determine their actions in each

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:6

iteration. Therefore, a single function capable of handling the
SCF process across different layers is preferred.

The key here is to use a unified structure, the electronic
status (ES), to collect the variables together, group them into
different sets, and store the information of the sets, like the
related Hamiltonians. With the recursion technique, the
complicated SCF process can be performed similarly to the
normal simple SCF, like the following code.

The function Calc! is to perform a single loop of self-
consistent calculations and get the new variables in the
specific layer. Likewise, Isconv is to check the convergence
of these variables, Mix! is to apply some mixing algorithms
to get the input values for these variables in the next iteration,
and UpdateHamiltonian! is to update the corresponding
Hamiltonian according to new values of these variables.
Different computational tasks may need different variables,
and the details of these corresponding functions can vary
greatly. Thus the ES must be used to wrap these values and
hide these differences.

This approach results in a unique SCF process within our
framework, which differs from the commonly employed
method. Figure 2 illustrates a schematic of our SCF process.

2.5 Flexibility from module design

Modular programming is a widely used software design
technique [42] that divides a program’s functionality into
independent, interchangeable modules. These modules con
tain data and functions for specific purposes and commu
nicate with each other through interfaces.

It is important to consider what modules are needed and
what should be contained in each module. Additionally, the
design of module interfaces, or how modules communicate
with each other, is crucial.

In this approach, it is natural to have a module for each
physical term and each type of numerical algorithm under
consideration. For example, separate modules can be created
for LDA+U and eigen solvers. Furthermore, having a mod
ule for each group of data that shares common computational

treatments can also be beneficial.
An example is the local potentials, which contribute to the

energy in the form of

E V r r r= () ()d . (1)loc

Local potentials can be introduced by many different
corrections and modifications, such as dipole correction,
magnetic constraints, and the implicit solvent model. These
potentials have common computational treatments and share
contributions to the Hamiltonian and force, as discussed by
Laasonen et al. [43] and Chan et al. [44]. Here, we only list
the most important conclusions.

When ultrasoft pseudopotentials (USPP) [4] are used, local
potentials contribute to two terms in the Hamiltonian: the
local term and the non-local term. The contribution to the
local term is direct:

V Vr r r() = () (), (2)loc loc

while the contribution to the non-local term

V D= (3)ij i ij j
NL

Figure 2 (Color online) The SCF process in our framework. Note that X
represents the electronic status (ES), instead of the electron density ρ.
Variables in ES can be split into different groups, denoted by X 1 and X 2 in
the figure. There may be even more groups, denoted by the ellipsis in the
figure. Each group of variables has its corresponding Hamiltonian and its
layer of iteration. The whole SCF process exists only when all variables
have been converged.

Function 4 Recursive SCF

function Scf!(es::ES, layer)
while true

if layer <= MaxLayer(es)
Scf!(es, layer+1)

end
Calc!(es, layer)
if Isconv(es, layer)

break
end
Mix!(es, layer)
UpdateHamiltonian!(es, layer)

end
end

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:7

is through the D coefficients:

D D V Qr r r= + () ()d , (4)I
ij ij

I
ij
Iloc

D, Q, and β are all parameters defined in the USPP.
For norm-conserving pseudopotentials (NCPP), the aug

mentation function Q does not exist. Thus, the second term
vanishes, and local potentials do not contribute to the non-
local term.

In both NCPP and USPP, local potentials contribute to a
force correction term:

()F V Vr= d (/) . (5)c in
loc loc

Thus, it is advantageous to use individual modules to en
capsulate these similarities. This approach allows for new
corrections of local potentials by simply adding them to the
total local potential instead of reimplementing all the treat
ments.

The design of module interfaces is critical in modular
programming, which requires a balance between simplicity
and flexibility. In our implementation, we prioritize high
flexibility over simplicity, as future modifications may ne
cessitate this level of flexibility.

In the following examples, we illustrate two distinct sce
narios. The first example pertains to the parallelization over
G vectors, where two different types of parallelization,
namely ρ type and ψ type, are implemented using two dis
tinct sets of interfaces instead of one unified interface. The
differences are subtle yet critical. There are many different
orbitals (indicated by band) for each k point, but only one
common charge density for all k points. For instance, when
performing ψ-related calculations on 2 k point groups and 2
band groups with 8 processes, G vectors can only be split
into 2 processes because of the number of k point groups and
band groups. On the contrary, when performing ρ-related
calculations, G vectors can always be split into all 8 pro
cesses regardless of the parallelization settings. The calcu
lation efficiency can severely deteriorate without considering
the subtle differences.

The second example involves the complexity of the in
terface when calculating ρ from ψ, where the interface is
designed with arguments instead of using modular or global
variables. In traditional practices, KS orbitals, orbital occu
pancies, and electron densities are stored as modular or
global variables, allowing the electron density calculation
subroutine to function without arguments. However, LDA
+G modifies the way electron density is calculated. Theo
retically, the electron density should be calculated in a larger
space instead of the KS space, while it can still be done in the
KS space with certain adjustments in practice. The process
involves generating a set of corrected orbitals from the KS
orbitals, using these corrected orbitals to calculate an elec
tron density, and then modifying the electron density to ob

tain the true electron density. It is important to note that the
corrected orbitals are only utilized for calculating charge
density. One should still use the original orbitals afterwards,
and cannot modify the KS orbitals in place.

