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Abstract The Kohn-Sham density functional theory (KS-DFT) has played an important role in materials simulation for a long 
time. To better serve the industry, it is desirable to have an integrated solution that supports different calculation tasks by KS- 
DFT with different corrections and modifications. In this work, we present Hylanemos, a plane wave pseudopotential (PW-PP) 
KS-DFT package written entirely in the Julia programming language, which could offer such a solution. First, we analyze the 
code design to get the flexibility needed to implement such a solution. Then, we show that its accuracy and speed are 
comparable to widely-used packages. Next, we show its ability to perform common tasks such as single point (SP) calculations, 
geometry optimization, and transition state calculations. Finally, the LDA+Gutzwiller (LDA+G) method is presented, a feature 
not commonly found in DFT packages. In addition, we have also developed a set of ultrasoft (US) PP through parameter 
adjustment and optimization. This set of PP, called Eacomp PP, has a low cutoff energy (<18 Ha) and exhibits excellent 
performance in our benchmarks. Combining a performant package and optimized potentials will facilitate our in-depth efforts 
in promoting industrialization. 
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1  Introduction  

Ab initio calculations based on Kohn-Sham (KS) density 
functional theory (DFT) [1,2] have been widely used both in 
academia and in industry. In DFT, the total energy is a 
functional of the electron density, and the KS method in
troduces a non-interacting reference system (KS system) 
with the same electron density as the real system. There are 
two main benefits of using a non-interacting system. First, 
the wavefunction can be expressed as a single Slater de

terminant and solved using the rather mature self-consistent 
field (SCF) method. Second, the energy functional can be 
easily written out except for the exchange-correlation (XC) 
term, so we only need to find an approximated functional for 
the XC energy and the difference between the true system 
and the KS system instead of an approximated functional for 
the total energy. It has been proved by practice that even 
basic KS-DFT with a simple XC functional can result in 
good agreement with experiments for many simple systems, 
and KS-DFT has been widely used in academia for a long 
time. 

There are different implementation techniques for the 
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KS-DFT. For real industrial usage on crystal materials, KS- 
DFT based on plane waves (PW) with pseudopotentials (PP) 
[3,4] or projector-augmented-wave (PAW) [5] potentials are 
two common solutions. Corresponding software packages 
such as CASTEP [6], Quantum ESPRESSO (QE) [7], 
ABINIT [8], VASP [9], and PWmat [10,11] are widely used. 
Packages, like QuantumATK [12] and ABACUS [13,14], 
which originally supported KS-DFT based on atomic orbital 
basis sets, also began to support PW-PP calculations re
cently. These packages usually perform not only the simple 
total energy calculation with KS-DFT but also some tasks 
based on the total energy calculation, such as geometry op
timization and molecular dynamics (MD). 

Over the years, there have been many advances in KS-DFT 
and related algorithms. Two different approaches are adopted 
to bridge the gap that the basic KS-DFT with simple XC 
functionals is insufficient to accurately calculate some 
complex systems. In the first approach, new XC functionals, 
such as meta-generalized gradient approximation (GGA) 
functionals [15] and hybrid functionals [16,17], are devel
oped. In the other approach, many corrections are proposed, 
such as the LDA+U [18–20] method and the LDA+G [21– 
23] method. Also, some corrections or modifications have 
been introduced to reduce the computational cost. For ex
ample, dipole corrections [24] are introduced so that a 
smaller vacuum layer can be used, and implicit solvent 
models [25] are introduced to make adding many solvent 
molecules into the system unnecessary. Moreover, some 
modifications are introduced to calculate systems under 
different physical conditions, such as those with magnetic 
structure constraints [26]. Some algorithms closely related to 
DFT are proposed, which usually adopt KS-DFT-like solu
tions. For example, the density functional perturbation the
ory (DFPT) [27] and linear-response time-dependent DFT 
(TDDFT) [28] are also available in many DFT packages. 
Also, algorithms that are beyond DFT but use DFT as a part 
are proposed. For example, currently, GW calculations 
[29,30] usually take the output orbital information of a KS- 
DFT calculation as input and are available in DFT packages 
like VASP and QE. New algorithms based on total energy 
calculations are further proposed, such as the dimer method 
[31–33] and the nudged elastic band (NEB) method [34]. 

We believe an integrated solution for materials simulations 
based on KS-DFT, with many different algorithms out of the 
box, is of great value to the industry. However, it is difficult 
to implement such a solution without a flexible design. Many 
packages created in earlier years have been rewritten either 
partly or completely to accommodate later advances. In a 
worse scenario, some features, such as the dimer method and 
implicit solvent models, are usually absent in many widely 
used packages. 

In this paper, we will first discuss the flexibility required 
for an integrated solution and how we can achieve such 

flexibility when designing the code. Next, we will present a 
new codebase entitled Hylanemos, a Julia implementation of 
the flexible and integrated framework. We made an arguably 
comprehensive comparison in both accuracy and efficiency 
between Hylanemos and some widely used packages. We 
also show that Hylanemos is capable of running critical tasks 
in industrial applications and has some features rarely seen in 
existing packages. 

The Julia programming language is chosen for the fol
lowing reasons. First, the performance of Julia is comparable 
to that of Fortran, C, or C++, which is crucial in materials 
simulations due to the high computational cost. Second, with 
the support of an interactive mode, it is arguably easier to 
develop and debug Julia code. Third, with the evolution of 
programming techniques, new concepts such as modules and 
polymorphism are introduced into old languages like For
tran. These concepts must be introduced in a way that does 
not break the existing code. As a result, sometimes it is not 
easy to use them. For example, polymorphism in Fortran is 
very tricky to use. Being a relatively new language, Julia 
does not suffer from these historical burdens, which makes it 
easier to use. Last, though the ecosystem of Julia is not as 
mature as that of Fortran or C, the ability to directly call C 
and Fortran libraries in Julia code makes up for this short
coming. In summary, Julia’s combined advantages in per
formance and easy-to-use make it an ideal choice for 
implementing our project. 