The subroutine without arguments can not serve this pur
pose. One approach is to write a completely new subroutine
for LDA+G electron density calculation only. However, this
would lead to code duplication, as a part of LDA+G electron
density calculation is similar to the ordinary electron density
calculation. Another approach is integrating judgment within
the subroutine to determine whether corrections should be
made, which would cause the unreasonable fact that the
electron density module depends on the Gutzwiller module.
Herein, we prefer to use a single interface that requires va
lues as arguments instead of relying on modular or global
variables, and determine in the SCF module whether cor
rections should be made and what values are to be passed. It
consequently results in clean logic, eliminates code dupli
cation, and offers increased flexibility for potential correc
tions.

3 Applications

3.1 Overall introduction

Considering the discussions, we implemented the Hylane
mos (HY) software with the Julia programming language.
Hylanemos is designed to be an integrated solution for
general materials simulations, while we currently focus on its
applications in lithium-ion batteries based on PW-PP KS-
DFT. Hylanemos is part of Matter Craft [45], an integrated
platform for materials simulation tools, which contains
modeling tools and graphical user interface (GUI) tools for
Hylanemos and several other simulation packages.

In the following sections, we present several assessments
for Hylanemos. The Hylanemos was evaluated for its accu
racy in reproducing SCF results of some simple systems
calculated by VASP and QE, two widely used KS-DFT
packages. The computational efficiency of the three packa
ges is further investigated with a lithium cobalt oxide (Li
CoO 2, LCO) system. An attempt was also made to apply the
three packages to perform several complex tasks on typical
lithium-ion batteries-related systems, spanning LCO, layered
LiNi 1/3Co 1/3Mn 1/3O 2 (NCM), lithium iron phosphate (LiFe
PO 4, LFP), and Li-Graphene. Finally, the LDA+G feature of
Hylanemos is presented, which is absent and arguably dif
ficult to implement in the other two packages.

3.2 Calculation details

All calculations were carried out on an HPC cluster, with
each node consisting of two Intel Xeon Platinum 8358 Pro
cessors. VASP version 5.4.4 was used, and the “makefile.

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:8

include.linux_intel” file that comes with the source code was
used for compiler options. QE version 7.0 was used, but
minor modifications were made to enable the simultaneous
use of Libxc [46] and DFT-D3 [38].

Currently, Hylanemos supports NCPP [3] and USPP,
VASP focuses on PAW potentials, and QE supports all three.
Hylanemos uses in-house generated USPPs named Eacomp
PP, with an 18 Ha energy cutoff for wavefunctions and 90 Ha
for electron densities. VASP, on the other hand, uses PAW
potentials with an energy cutoff for wavefunctions set to
500 eV, or about 18.37 Ha. The choice of 500 eV is based on
the cutoff requirement for a specific potential Li_sv when the
Li element is present. VASP does not need an energy cutoff
for the electron density. In the case of QE, GBRV USPPs
[47] are utilized, and while the publication suggests an en
ergy cutoff of 20 Ha for wavefunctions, a higher cutoff
(24 Ha) is necessary for systems containing Ni atoms.
Therefore, 24/120 Ha cutoffs are used for QE calculations in
most benchmark systems.

In most cases, the number of k points is selected so that the
spacing is less than 0.4 Å −1 and N k×N atoms>500. Hylanemos
and QE utilize Libxc for the exchange-correlation func
tionals, while VASP employs its own implementation. All
calculations were performed using the Perdew-Burke-Ern
zerhof (PBE) functional [48] unless otherwise specified. In
the case of structures containing transition metals, LDA+U
corrections are applied, with specific U values set for Fe
(3.6 eV), Co (5.6 eV), Mn (3.7 eV), and Ni (6.6 eV).
Grimme-D2/D3/D4 [27–29] dispersion corrections are em
ployed when required, with the D3 correction used in con
junction with the Becke-Johnson damping function [49].

We believe packages will most likely be used in the in
dustry with parameters set as default or recommended. Thus,
we also set parameters in the benchmarks in this way, which
may lead to differences among different packages. For ex
ample, in VASP, the length of the charge density grid is only
1.5 times that of the wavefunction grid, while it is 2 times in
QE and Hylanemos. (Readers are referred to the VASP
manual for PREC for more details). Another example is that
VASP adopts parallelization over bands, while QE and Hy
lanemos adopt parallelization over plane waves. No paral
lelization over k points is used in any benchmarks. The

Davidson algorithm is used in all three packages, but the
implementation details differ.

3.3 Evaluation of accuracy

As mentioned previously, SP calculations are the basis of
many complex tasks, and SCF calculations are the core of SP
calculations. Thus, the accuracy is evaluated by the results of
SCF calculations, i.e., total energies, forces, and stresses.

The total energies can only be compared when the same
potentials are used. Thus, the SCF results of Hylanemos and
QE are compared because they both support PP in the unified
pseudopotential format (UPF). Table 1 illustrates the dif
ferences of total energies, forces, and stresses of several
simple systems calculated by Hylanemos and QE with both
pseudo dojo [50] (a set of NCPPs) and GBRV (a set of
USPPs), and the results agree very well. For dojo, energy
cutoffs of 50/200 Ha are used. The convergence threshold for
self-consistency is set to 1×10 −8 Ry.

The three packages were compared for formation energies,
regardless of the different potentials used. Table 2 clearly
shows that these packages yield similar results, indicating
Hylanemos’ accuracy in reproducing SCF results calculated
by these widely used packages. In the case of bulk systems,
the k spacing is chosen to ensure that N k×N atoms is greater
than 8000. For atomic systems, a cubic cell with a cell length
of 15 Å and a 3×3×3 k-point mesh is utilized.

Diverse materials containing bulk, surface, and molecule
systems also undergo a more comprehensive validation. In
addition to energy, forces, and stress, the magnetic moments
calculated by Hylanemos show a high degree of consistency
with those obtained by QE. The validation details are listed
in the Supporting Information.

3.4 Assessment of computational efficiency

LCO systems containing 48, 96, and 300 atoms were utilized
to compare efficiency. The k-point meshes for these systems
are 4×4×2, 2×4×2, and 1×1×1, respectively. Different num
bers of processes (1, 2, 4, 8, 16, 32, and 64) were employed
to assess the parallel performance.

The comparison between different potentials, instead of

Table 1 Differences of SCF results calculated by Hylanemos and QE with the same settings a)

ΔE (Ry) ΔS max (kbar) ΔF max (Ry bohr −1)

Si-GBRV <2.0×10 −8 0.01 (0.02%) 3.95×10 −6 (0.00%)

NaCl-GBRV 4.1×10 −7 0.07 (1.90%) −2.15×10 −6 (−0.03%)

Al-GBRV <2.0×10 −8 0.01 (0.10%) −3.65×10 −6 (−0.09%)

Si-dojo <2.0×10 −8 0.01 (−0.01%) −1.03×10 −6 (0.00%)

NaCl-dojo <2.0×10 −8 −0.03 (−0.79%) −1.28×10 −6 (−0.02%)

Al-dojo <2.0×10 −8 0.00 (−0.01%) −2.45×10 −6 (0.03%)

a) ΔE, ΔS max, and ΔF max represent energy difference, maximum stresses difference, and maximum forces difference, respectively

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:9

packages, is an important factor to consider. The analysis of
Figure 3 may cause the illusion that QE yields the worst
performance. However, this is primarily due to the variations
in potentials. GBRV pseudopotentials have the most valence
electrons for transition metal elements, requiring much
higher energy cutoffs than the other two types. In contrast,
VASP potentials and Eacomp PP are similar in these aspects.
Consequently, the computational cost is significantly higher
in QE, leading to longer computation times and better par

allel performance. In the Supporting Information, we com
pare QE and Hylanemos, which are both calculated with
GBRV pseudopotentials and the same settings. It can be seen
that parallel performance is similar. The efficiency of Hy
lanemos is slightly better for the SCF process and much
better for force and stress calculation.

It should be noted that this is not an inherent limitation of
USPP. Eacomp PP also falls under USPP but is comparable
to VASP PAW potentials. This could be attributed to the fact
that GBRV pseudopotentials are designed for high-
throughput calculations, generating only one PP for each
element. As a result, a single GBRV PP must be accurate for
numerous potential structures, some of which require a large
number of semi-core electrons, necessitating an overall
higher energy cutoff. On the contrary, VASP offers a variety
of potentials for each element, each with a different number
of valence electrons. As the systems in our benchmarks do
not require many semi-core electrons, those with fewer va
lence electrons are utilized. Eacomp PPs used in the
benchmarks are generated with the same valence electron
numbers as those used in VASP potentials.

The Hylanemos yields the best performance for systems
with 48 and 96 atoms, indicating its comparable computa

Table 2 Formation energies (kJ mol −1) calculated by Hylanemos, QE,
and VASP

Hylanemos VASP QE

Na 122.710 122.960 122.761

Ti 633.541 629.382 635.817

Si 514.587 514.324 514.569

O 324.046 326.551 326.790

Al 355.042 355.142 355.034

Br 150.589 150.567 150.651

Ga 274.099 274.072 274.221

S 328.950 328.804 328.907

Figure 3 (Color online) Efficiency for different systems with different cores. (a) 48-atom LCO system; (b) 96-atom LCO system; (c) 300-atom LCO
system. (d) The ratio of Hylanemos’ computation time to that of QE and VASP.

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:10

tional efficiency to these widely used packages. VASP de
monstrates the best scaling with system size, which can be
attributed to its use of real-space calculations for the non-
local term. In reciprocal space, beta functions are expanded
by the entire basis, which grows in size with the system.
Conversely, beta functions are local in real space and can be
expanded in a nearly fixed-sized grid. As a result, it is effi
cient to use real space calculations when the system has more
than several tens of atoms. Nevertheless, real space calcu
lations can introduce non-negligible errors without careful
treatment, which has been addressed by VASP internally. To
highlight the importance of real space calculations, we also
perform calculations for the non-local term with the re
ciprocal space method. Our findings reveal a substantial
decline in the computational efficiency of VASP. VASP turns
out to be slower than both QE and Hylanemos. More details
of this comparison are listed in the Supporting Information.

Regarding scaling with the number of processes, QE de
monstrates the best performance. This can be largely attrib
uted to the difference in potentials, as previously discussed.
When the number of processes is limited to 16, Hylanemos
exhibits performance comparable to VASP. However, its
performance deteriorates significantly with 32 processes and
worse with 64. Notably, for a system with 300 atoms, Hy
lanemos takes longer to compute using 64 processes than
with 32. These findings indicate the need to further optimize
the parallelization mechanism in Hylanemos.