2  Flexibility in an integrated solution  

2.1  An integrated solution  

In materials simulations, a common computation task in
volves conducting one or more single-point (SP) calcula
tions. A SP calculation is carried out on a specific structure 
under defined environmental conditions to obtain properties 
of interest. The PW-PP KS-DFT method is a notable ap
proach for conducting SP calculations, and it can be used to 
determine the total energy and electronic structure. 

Regarding industrial usage, an all-in-one solution is pre
ferred over a complicated set of tools. An integrated solution 
should offer flexibility in three key areas: the ability to carry 
out various tasks based on SP calculations, the option to 
perform SP calculations using different methods, and the 
capability to apply different adjustments and modifications 
in a specific manner to conduct SP calculations. 

In practice, the flexibility of the second layer is of less 
importance. It is acceptable for only one or a few SP cal
culation methods to be supported. Many KS-DFT packages 
can be regarded as integrated solutions based on KS-DFT. 
However, the flexibility in the other two layers is often in
sufficient in these packages. For instance, in the task layer, 
the dimer method is absent in many packages, and in the 
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correction and modification layer, the implicit solvation 
model is typically implemented by third-party software, such 
as VASPsol [35] for VASP and Environ [36] for QE. 

In the following section, we will first inspect the three 
layers and determine the requirements for achieving suffi
cient flexibility in each layer. Next, we will analyze the PW- 
PP KS-DFT method within the correction and modification 
layer. Lastly, we will explore the important aspects of general 
module design that are crucial for ensuring flexibility across 
all three layers. 

Before discussing the details of each layer, we would like 
to emphasize the importance of the overall three-layer ar
chitecture. These three layers do exist in most KS-DFT 
packages, but they are usually neither clearly stated nor se
parated. An explicit and well-defined three-layer architecture 
will offer distinct advantages. It enables us to fully use the 
dependencies between these layers to facilitate the im
plementation of new algorithms, which will be shown in the 
following sections. 

2.2  Flexibility for different tasks  

Task workflow can be categorized into three types based 
on their relationship to SP calculations, as illustrated in 
Figure 1. Type I tasks entail a single SP calculation, with the 
output used directly or after postprocessing. Type II tasks 
involve the construction of multiple structures, each under
going SP calculations. This approach is commonly used for 
tasks related to the finite difference method, such as me

chanical properties or phonon spectra calculation. 
Type III tasks are the most intricate, as they involve 

structural evolution using various methods, which differ 
greatly among different tasks. For instance, in geometry 
optimization, a single structure is employed. Conversely, the 
dimer method utilizes two initial structures that evolve to
gether, while the NEB method involves several initial 
structures that evolve independently. 

For Type I tasks, only one single-point calculation is 
needed, so they do not pose a challenge to code design. Type 
II tasks can be accomplished using a simple loop, as outlined 
below. 

(1) Build all structures and designate the first structure as 
the current one. 

(2) Perform a single-point calculation on the current 
structure. 

(3) If all structures have been calculated, stop. Otherwise, 
set the next structure as the current one and return to step (2). 

For straightforward Type III tasks, such as MD or geo
metry optimization using simple algorithms, the same loop 
can be employed with slight adjustments. 

(1) Create the initial structure and designate it as the cur
rent one. 

(2) Perform a single-point calculation on the current 
structure. 

(3) If certain stopping criteria have been met, stop. If not, 
modify the structure using an algorithm, designate the new 
structure as the current one, and return to step (2). 

The approach described above is commonly used in many 

Figure 1 (Color online) The uppermost framework. The blue rounded rectangles denote quantities in the calculation process, the green rounded rectangles 
denote the results we want, i.e., the tasks, and the rectangles denote actual treatments in the calculation.  
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existing packages, such as VASP. There may be some con
siderations for adopting this approach. In this approach, the 
code for implementing the structure evolution algorithm 
does not necessarily need to depend on the SP calculation 
subroutine. Besides, all type II and type III tasks can be 
implemented within a single function, at least in theory. 

However, such considerations are questionable. Firstly, the 
structure evolution algorithms belong to the task layer, while 
the subroutines conducting SP calculations belong to the SP 
layer. This fact indicates a well-behaved dependency be
tween them, which can be used to implement complex al
gorithms more clearly. Secondly, there are many different 
algorithms for structure evolution, especially for geometry 
optimization and transition state search. Implementing all 
these algorithms in one function is not advisable since im
plementing complex algorithms in this manner can be challenging. 

Let’s take geometry optimization as an example, one of the 
most important tasks for DFT packages. In VASP, a con
jugate gradient algorithm with line search is implemented, 
which combines cubic interpolation, the Brent algorithm, 
and interval enlargement. We will first examine how to im
plement such an algorithm in Hylanemos, which is presented 
below in a simplified version as shown in Function 1. We 
omit simple functions such as data translation between SP 

data and optimization data structure and convergence checks 
for brevity. 

The algorithm is complex but clear. We will first find the 
direction using the conjugate gradient algorithm at each 
optimization step. Simultaneously, we obtain a step size. 
However, we will only use it as an initial guess to get a trial 
point. We gather sufficient data for a cubic interpolation from 
the initial and trial points, enabling us to identify the third 
point within the current optimization step. 

If the interpolated point meets the required criteria, we 
shall stop here and adopt it as the initial point in the next 
optimization step. Conversely, we will first construct an in
itial interval from two of the three obtained points. The de
tails of the choice are not included here for brevity. An 
important subsequent step involves determining whether the 
interval confidently contains a minimum, which is decided 
by whether it contains a root for the derivative. This can be 
done by checking whether the derivatives at the two end
points of the interval have the opposite signs. 

If there is no guarantee that a root lies within the interval, 
we will first gradually enlarge the interval. This process 
continues until we can confirm the existence of a root within 
the interval. 

After we have found an interval with a root in it, we per
form a modified Brent algorithm to find the root, which is, in 
fact, a sophisticated combination of bisection, linear inter
polation, and inverse quadratic interpolation. The modifica
tion is that we will perform a check for each Brent iteration. 
If some other quick return conditions are satisfied, we will 
exit the Brent iteration and use the last point as the initial 
point for the next optimization step. 

After understanding the algorithm, let’s examine its im
plementation in VASP. Remember that in VASP, all structure 
evolution algorithms are written in a simple for-loop way, as 
shown in Function 2. 

As a result, we shall focus on the logic within the cg_vasp! 
function, as shown in Function 3. 

At first sight, there may seem to be no relation between this 
code and the above code in Hylanemos, but a careful ex
amination will show their equivalence. As shown in the              

Function 1 Hylanemos CG geometry optimization 

function cg_hylanemos!(com::OptCommData, cg::CGData, br::BrentData, 
sp::SPData)   

solve!(sp)   
# status 1   
for iter = 1 : com.iter_max     

find_dir!(cg, com, ld, sp)     
l, s = get_step(cg)     
make_step!(br, l, s)     
solve!(sp)     
# status 2     
l, s = get_cubic(br)     
make_step!(br, l, s)     
solve!(sp)     
if good_enough(br)       

# status 1       
continue     

end     
while !is_bracket(br)       

# status 3       
enlarge_interval!(br)       
solve!(sp)     

end     
while true       

# status 4       
brent!(br)       
solve!(sp)       
if good_enough(br) || quick_exit_brent(br)         

# status 1         
break       

end     
end   

end 
end   

Function 2 VASP structure evolution 

function evo_vasp!(evo::EvoData, sp::VaspSPData)   
for iter = 1 : evo.iter_max     

solve!(sp)     
if evo.alg == “cg”       

cg_vasp!(evo.cg, sp)     
elseif evo.alg == “dampMD”       

dampmd_vasp!(evo.dampmd, sp)     
# numerous else ifs     
else       

# some algorithm     
end   

end 
end 
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comments in the Hylanemos code, we must be in one of the 
four statuses after performing an SP calculation and related 
checks. 

(1) Status 1. We are about to enter a new optimization step. 
(2) Status 2. We have finished the calculation of the trial 

point. 
(3) Status 3. We are about to perform interval enlarge

ments. 
(4) Status 4. We are about to perform a step in Brent’s 

iterations. 
Possible hopping among the statuses is as follows. 
(1) Status 1 will jump to status 2. 
(2) Status 2 may jump to any of the other three statuses. 

Note that the SP calculation for the cubic interpolated point 
will be performed for status 2. If the point is good enough, it 
will jump to status 1. If not, then if the initial interval defi
nitely contains a root, it will jump to status 4. Otherwise, it 
will jump to status 3. 

(3) Status 3 may jump to status 4 or stay at status 3, de
pending on whether an appropriate interval has been found. 

(4) Status 4 may jump to status 1 or stay at status 4, de
pending on whether a root has been found or whether some 
quick-returning conditions are satisfied. 

We then prove that these statuses and hopping exist in the 
VASP code, except that status 3 and status 4 are merged into 
one status. 

First, cg.ltrial means whether we have just finished the SP 
calculation for the trial point. Thus, when it is true, we are in 
status 2. In this case, the large if block will not be executed, 
and we will call zbrent!. Note that the zbrent! function in 
VASP contains cubic interpolation and the so-called Brent 
algorithm, which again contains interval enlargement and the 
real Brent algorithm. Here we are doing the cubic inter
polation. Then, we set cg.lbrent to be true, indicating we are 

about to perform the so-called Brent algorithm, i.e., jumping 
to status 3/4. However, if we find the cubic interpolated point 
is good enough, we set cg.lbrent to be false because we 
should jump to status 1 instead. In either case, we will not 
stay in status 2, so we set cg.ltrial to be false. 

Then let’s consider the situation when cg.ltrial is false. We 
may be either in status 1 or 3/4. In either case, we will first 
calculate beta for the conjugate gradient because the calcu
lation is computationally inexpensive and will not cause any 
issues even if we do not use its result. After that, we need to 
determine our current state. When cg.lbrent is true and the 
quick-returning conditions are not satisfied, we are in status 
3/4, and the following code within the large if block is not 
executed. Again, we call the zbrent! function, this time for 
the interval enlargement or the real Brent algorithm. If the 
current point (note now it is generated by the Brent algo
rithm, instead of cubic interpolation) is good enough, we 
shall jump from status 4 to status 1, so cg.lbrent should be set 
to false. Since we are not jumping to status 2, cg.ltrial should 
also be set to false. 

When cg.ltrial is false, and the trial_con is determined to 
be false, we are in status 1. We then generate the trial point 
from the CG beta and move to status 2 by setting cg.ltrial to 
be true. It should be noted that since the zbrent! function in 
VASP contains multiple utilities, it must be reset here. This 
reset ensures that the cubic interpolation utility will be exe
cuted next time. 

From the above analysis, it can be seen that the two code 
segments achieve the same functionality. However, the code 
in VASP is much more obscure. The main reason is that 
mathematical optimization algorithms are usually designed 
assuming the gradient is available whenever needed. In our 
case, the SP calculation must be performed to get the force 
and stress. Thus, the simple for-loop architecture in VASP 
requires that during the execution of optimization functions 
like cg_vasp!, the gradient for only one point is available, 
which prohibits the direct translation of most mathematical 
optimization algorithms. As demonstrated above, we must 
carefully identify all possible statuses and hopping within the 
algorithm, and then we use numerous if-else blocks in the 
code to handle different possibilities. 

We can point out two details where the VASP im
plementation appears rather idiosyncratic. First, integrating 
cubic interpolation, interval enlargement, and the real Brent 
algorithm in one single zbrent! function seems odd. How
ever, separating them would introduce even more branches in 
the code, further reducing its readability. Besides, after each 
Brent algorithm, we shall skip subsequent steps if the last 
point has been good enough or some quick-returning con
ditions are satisfied. In Hylanemos, these two examinations 
are placed together. In VASP, the good_enough function is 
called near the end, while the quick_exit_brent function is 
called near the beginning. There are two reasons for this 

Function 3 VASP CG geometry optimization 

function cg_vasp!(cg::VaspCGData, sp::VaspSPData)   
if !cg.ltrial     

cg.beta = calc_beta(cg)     
trial_con = cg.lbrent && quick_exit_brent(cg)     
if !trial_con       

make_trial_step!(cg)       
reset_zbrent!(cg)       
cg.ltrial = true       
return     

end   
end   
zbrent!(cg)   
if cg.ltrial     

cg.lbrent = true   
end   
if good_enough(cg)     

cg.lbrent = false   
end   
cg.ltrial = false 

end   
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separation. First, the good_enough function in VASP serves 
not only to assess whether a point obtained from the Brent 
algorithm is satisfactory but also to determine the adequacy 
of the cubic interpolated point. Thus, it must be put and 
called near the end. The other reason is that the quick_
exit_brent function requires the gradient at the new point. 
Therefore, it can only be calculated after the SP calculation, 
i.e., near the beginning. 