It should be noted that the default parallelization scheme in
VASP is different from that in QE and Hylanemos. In VASP,
the default setting is parallelization over bands, while in QE
and Hylanemos, it is parallelization over plane waves. The
oretically, this difference will impact both efficiency and
scalability with the number of processes. However, no clear
trend can be found after conducting a benchmark test in
VASP. The relevant data are included in the Supporting In
formation.

In the context of computational chemistry software
packages, the direct diagonalization in the subspace is a
crucial aspect of Davidson-type eigensolvers. However, the
computational cost of this subroutine scales cubically with
system size and cannot benefit from parallelization over k
points, bands, or G points. To address this limitation, parallel
linear algebra subroutines such as ScaLapack or ELPA are
utilized. Nevertheless, the implementation of these sub
routines requires careful preprocessing and postprocessing.
In the case of Hylanemos, while it incorporates this feature, it
is still in its early stages and only demonstrates a non-neg
ligible effect on large systems, such as those with 300 atoms.

3.5 Presentation of capabilities

3.5.1 Geometry optimization
The three packages provide various algorithms for geometry

optimization. In VASP, the residual minimization method
with direct inversion in the iterative subspace (RMM-DIIS)
is used as the default algorithm in the benchmark. QE utilizes
a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
algorithm based on the trust radius procedure (BFGS-tr) as
its default algorithm in the benchmark. Hylanemos employs
a modified version of the BFGS-tr algorithm from QE as its
default, with adjustments to enhance performance on com
plex systems, such as a change in the criterion for the ac
ceptance of trial points and re-initialization of the basis set
when the change of cell is large. Additional algorithms have
also been implemented in Hylanemos, including a BFGS
algorithm based on line search (BFGS-ls), a two-point
steepest descent (TPSD) algorithm, a conjugate gradient
(CG) algorithm, and a damped molecular dynamics
(DAMPMD) algorithm.

Table 3 demonstrates the lattice parameters of LCO, NCM,
and LFP systems calculated by Hylanemos, VASP, and QE.
It should be noted that the impact of different dispersion
corrections was also evaluated in the LCO system using
Hylanemos because of the well-accepted fact that both axes a
and c of the system are overestimated without dispersion
corrections. It can be observed that with any dispersion
corrections (D2, D3, and D4), axis a is still overestimated,
albeit to a lesser extent, while axis c is underestimated.
Consequently, the cell volume aligns much more closely
with the experimental value. The results indicate that D3 and
D4 corrections perform better than D2 corrections.

The same D3 correction has been applied to the calcula
tions of lattice parameters of LCO, NCM, and LFP systems.
As shown, the results calculated by the three packages are
close to the experimental values. The lattice shapes remain
consistent, with minor distortions observed in NCM, and the
cell volume discrepancy is less than 2%.

3.5.2 Electronic structures
The calculated band structures, partial density of states
(PDOS), and crystal orbital hamilton population (COHP) by
the three packages are shown in Figures 4‒6. Due to the
arbitrary process of projecting the KS orbitals onto atomic
orbitals, there may be variations in the PDOS and COHP
results across different packages. However, the band struc
tures are expected to resemble each other.

To demonstrate the band structure, we selected an FCC Al
system with 4 atoms. The results, illustrated in Figure 4,
exhibit significant overlap. For PDOS and COHP, the LFP
system was used, with each package utilizing its own opti
mized structure. As previously mentioned, there may be
slight discrepancies between the structures. Nevertheless, the
results displayed in Figures 5 and 6 are consistent with each other.

No COHP results from QE are available. Typically, the
LOBSTER [54,55] software is used to calculate COHP from
data generated by DFT packages. However, LOBSTER only

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:11

supports results calculated from PAW potentials. Although
QE supports PAW potentials, such a calculation was not
carried out. It is worth noting that COHP analysis for PPs is
supported in Hylanemos. Therefore, in this instance, we
compare the results from Hylanemos with those obtained
from VASP+LOBSTER.

3.5.3 Mechanical properties
Due to its precise experimental values, the conventional cell
of AgCl with 8 atoms was utilized to study mechanical
properties. Because of its high symmetry, only a few entries
in the stiffness tensor are non-zero. QE does not offer this
capability out of the box, so the ElaStic [56] package is
utilized for calculating these mechanical properties in QE.

When comparing QE to Hylanemos and VASP, it is im

portant to note that ElaStic uses a different approach for
calculating mechanical properties in two primary aspects.
First, Elastic directly computes the “relaxed-ion” elastic
tensor through geometry optimization calculations. In con
trast, Hylanemos and VASP calculate the “clamped-ion”
elastic tensor, internal-strain tensors, and force-constant
matrix via SCF calculations and subsequently derive the
“relaxed-ion” tensor from these values. For more in-depth
information, readers can refer to the research conducted by
Hamann et al. [57]. Second, Elastic uses Lagrangian stress
and strain, while VASP and Hylanemos use physical stress
and strain.

The maximum strain is specified as 0.015 for the three
packages; however, the strains are effectively varied because
of the different definitions. Additionally, the number of
points varied among the packages. A maximum of 5 points in
each direction is allowed in VASP, while 7 and 21 points in
each direction are used in Hylanemos and QE, respectively.

Table 4 lists the calculated values and experimental values.
Despite some variations resulting from the abovementioned
disparities, the overall performance remains fairly consistent.