From the above analysis, it can be seen that the simple for- 
loop architecture becomes unwieldy when implementing 
complex structure evolution algorithms. Therefore, certain 
algorithms, such as the backtrack in geometry optimizations, 
are absent in VASP. Some other algorithms are also im
plemented awkwardly, similar to the example we have ana
lyzed. For another example, readers can examine the 
implementation of the dimer method [31–33] in either VASP 
or VTST and compare it with the algorithm described in the 
papers. The equivalence can be proved through a similar but 
even harder analysis of statuses and hopping. 

With the emergence of various algorithms in type III tasks, 
it will become increasingly difficult to accommodate them in 
one simple for loop. Utilizing the three-layer architecture in 
Hylanemos, we can directly convert each algorithmic logic 
into one corresponding function. This approach proves to be 
significantly more convenient compared to other methods. 

2.3  Flexibility for different SP methods  

Even though this layer of flexibility is less important and 
often ignored, it is beneficial for an integrated solution to 
support it. There are two key points to consider in this regard. 
First, some methods may rely on other methods. For ex
ample, a GW [29,30] calculation usually contains a DFT 
calculation and another calculation based on the output of 
DFT. Second, some common treatments are shared among 
different methods, such as the Ewald summation for the ion- 
ion interaction calculations, and various dispersion correc
tions proposed by Grimme [37–39]. 

A multi-layer design is necessary to accommodate various 
methods and treatments. The bottom layer provides modules 
for common treatments, the intermediate layer for different 
methods, and the top layer is a wrapper module that provides 
common interfaces for ion-related tasks, such as updating the 
current structure, performing the actual calculation, and ob
taining output energy and force. 

When working on ion-related tasks, it is crucial to utilize 
the common interfaces of the top layer rather than directly 
manipulating the underlying structures, which can vary 
among different SP calculation methods. Following this 
approach, new SP calculation methods can be easily in
corporated by adding a new module in the intermediate layer 
and using it in the top layer, without modifying the code for 
the ion-related tasks. 

2.4  Flexibility in PW-PP KS-DFT  

In DFT, the functional for the total energy depends solely on 
the electron density. However, in KS-DFT, the used XC 
functional may involve multiple parameters. For instance, 
some meta-GGA functionals incorporate kinetic energy 
density, while hybrid functionals involve the wavefunction. 
These parameters are critical for determining the system’s 
Hamiltonian. Additional corrections may introduce other 
quantities for Hamiltonian determination, such as occupation 
matrices in LDA+U. In this paper, all these quantities will be 
referred to as variables in the Hamiltonian, or simply vari
ables, which should be treated equally. 

However, it is important to note that these variables do not 
need to be treated identically. First, their convergence be
haviors differ, so they can be grouped into different sets. 
Each set can then be iterated in different layers of self-con
sistent calculations. Second, some variables may be defined 
in a reduced space or a space with higher dimensions, cor
responding to different projections of the Hamiltonian. 

The LDA+G method is a good example. Even the basic 
algorithm of the LDA+G method is too complex to be dis
cussed here, and there are many slightly different im
plementations. In the Supporting Information, we briefly 
introduce the basic ideas, and here we only describe two 
different implementations. In Bunemann’s implementation 
[40], the Gutzwiller-Kohn-Sham (GKS) loop is a loop of the 
outer minimizations, with each iteration containing a full 
normal KS SCF and an inner minimization with respect to 

I ; ', the expansion coefficients for local configurations. 
The outer minimizations are iterated with respect to , the 
density matrix. In their work, Bunemann mentioned that this 
implementation may not be the most efficient, but it is rather 
easy to implement in the QE framework. This proves the 
need for a more flexible framework. Bunemann proposed 
another possible implementation, which is used in Hylane
mos. In this implementation, the GKS loop is an inner loop 
within each iteration in the normal KS SCF. Dai has pro
posed another implementation [41], where the overall pro
cess is similar to Bunemann’s implementation, except that 
the variable in the outer loop is the renormalization ma
trix R. 

Consequently, multiple layers of self-consistent loops may 
be involved in the SCF process instead of one single layer in 
basic KS-DFT. Moreover, consecutive calculations on dif
ferent spaces may occur within a single iteration. The in
troduction of different corrections leads to varying looping 
behaviors, similar to how different type III tasks require 
different algorithms. 

It should be noted that using a different function for each 
correction is not ideal for two reasons. First, multiple cor
rections can be used simultaneously. Second, these correc
tions do not rely on statuses to determine their actions in each 
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iteration. Therefore, a single function capable of handling the 
SCF process across different layers is preferred. 

The key here is to use a unified structure, the electronic 
status (ES), to collect the variables together, group them into 
different sets, and store the information of the sets, like the 
related Hamiltonians. With the recursion technique, the 
complicated SCF process can be performed similarly to the 
normal simple SCF, like the following code. 

The function Calc! is to perform a single loop of self- 
consistent calculations and get the new variables in the 
specific layer. Likewise, Isconv is to check the convergence 
of these variables, Mix! is to apply some mixing algorithms 
to get the input values for these variables in the next iteration, 
and UpdateHamiltonian! is to update the corresponding 
Hamiltonian according to new values of these variables. 
Different computational tasks may need different variables, 
and the details of these corresponding functions can vary 
greatly. Thus the ES must be used to wrap these values and 
hide these differences. 

This approach results in a unique SCF process within our 
framework, which differs from the commonly employed 
method. Figure 2 illustrates a schematic of our SCF process. 

2.5  Flexibility from module design  

Modular programming is a widely used software design 
technique [42] that divides a program’s functionality into 
independent, interchangeable modules. These modules con
tain data and functions for specific purposes and commu
nicate with each other through interfaces. 