3.5.4 Phonon calculations
In phonon calculations, the primitive cell of the diamond
with 2 C atoms was used. Phonopy [59,60] was used for
preprocessing and postprocessing for the three packages, and
a 2×2×2 supercell was employed for the calculations. As
depicted in Figure 7, the results show close similarities
across the three packages, with minor differences in the high-
frequency region. However, it should be noted that there is a
systematic deviation when comparing the results to experi

Figure 4 (Color online) Band structures of Al calculated by Hylanemos,
VASP, and QE.

Table 3 The comparison of the lattice constants of LCO, NCM, and LFP after optimization by Hylanemos with experimental values and those optimized
by VASP (VA) and QE. The numbers of atoms for LCO, NCM, and LFP systems are 12, 108, and 28, respectively

a (Å) b (Å) c (Å) α (°) β (°) γ (°)

LCO-exp [51] 2.814 2.814 14.048 90.00 90.00 120.00

LCO-HY 2.847 (1.17%) 2.847 (1.17%) 14.149 (0.72%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%)

LCO-HY d2 2.842 (0.99%) 2.842 (0.99%) 13.681 (−2.61%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%)

LCO-HY d3 2.829 (0.52%) 2.829 (0.52%) 13.965 (−0.59%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%)

LCO-HY d4 2.830 (0.57%) 2.830 (0.57%) 13.983 (−0.46%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%)

LCO-VA d3 2.800 (−0.49%) 2.800 (−0.49%) 13.945 (−0.73%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%)

LCO-QE d3 2.824 (0.34%) 2.824 (0.34%) 13.950 (−0.70%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%)

NCM-exp [52] 8.580 8.580 14.227 90.00 90.00 120.00

NCM-HY d3 8.662 (0.96%) 8.665 (0.99%) 14.173 (−0.38%) 90.10 (0.11%) 90.00 (0.00%) 119.99 (−0.01%)

NCM-VA d3 8.559 (−0.25%) 8.562 (−0.21%) 14.120 (−0.75%) 90.08 (0.09%) 90.00 (0.00%) 119.99 (−0.01%)

NCM-QE d3 8.661 (0.94%) 8.664 (0.97%) 14.183 (−0.31%) 90.12 (0.13%) 90.00 (0.00%) 119.99 (−0.01%)

LFP-exp [53] 10.336 6.006 4.693 90.00 90.00 90.00

LFP-HY d3 10.396 (0.58%) 6.046 (0.67%) 4.706 (0.27%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%)

LFP-VA d3 10.371 (0.33%) 6.015 (0.14%) 4.695 (0.05%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%)

LFP-QE d3 10.356 (0.19%) 6.040 (0.57%) 4.704 (0.22%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%)

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:12

mental values [61,62].

3.5.5 Ion migration
The nudged elastic band (NEB) method was utilized to cal
culate the migration of Li on graphene. The system consists
of 32 C atoms and one Li atom, with the z-axis length of
15 Å. A 6×6×1 k-point mesh was employed, and we speci
fically focused on the hole-bridge-hole path. The hole site is

in the middle of a C 6 unit, while the bridge site is above a
C‒C bond. The results, depicted in Figure 8, revealed that the
calculated diffusion barriers exhibit remarkable similarity.

3.6 LDA+G

The lattice constant of the fcc Ni metal was calculated using
both LDA+U and LDA+G methods, with different U values.

Figure 5 (Color online) Calculated PDOS for LFP. (a)‒(c) The total DOS and DOS on each element; (d)‒(f) the DOS on different orbitals of Fe. Calculated
(a) and (d) by Hylanemos, (b) and (e) by VASP, and (c) and (f) by QE.

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:13

The calculation was based on a conventional cell with 4 Ni
atoms, as conducted by Schickling et al. [63]. A k-point mesh
of 12×12×12 and the LDA functional, as used in Schickling’s
work, were employed. PseudoDojo was used because cur
rently, only NCPP is supported.

The experimental value was also obtained from Schick
ling’s work. Figure 9 shows that for U=0, both LDA+U and
LDA+G methods produce similar results, as expected. When
U=0, both methods have no correction, and their outcome
aligns with the basic KS-DFT LDA approach. As the U value
increases, the LDA+U method yields a decreasing lattice
constant, deviating further from the experimental value. On

the contrary, for the LDA+G method, the calculated lattice
constant approaches the experimental value as the U value
increases. The LDA+G curve is similar to the results from
Schickling [53].

4 Conclusions

In this work, we present an analysis of techniques for de
signing an integrated solution for materials simulations. The
core of the proposed approach lies in the flexibility of three
layers: the task layer, the SP method layer, and the correction

Figure 6 (Color online) Calculated COHP for LFP. (a)‒(c) The COHP for the nearest Fe‒O, and (d)‒(f) for the nearest P‒O. Calculated (a) and (d) by
Hylanemos with Eacomp PP, (b) and (e) by VASP, and (c) and (f) by Hylanemos with GBRV.

Table 4 Mechanical properties of AgCl calculated by Hylanemos, VASP, and QE, along with experimental values a)

AgCl (GPa) C11 C12 C44 YM SM BM

Exp [58] 73.91 39.07 6.94 29.1 10.3 50.7

HY 69.942 41.055 4.821 21.772 7.621 50.684

VASP 70.762 41.578 4.608 21.381 7.473 51.307

QE 73.7 33.9 4.1 23.290 8.214 47.167

a) YM, SM, and BM represent Young’s modulus, shear modulus, and bulk modulus, respectively. The outputs of ElaStic for stiffness tensors contain only
one digit after the decimal point.

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:14

and modification layer. We demonstrate the use of a distinct
function for each new algorithm in the task layer, a multi-
layer design for accommodating different SP methods in the
second layer, and the utilization of electronic status (ES) to

enhance the flexibility of the SCF process in the third layer.
With these techniques, we implemented Hylanemos, an in
tegrated solution based on PW-PP KS-DFT. In particular,
Hylanemos enables the LDA+G calculations, which is un
common in the previous KS-DFT packages.

It should be emphasized that the proposed flexible design
does not compromise the accuracy or the efficiency of Hy
lanemos. Besides, we also developed a set of highly opti
mized USPP called Eacomp PP, which has energy cutoffs
and valence electron numbers similar to VASP PAW poten
tials. A comparison of Hylanemos with VASP and QE on
various calculation tasks reveals that the overall performance
of Hylanemos is comparable and arguably better than these
widely used packages in terms of accuracy and efficiency.
The improvements of Eacomp PP over commonly used
GBRV USPP are also significant and crucial to achieve ef
ficiency comparable with VASP. Despite the numerous ad
vantages that Hylanemos has demonstrated, it is important to
recognize that this is merely the starting point of its journey.
The field of computational materials science is evolving at an
astonishing pace, and Hylanemos has substantial room for
further evolution. Particularly, challenges remain in effec
tively scaling with the system size and the number of pro
cesses. Future work could focus on enhancing the code’s
parallel efficiency, perhaps by exploring novel parallel al
gorithms and optimizing the distribution of computational
tasks. Additionally, more sophisticated numerical techniques
might be introduced to improve the handling of large-scale
systems without sacrificing accuracy. We envision that
through continuous efforts in research and development, we
can bridge these existing gaps, making Hylanemos a more
robust and versatile tool for the scientific community and the
industry of computational material science applications.

Acknowledgements This work was supported by the National Natural
Science Foundation of China (Grant No. 12426301).

Supporting Information The supporting information is available online
at tech.scichina.com and link.springer.com. The supporting materials are
published as submitted, without typesetting or editing. The responsibility
for scientific accuracy and content remains entirely with the authors.

References

1 Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964,
136: B864–B871

2 Kohn W, Sham L J. Self-consistent equations including exchange and
correlation effects. Phys Rev, 1965, 140: A1133–A1138

3 Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopo
tentials. Phys Rev Lett, 1979, 43: 1494–1497

4 Vanderbilt D. Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism. Phys Rev B, 1990, 41: 7892–7895

5 Blöchl P E. Projector augmented-wave method. Phys Rev B, 1994, 50:
17953–17979

6 Clark S J, Segall M D, Pickard C J, et al. First principles methods
using CASTEP. Z Kristallogr-Cryst Mater, 2005, 220: 567–570

7 Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A
modular and open-source software project for quantum simulations of

Figure 7 (Color online) Phonon spectrum of diamond calculated by
Hylanemos, VASP, and QE, along with experimental results.

Figure 8 (Color online) Energy barrier of Li diffusion on top of graphene
calculated by Hylanemos, VASP, and QE.

Figure 9 (Color online) Calculated lattice constants of fcc Ni by LDA+U
and LDA+G with different U values. The dashed line denotes the experi
mental values.

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:15

http://tech.scichina.com
https://link.springer.com
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevLett.43.1494
https://doi.org/10.1103/PhysRevB.41.7892
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1524/zkri.220.5.567.65075

materials. J Phys-Condens Matter, 2017, 21: 395502
8 Gonze X, Amadon B, Antonius G, et al. The Abinitproject: Impact,

environment and recent developments. Comput Phys Commun, 2020,
248: 107042

9 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calcula
tions for metals and semiconductors using a plane-wave basis set.
Comput Mater Sci, 1996, 6: 15–50

10 Jia W, Fu J, Cao Z, et al. Fast plane wave density functional theory
molecular dynamics calculations on multi-GPU machines. J Comput
Phys, 2013, 251: 102–115

11 Jia W, Cao Z, Wang L, et al. The analysis of a plane wave pseudo
potential density functional theory code on a GPU machine. Comput
Phys Commun, 2013, 184: 9–18

12 Smidstrup S, Markussen T, Vancraeyveld P, et al. QuantumATK: An
integrated platform of electronic and atomic-scale modelling tools. J
Phys-Condens Matter, 2020, 32: 015901

13 Chen M, Guo G C, He L. Systematically improvable optimized atomic
basis sets for ab initio calculations. J Phys-Condens Matter, 2010, 22:
445501

14 Li P, Liu X, Chen M, et al. Large-scale ab initio simulations based on
systematically improvable atomic basis. Comput Mater Sci, 2016, 112:
503–517

15 Sun J, Ruzsinszky A, Perdew J P. Strongly constrained and appro
priately normed semilocal density functional. Phys Rev Lett, 2015,
115: 036402

16 Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a
screened Coulomb potential. J Chem Phys, 2003, 118: 8207–8215

17 Krukau A V, Vydrov O A, Izmaylov A F, et al. Influence of the
exchange screening parameter on the performance of screened hybrid
functionals. J Chem Phys, 2006, 125: 224106

18 Anisimov V I, Zaanen J, Andersen O K. Band theory and Mott in
sulators: Hubbard U instead of Stoner I. Phys Rev B, 1991, 44: 943–
954