It is important to consider what modules are needed and 
what should be contained in each module. Additionally, the 
design of module interfaces, or how modules communicate 
with each other, is crucial. 

In this approach, it is natural to have a module for each 
physical term and each type of numerical algorithm under 
consideration. For example, separate modules can be created 
for LDA+U and eigen solvers. Furthermore, having a mod
ule for each group of data that shares common computational 

treatments can also be beneficial. 
An example is the local potentials, which contribute to the 

energy in the form of  

E V r r r= ( ) ( )d . (1)loc

Local potentials can be introduced by many different 
corrections and modifications, such as dipole correction, 
magnetic constraints, and the implicit solvent model. These 
potentials have common computational treatments and share 
contributions to the Hamiltonian and force, as discussed by 
Laasonen et al. [43] and Chan et al. [44]. Here, we only list 
the most important conclusions. 

When ultrasoft pseudopotentials (USPP) [4] are used, local 
potentials contribute to two terms in the Hamiltonian: the 
local term and the non-local term. The contribution to the 
local term is direct:  

V Vr r r( ) = ( ) ( ), (2)loc loc

while the contribution to the non-local term  

V D= (3)ij i ij j
NL

Figure 2 (Color online) The SCF process in our framework. Note that X 
represents the electronic status (ES), instead of the electron density ρ. 
Variables in ES can be split into different groups, denoted by X 1 and X 2 in 
the figure. There may be even more groups, denoted by the ellipsis in the 
figure. Each group of variables has its corresponding Hamiltonian and its 
layer of iteration. The whole SCF process exists only when all variables 
have been converged.  

Function 4 Recursive SCF 

function Scf!(es::ES, layer)   
while true     

if layer <= MaxLayer(es)       
Scf!(es, layer+1)     

end     
Calc!(es, layer)     
if Isconv(es, layer)       

break     
end     
Mix!(es, layer)     
UpdateHamiltonian!(es, layer)   

end 
end   
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is through the D coefficients:  

D D V Qr r r= + ( ) ( )d , (4)I
ij ij

I
ij
Iloc

D, Q, and β are all parameters defined in the USPP. 
For norm-conserving pseudopotentials (NCPP), the aug

mentation function Q does not exist. Thus, the second term 
vanishes, and local potentials do not contribute to the non- 
local term. 

In both NCPP and USPP, local potentials contribute to a 
force correction term:  

( )F V Vr= d ( / ) . (5)c in
loc loc

Thus, it is advantageous to use individual modules to en
capsulate these similarities. This approach allows for new 
corrections of local potentials by simply adding them to the 
total local potential instead of reimplementing all the treat
ments. 

The design of module interfaces is critical in modular 
programming, which requires a balance between simplicity 
and flexibility. In our implementation, we prioritize high 
flexibility over simplicity, as future modifications may ne
cessitate this level of flexibility. 

In the following examples, we illustrate two distinct sce
narios. The first example pertains to the parallelization over 
G vectors, where two different types of parallelization, 
namely ρ type and ψ type, are implemented using two dis
tinct sets of interfaces instead of one unified interface. The 
differences are subtle yet critical. There are many different 
orbitals (indicated by band) for each k point, but only one 
common charge density for all k points. For instance, when 
performing ψ-related calculations on 2 k point groups and 2 
band groups with 8 processes, G vectors can only be split 
into 2 processes because of the number of k point groups and 
band groups. On the contrary, when performing ρ-related 
calculations, G vectors can always be split into all 8 pro
cesses regardless of the parallelization settings. The calcu
lation efficiency can severely deteriorate without considering 
the subtle differences. 

The second example involves the complexity of the in
terface when calculating ρ from ψ, where the interface is 
designed with arguments instead of using modular or global 
variables. In traditional practices, KS orbitals, orbital occu
pancies, and electron densities are stored as modular or 
global variables, allowing the electron density calculation 
subroutine to function without arguments. However, LDA 
+G modifies the way electron density is calculated. Theo
retically, the electron density should be calculated in a larger 
space instead of the KS space, while it can still be done in the 
KS space with certain adjustments in practice. The process 
involves generating a set of corrected orbitals from the KS 
orbitals, using these corrected orbitals to calculate an elec
tron density, and then modifying the electron density to ob

tain the true electron density. It is important to note that the 
corrected orbitals are only utilized for calculating charge 
density. One should still use the original orbitals afterwards, 
and cannot modify the KS orbitals in place. 

The subroutine without arguments can not serve this pur
pose. One approach is to write a completely new subroutine 
for LDA+G electron density calculation only. However, this 
would lead to code duplication, as a part of LDA+G electron 
density calculation is similar to the ordinary electron density 
calculation. Another approach is integrating judgment within 
the subroutine to determine whether corrections should be 
made, which would cause the unreasonable fact that the 
electron density module depends on the Gutzwiller module. 
Herein, we prefer to use a single interface that requires va
lues as arguments instead of relying on modular or global 
variables, and determine in the SCF module whether cor
rections should be made and what values are to be passed. It 
consequently results in clean logic, eliminates code dupli
cation, and offers increased flexibility for potential correc
tions. 

3  Applications  

3.1  Overall introduction  

Considering the discussions, we implemented the Hylane
mos (HY) software with the Julia programming language. 
Hylanemos is designed to be an integrated solution for 
general materials simulations, while we currently focus on its 
applications in lithium-ion batteries based on PW-PP KS- 
DFT. Hylanemos is part of Matter Craft [45], an integrated 
platform for materials simulation tools, which contains 
modeling tools and graphical user interface (GUI) tools for 
Hylanemos and several other simulation packages. 

In the following sections, we present several assessments 
for Hylanemos. The Hylanemos was evaluated for its accu
racy in reproducing SCF results of some simple systems 
calculated by VASP and QE, two widely used KS-DFT 
packages. The computational efficiency of the three packa
ges is further investigated with a lithium cobalt oxide (Li
CoO 2, LCO) system. An attempt was also made to apply the 
three packages to perform several complex tasks on typical 
lithium-ion batteries-related systems, spanning LCO, layered 
LiNi 1/3Co 1/3Mn 1/3O 2 (NCM), lithium iron phosphate (LiFe
PO 4, LFP), and Li-Graphene. Finally, the LDA+G feature of 
Hylanemos is presented, which is absent and arguably dif
ficult to implement in the other two packages. 

3.2  Calculation details  

All calculations were carried out on an HPC cluster, with 
each node consisting of two Intel Xeon Platinum 8358 Pro
cessors. VASP version 5.4.4 was used, and the “makefile. 
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include.linux_intel” file that comes with the source code was 
used for compiler options. QE version 7.0 was used, but 
minor modifications were made to enable the simultaneous 
use of Libxc [46] and DFT-D3 [38]. 

Currently, Hylanemos supports NCPP [3] and USPP, 
VASP focuses on PAW potentials, and QE supports all three. 
Hylanemos uses in-house generated USPPs named Eacomp 
PP, with an 18 Ha energy cutoff for wavefunctions and 90 Ha 
for electron densities. VASP, on the other hand, uses PAW 
potentials with an energy cutoff for wavefunctions set to 
500 eV, or about 18.37 Ha. The choice of 500 eV is based on 
the cutoff requirement for a specific potential Li_sv when the 
Li element is present. VASP does not need an energy cutoff 
for the electron density. In the case of QE, GBRV USPPs 
[47] are utilized, and while the publication suggests an en
ergy cutoff of 20 Ha for wavefunctions, a higher cutoff 
(24 Ha) is necessary for systems containing Ni atoms. 
Therefore, 24/120 Ha cutoffs are used for QE calculations in 
most benchmark systems. 

In most cases, the number of k points is selected so that the 
spacing is less than 0.4 Å −1 and N k×N atoms>500. Hylanemos 
and QE utilize Libxc for the exchange-correlation func
tionals, while VASP employs its own implementation. All 
calculations were performed using the Perdew-Burke-Ern
zerhof (PBE) functional [48] unless otherwise specified. In 
the case of structures containing transition metals, LDA+U 
corrections are applied, with specific U values set for Fe 
(3.6 eV), Co (5.6 eV), Mn (3.7 eV), and Ni (6.6 eV). 
Grimme-D2/D3/D4 [27–29] dispersion corrections are em
ployed when required, with the D3 correction used in con
junction with the Becke-Johnson damping function [49]. 

We believe packages will most likely be used in the in
dustry with parameters set as default or recommended. Thus, 
we also set parameters in the benchmarks in this way, which 
may lead to differences among different packages. For ex
ample, in VASP, the length of the charge density grid is only 
1.5 times that of the wavefunction grid, while it is 2 times in 
QE and Hylanemos. (Readers are referred to the VASP 
manual for PREC for more details). Another example is that 
VASP adopts parallelization over bands, while QE and Hy
lanemos adopt parallelization over plane waves. No paral
lelization over k points is used in any benchmarks. The 

Davidson algorithm is used in all three packages, but the 
implementation details differ. 

3.3  Evaluation of accuracy  

As mentioned previously, SP calculations are the basis of 
many complex tasks, and SCF calculations are the core of SP 
calculations. Thus, the accuracy is evaluated by the results of 
SCF calculations, i.e., total energies, forces, and stresses. 

The total energies can only be compared when the same 
potentials are used. Thus, the SCF results of Hylanemos and 
QE are compared because they both support PP in the unified 
pseudopotential format (UPF). Table 1 illustrates the dif
ferences of total energies, forces, and stresses of several 
simple systems calculated by Hylanemos and QE with both 
pseudo dojo [50] (a set of NCPPs) and GBRV (a set of 
USPPs), and the results agree very well. For dojo, energy 
cutoffs of 50/200 Ha are used. The convergence threshold for 
self-consistency is set to 1×10 −8 Ry. 

The three packages were compared for formation energies, 
regardless of the different potentials used. Table 2 clearly 
shows that these packages yield similar results, indicating 
Hylanemos’ accuracy in reproducing SCF results calculated 
by these widely used packages. In the case of bulk systems, 
the k spacing is chosen to ensure that N k×N atoms is greater 
than 8000. For atomic systems, a cubic cell with a cell length 
of 15 Å and a 3×3×3 k-point mesh is utilized. 

Diverse materials containing bulk, surface, and molecule 
systems also undergo a more comprehensive validation. In 
addition to energy, forces, and stress, the magnetic moments 
calculated by Hylanemos show a high degree of consistency 
with those obtained by QE. The validation details are listed 
in the Supporting Information.   

3.4  Assessment of computational efficiency  

LCO systems containing 48, 96, and 300 atoms were utilized 
to compare efficiency. The k-point meshes for these systems 
are 4×4×2, 2×4×2, and 1×1×1, respectively. Different num
bers of processes (1, 2, 4, 8, 16, 32, and 64) were employed 
to assess the parallel performance. 

The comparison between different potentials, instead of 

Table 1  Differences of SCF results calculated by Hylanemos and QE with the same settings  a)  

ΔE (Ry) ΔS max (kbar) ΔF max (Ry bohr −1)  

Si-GBRV <2.0×10 −8 0.01 (0.02%) 3.95×10 −6 (0.00%) 

NaCl-GBRV 4.1×10 −7 0.07 (1.90%) −2.15×10 −6 (−0.03%) 

Al-GBRV <2.0×10 −8 0.01 (0.10%) −3.65×10 −6 (−0.09%) 

Si-dojo <2.0×10 −8 0.01 (−0.01%) −1.03×10 −6 (0.00%) 

NaCl-dojo <2.0×10 −8 −0.03 (−0.79%) −1.28×10 −6 (−0.02%) 

Al-dojo <2.0×10 −8 0.00 (−0.01%) −2.45×10 −6 (0.03%) 

a) ΔE, ΔS max, and ΔF max represent energy difference, maximum stresses difference, and maximum forces difference, respectively  
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packages, is an important factor to consider. The analysis of 
Figure 3 may cause the illusion that QE yields the worst 
performance. However, this is primarily due to the variations 
in potentials. GBRV pseudopotentials have the most valence 
electrons for transition metal elements, requiring much 
higher energy cutoffs than the other two types. In contrast, 
VASP potentials and Eacomp PP are similar in these aspects. 
Consequently, the computational cost is significantly higher 
in QE, leading to longer computation times and better par

allel performance. In the Supporting Information, we com
pare QE and Hylanemos, which are both calculated with 
GBRV pseudopotentials and the same settings. It can be seen 
that parallel performance is similar. The efficiency of Hy
lanemos is slightly better for the SCF process and much 
better for force and stress calculation. 