19 Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory
and strong interactions: Orbital ordering in Mott-Hubbard insulators.
Phys Rev B, 1995, 52: R5467–R5470

20 Dudarev S L, Botton G A, Savrasov S Y, et al. Electron-energy-loss
spectra and the structural stability of nickel oxide: An LSDA+U study.
Phys Rev B, 1998, 57: 1505–1509

21 Gutzwiller M C. Effect of correlation on the ferromagnetism of
transition metals. Phys Rev Lett, 1963, 10: 159–162

22 Gutzwiller M C. Effect of correlation on the ferromagnetism of
transition metals. Phys Rev, 1964, 134: A923–A941

23 Gutzwiller M C. Correlation of electrons in a narrow s band. Phys
Rev, 1965, 137: A1726–A1735

24 Bengtsson L. Dipole correction for surface supercell calculations.
Phys Rev B, 1999, 59: 12301–12304

25 Andreussi O, Dabo I, Marzari N. Revised self-consistent continuum
solvation in electronic-structure calculations. J Chem Phys, 2012, 136:
064102

26 Dederichs P H, Blügel S, Zeller R, et al. Ground states of constrained
systems: Application to cerium impurities. Phys Rev Lett, 1984, 53:
2512–2515

27 Baroni S, Giannozzi P, Testa A. Green’s-function approach to linear
response in solids. Phys Rev Lett, 1987, 58: 1861–1864

28 Baer R, Neuhauser D. Real-time linear response for time-dependent
density-functional theory. J Chem Phys, 2004, 121: 9803–9807

29 Hedin L. New method for calculating the one-particle green’s function
with application to the electron-gas problem. Phys Rev, 1965, 139:
A796–A823

30 Aryasetiawan F, Gunnarsson O. The GW method. Rep Prog Phys,
1998, 61: 237–312

31 Henkelman G, Jónsson H. A dimer method for finding saddle points
on high dimensional potential surfaces using only first derivatives. J
Chem Phys, 1999, 111: 7010–7022

32 Heyden A, Bell A T, Keil F J. Efficient methods for finding transition
states in chemical reactions: Comparison of improved dimer method

and partitioned rational function optimization method. J Chem Phys,
2005, 123: 224101

33 Kästner J, Sherwood P. Superlinearly converging dimer method for
transition state search. J Chem Phys, 2008, 128: 014106

34 Jónsson H, Mills G, Jacobsen K W. Nudged elastic band method for
finding minimum energy paths of transitions. In: Berne B J, Ciccotti
G, Coker D F (eds). Classical and Quantum Dynamics in Condensed
Phase Simulations. Singapore: World Scientific, 1998. 385‒404

35 Mathew K, Sundararaman R, Letchworth-Weaver K, et al. Implicit
solvation model for density-functional study of nanocrystal surfaces
and reaction pathways. J Chem Phys, 2014, 140: 084106

36 Giannozzi P, Andreussi O, Brumme T, et al. Advanced capabilities for
materials modelling with Quantum ESPRESSO. J Phys-Condens
Matter, 2017, 29: 465901

37 Grimme S. Semiempirical GGA-type density functional constructed
with a long-range dispersion correction. J Comput Chem, 2006, 27:
1787–1799

38 Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab
initio parametrization of density functional dispersion correction
(DFT-D) for the 94 elements H-Pu. J Chem Phys, 2010, 132: 154104

39 Caldeweyher E, Mewes J M, Ehlert S, et al. Extension and evaluation
of the D4 London-dispersion model for periodic systems. Phys Chem
Chem Phys, 2020, 22: 8499–8512

40 Bünemann J, Gebhard F, Schickling T, et al. Numerical minimisation
of Gutzwiller energy functionals. Phys Status Solidi (b), 2012, 249:
1282–1291

41 Lanatà N, Strand H U R, Dai X, et al. Efficient implementation of the
Gutzwiller variational method. Phys Rev B, 2012, 85: 035133

42 Milan C. Modern Fortran: Building Efficient Parallel Applications.
New York: Manning Publications, 2020. 85

43 Laasonen K, Pasquarello A, Car R, et al. Car-Parrinello molecular
dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B,
1993, 47: 10142–10153

44 Chan C T, Bohnen K P, Ho K M. Accelerating the convergence of
force calculations in electronic-structure computations. Phys Rev B,
1993, 47: 4771–4774

45 MatterCraft. Version 3.4. Shenzhen: Shenzhen Eacomp Technology
Co., Ltd., 2004

46 Lehtola S, Steigemann C, Oliveira M J T, et al. Recent developments
in libxc—A comprehensive library of functionals for density func
tional theory. SoftwareX, 2018, 7: 1–5

47 Garrity K F, Bennett J W, Rabe K M, et al. Pseudopotentials for high-
throughput DFT calculations. Comput Mater Sci, 2014, 81: 446–452

48 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approx
imation made simple. Phys Rev Lett, 1996, 77: 3865–3868

49 Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in
dispersion corrected density functional theory. J Comput Chem, 2011,
32: 1456–1465

50 van Setten M J, Giantomassi M, Bousquet E, et al. The PseudoDojo:
Training and grading a 85 element optimized norm-conserving pseu
dopotential table. Comput Phys Commun, 2018, 226: 39–54

51 Jin K H, Seung M O. Crystal structure and electrochemical perfor
mance of LiNi 1− xCo xO 2 (x = 0.0‒1.0) according to Co substitution. J
Korean Chem Soc, 2003, 6: 1‒5