It should be noted that this is not an inherent limitation of 
USPP. Eacomp PP also falls under USPP but is comparable 
to VASP PAW potentials. This could be attributed to the fact 
that GBRV pseudopotentials are designed for high- 
throughput calculations, generating only one PP for each 
element. As a result, a single GBRV PP must be accurate for 
numerous potential structures, some of which require a large 
number of semi-core electrons, necessitating an overall 
higher energy cutoff. On the contrary, VASP offers a variety 
of potentials for each element, each with a different number 
of valence electrons. As the systems in our benchmarks do 
not require many semi-core electrons, those with fewer va
lence electrons are utilized. Eacomp PPs used in the 
benchmarks are generated with the same valence electron 
numbers as those used in VASP potentials. 

The Hylanemos yields the best performance for systems 
with 48 and 96 atoms, indicating its comparable computa

Table 2  Formation energies (kJ mol −1) calculated by Hylanemos, QE, 
and VASP  

Hylanemos VASP QE 

Na 122.710 122.960 122.761 

Ti 633.541 629.382 635.817 

Si 514.587 514.324 514.569 

O 324.046 326.551 326.790 

Al 355.042 355.142 355.034 

Br 150.589 150.567 150.651 

Ga 274.099 274.072 274.221 

S 328.950 328.804 328.907   

Figure 3 (Color online) Efficiency for different systems with different cores. (a) 48-atom LCO system; (b) 96-atom LCO system; (c) 300-atom LCO 
system. (d) The ratio of Hylanemos’ computation time to that of QE and VASP.  
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tional efficiency to these widely used packages. VASP de
monstrates the best scaling with system size, which can be 
attributed to its use of real-space calculations for the non- 
local term. In reciprocal space, beta functions are expanded 
by the entire basis, which grows in size with the system. 
Conversely, beta functions are local in real space and can be 
expanded in a nearly fixed-sized grid. As a result, it is effi
cient to use real space calculations when the system has more 
than several tens of atoms. Nevertheless, real space calcu
lations can introduce non-negligible errors without careful 
treatment, which has been addressed by VASP internally. To 
highlight the importance of real space calculations, we also 
perform calculations for the non-local term with the re
ciprocal space method. Our findings reveal a substantial 
decline in the computational efficiency of VASP. VASP turns 
out to be slower than both QE and Hylanemos. More details 
of this comparison are listed in the Supporting Information. 

Regarding scaling with the number of processes, QE de
monstrates the best performance. This can be largely attrib
uted to the difference in potentials, as previously discussed. 
When the number of processes is limited to 16, Hylanemos 
exhibits performance comparable to VASP. However, its 
performance deteriorates significantly with 32 processes and 
worse with 64. Notably, for a system with 300 atoms, Hy
lanemos takes longer to compute using 64 processes than 
with 32. These findings indicate the need to further optimize 
the parallelization mechanism in Hylanemos. 

It should be noted that the default parallelization scheme in 
VASP is different from that in QE and Hylanemos. In VASP, 
the default setting is parallelization over bands, while in QE 
and Hylanemos, it is parallelization over plane waves. The
oretically, this difference will impact both efficiency and 
scalability with the number of processes. However, no clear 
trend can be found after conducting a benchmark test in 
VASP. The relevant data are included in the Supporting In
formation. 

In the context of computational chemistry software 
packages, the direct diagonalization in the subspace is a 
crucial aspect of Davidson-type eigensolvers. However, the 
computational cost of this subroutine scales cubically with 
system size and cannot benefit from parallelization over k 
points, bands, or G points. To address this limitation, parallel 
linear algebra subroutines such as ScaLapack or ELPA are 
utilized. Nevertheless, the implementation of these sub
routines requires careful preprocessing and postprocessing. 
In the case of Hylanemos, while it incorporates this feature, it 
is still in its early stages and only demonstrates a non-neg
ligible effect on large systems, such as those with 300 atoms. 

3.5  Presentation of capabilities  

3.5.1  Geometry optimization  
The three packages provide various algorithms for geometry 

optimization. In VASP, the residual minimization method 
with direct inversion in the iterative subspace (RMM-DIIS) 
is used as the default algorithm in the benchmark. QE utilizes 
a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton 
algorithm based on the trust radius procedure (BFGS-tr) as 
its default algorithm in the benchmark. Hylanemos employs 
a modified version of the BFGS-tr algorithm from QE as its 
default, with adjustments to enhance performance on com
plex systems, such as a change in the criterion for the ac
ceptance of trial points and re-initialization of the basis set 
when the change of cell is large. Additional algorithms have 
also been implemented in Hylanemos, including a BFGS 
algorithm based on line search (BFGS-ls), a two-point 
steepest descent (TPSD) algorithm, a conjugate gradient 
(CG) algorithm, and a damped molecular dynamics 
(DAMPMD) algorithm. 

Table 3 demonstrates the lattice parameters of LCO, NCM, 
and LFP systems calculated by Hylanemos, VASP, and QE. 
It should be noted that the impact of different dispersion 
corrections was also evaluated in the LCO system using 
Hylanemos because of the well-accepted fact that both axes a 
and c of the system are overestimated without dispersion 
corrections. It can be observed that with any dispersion 
corrections (D2, D3, and D4), axis a is still overestimated, 
albeit to a lesser extent, while axis c is underestimated. 
Consequently, the cell volume aligns much more closely 
with the experimental value. The results indicate that D3 and 
D4 corrections perform better than D2 corrections. 

The same D3 correction has been applied to the calcula
tions of lattice parameters of LCO, NCM, and LFP systems. 
As shown, the results calculated by the three packages are 
close to the experimental values. The lattice shapes remain 
consistent, with minor distortions observed in NCM, and the 
cell volume discrepancy is less than 2%.  