52 Yin S C, Rho Y H, Swainson I, et al. X-ray/neutron diffraction and
electrochemical studies of lithium De/Re-intercalation in Li 1−xCo 1/3-
Ni 1/3Mn 1/3O 2 (x = 0 → 1). Chem Mater, 2006, 18: 1901–1910

53 Janssen Y, Santhanagopalan D, Qian D, et al. Reciprocal salt flux
growth of LiFePO 4 single crystals with controlled defect concentra
tions. Chem Mater, 2013, 25: 4574–4584

54 Dronskowski R, Bloechl P E. Crystal orbital Hamilton populations
(COHP): Energy-resolved visualization of chemical bonding in solids
based on density-functional calculations. J Phys Chem, 1993, 97:
8617–8624

55 Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital ha
milton population (COHP) analysis as projected from plane-wave
basis sets. J Phys Chem A, 2011, 115: 5461–5466

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:16

https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1016/j.cpc.2019.107042
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/j.jcp.2013.05.005
https://doi.org/10.1016/j.jcp.2013.05.005
https://doi.org/10.1016/j.cpc.2012.08.002
https://doi.org/10.1016/j.cpc.2012.08.002
https://doi.org/10.1088/1361-648X/ab4007
https://doi.org/10.1088/1361-648X/ab4007
https://doi.org/10.1088/0953-8984/22/44/445501
https://doi.org/10.1016/j.commatsci.2015.07.004
https://doi.org/10.1103/PhysRevLett.115.036402
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2404663
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRev.134.A923
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRevB.59.12301
https://doi.org/10.1063/1.3676407
https://doi.org/10.1103/PhysRevLett.53.2512
https://doi.org/10.1103/PhysRevLett.58.1861
https://doi.org/10.1063/1.1808412
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.2104507
https://doi.org/10.1063/1.2815812
https://doi.org/10.1063/1.4865107
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1002/jcc.20495
https://doi.org/10.1063/1.3382344
https://doi.org/10.1039/D0CP00502A
https://doi.org/10.1039/D0CP00502A
https://doi.org/10.1002/pssb.201147585
https://doi.org/10.1103/PhysRevB.85.035133
https://doi.org/10.1103/PhysRevB.47.10142
https://doi.org/10.1103/PhysRevB.47.4771
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1016/j.commatsci.2013.08.053
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1016/j.cpc.2018.01.012
https://doi.org/10.1021/cm0511769
https://doi.org/10.1021/cm4027682
https://doi.org/10.1021/j100135a014
https://doi.org/10.1021/jp202489s

56 Golesorkhtabar R, Pavone P, Spitaler J, et al. ElaStic: A tool for
calculating second-order elastic constants from first principles. Com
put Phys Commun, 2013, 184: 1861–1873

57 Wu X, Vanderbilt D, Hamann D R. Systematic treatment of dis
placements, strains, and electric fields in density-functional pertur
bation theory. Phys Rev B, 2005, 72: 035105

58 Gene S, Herbert W. Single Crystal Elastic Constants and Calculated
Aggregate Properties: A Handbook. Cambridge: MIT Press, 1971.
87

59 Togo A, Chaput L, Tadano T, et al. Implementation strategies in
phonopy and phono3py. J Phys-Condens Matter, 2023, 35: 353001

60 Togo A. First-principles phonon calculations with phonopy and pho
no3py. J Phys Soc Jpn, 2023, 92: 012001

61 Warren J L, Yarnell J L, Dolling G, et al. Lattice dynamics of dia
mond. Phys Rev, 1967, 158: 805–808

62 Warren J L, Wenzel R G, Yarnell J L. Dispersion curves for phonons in
diamond. In: Proceedings of the Symposium on Inelastic Scattering of
Neutrons. Bombay: International Atomic Energy Agency, 1964. 361‒
371

63 Schickling T, Bünemann J, Gebhard F, et al. Gutzwiller density
functional theory: A formal derivation and application to ferromag
netic nickel. New J Phys, 2014, 16: 093034

Jie J S, et al. Sci China Tech Sci September 2025, Vol. 68, Iss. 9, 1920101:17

https://doi.org/10.1016/j.cpc.2013.03.010
https://doi.org/10.1016/j.cpc.2013.03.010
https://doi.org/10.1103/PhysRevB.72.035105
https://doi.org/10.1088/1361-648X/acd831
https://doi.org/10.7566/JPSJ.92.012001
https://doi.org/10.1103/PhysRev.158.805
https://doi.org/10.1088/1367-2630/16/9/093034

	Hylanemos: An integrated solution for materials simulations based on Kohn-Sham DFT
	1 Introduction
	2 Flexibility in an integrated solution
	2.1 An integrated solution
	2.2 Flexibility for different tasks
	2.3 Flexibility for different SP methods
	2.4 Flexibility in PW-PP KS-DFT
	2.5 Flexibility from module design

	3 Applications
	3.1 Overall introduction
	3.2 Calculation details
	3.3 Evaluation of accuracy
	3.4 Assessment of computational efficiency
	3.5 Presentation of capabilities
	3.5.1 Geometry optimization
	3.5.2 Electronic structures
	3.5.3 Mechanical properties
	3.5.4 Phonon calculations
	3.5.5 Ion migration

	3.6 LDA+G

	4 Conclusions

	Supporting information