3.5.2  Electronic structures  
The calculated band structures, partial density of states 
(PDOS), and crystal orbital hamilton population (COHP) by 
the three packages are shown in Figures 4‒6. Due to the 
arbitrary process of projecting the KS orbitals onto atomic 
orbitals, there may be variations in the PDOS and COHP 
results across different packages. However, the band struc
tures are expected to resemble each other. 

To demonstrate the band structure, we selected an FCC Al 
system with 4 atoms. The results, illustrated in Figure 4, 
exhibit significant overlap. For PDOS and COHP, the LFP 
system was used, with each package utilizing its own opti
mized structure. As previously mentioned, there may be 
slight discrepancies between the structures. Nevertheless, the 
results displayed in Figures 5 and 6 are consistent with each other. 

No COHP results from QE are available. Typically, the 
LOBSTER [54,55] software is used to calculate COHP from 
data generated by DFT packages. However, LOBSTER only 
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supports results calculated from PAW potentials. Although 
QE supports PAW potentials, such a calculation was not 
carried out. It is worth noting that COHP analysis for PPs is 
supported in Hylanemos. Therefore, in this instance, we 
compare the results from Hylanemos with those obtained 
from VASP+LOBSTER. 

3.5.3  Mechanical properties  
Due to its precise experimental values, the conventional cell 
of AgCl with 8 atoms was utilized to study mechanical 
properties. Because of its high symmetry, only a few entries 
in the stiffness tensor are non-zero. QE does not offer this 
capability out of the box, so the ElaStic [56] package is 
utilized for calculating these mechanical properties in QE. 

When comparing QE to Hylanemos and VASP, it is im

portant to note that ElaStic uses a different approach for 
calculating mechanical properties in two primary aspects. 
First, Elastic directly computes the “relaxed-ion” elastic 
tensor through geometry optimization calculations. In con
trast, Hylanemos and VASP calculate the “clamped-ion” 
elastic tensor, internal-strain tensors, and force-constant 
matrix via SCF calculations and subsequently derive the 
“relaxed-ion” tensor from these values. For more in-depth 
information, readers can refer to the research conducted by 
Hamann et al. [57]. Second, Elastic uses Lagrangian stress 
and strain, while VASP and Hylanemos use physical stress 
and strain. 

The maximum strain is specified as 0.015 for the three 
packages; however, the strains are effectively varied because 
of the different definitions. Additionally, the number of 
points varied among the packages. A maximum of 5 points in 
each direction is allowed in VASP, while 7 and 21 points in 
each direction are used in Hylanemos and QE, respectively. 

Table 4 lists the calculated values and experimental values. 
Despite some variations resulting from the abovementioned 
disparities, the overall performance remains fairly consistent.  

3.5.4  Phonon calculations  
In phonon calculations, the primitive cell of the diamond 
with 2 C atoms was used. Phonopy [59,60] was used for 
preprocessing and postprocessing for the three packages, and 
a 2×2×2 supercell was employed for the calculations. As 
depicted in Figure 7, the results show close similarities 
across the three packages, with minor differences in the high- 
frequency region. However, it should be noted that there is a 
systematic deviation when comparing the results to experi

Figure 4 (Color online) Band structures of Al calculated by Hylanemos, 
VASP, and QE.  

Table 3  The comparison of the lattice constants of LCO, NCM, and LFP after optimization by Hylanemos with experimental values and those optimized 
by VASP (VA) and QE. The numbers of atoms for LCO, NCM, and LFP systems are 12, 108, and 28, respectively  

a (Å) b (Å) c (Å) α (°) β (°) γ (°) 

LCO-exp [51] 2.814 2.814 14.048 90.00 90.00 120.00 

LCO-HY 2.847 (1.17%) 2.847 (1.17%) 14.149 (0.72%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%) 

LCO-HY d2 2.842 (0.99%) 2.842 (0.99%) 13.681 (−2.61%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%) 

LCO-HY d3 2.829 (0.52%) 2.829 (0.52%) 13.965 (−0.59%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%) 

LCO-HY d4 2.830 (0.57%) 2.830 (0.57%) 13.983 (−0.46%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%) 

LCO-VA d3 2.800 (−0.49%) 2.800 (−0.49%) 13.945 (−0.73%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%) 

LCO-QE d3 2.824 (0.34%) 2.824 (0.34%) 13.950 (−0.70%) 90.00 (0.00%) 90.00 (0.00%) 120.00 (0.00%) 

NCM-exp [52] 8.580 8.580 14.227 90.00 90.00 120.00 

NCM-HY d3 8.662 (0.96%) 8.665 (0.99%) 14.173 (−0.38%) 90.10 (0.11%) 90.00 (0.00%) 119.99 (−0.01%) 

NCM-VA d3 8.559 (−0.25%) 8.562 (−0.21%) 14.120 (−0.75%) 90.08 (0.09%) 90.00 (0.00%) 119.99 (−0.01%) 

NCM-QE d3 8.661 (0.94%) 8.664 (0.97%) 14.183 (−0.31%) 90.12 (0.13%) 90.00 (0.00%) 119.99 (−0.01%) 

LFP-exp [53] 10.336 6.006 4.693 90.00 90.00 90.00 

LFP-HY d3 10.396 (0.58%) 6.046 (0.67%) 4.706 (0.27%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%) 

LFP-VA d3 10.371 (0.33%) 6.015 (0.14%) 4.695 (0.05%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%) 

LFP-QE d3 10.356 (0.19%) 6.040 (0.57%) 4.704 (0.22%) 90.00 (0.00%) 90.00 (0.00%) 90.00 (0.00%)   
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mental values [61,62]. 

3.5.5  Ion migration  
The nudged elastic band (NEB) method was utilized to cal
culate the migration of Li on graphene. The system consists 
of 32 C atoms and one Li atom, with the z-axis length of 
15 Å. A 6×6×1 k-point mesh was employed, and we speci
fically focused on the hole-bridge-hole path. The hole site is 

in the middle of a C 6 unit, while the bridge site is above a 
C‒C bond. The results, depicted in Figure 8, revealed that the 
calculated diffusion barriers exhibit remarkable similarity. 

3.6  LDA+G  

The lattice constant of the fcc Ni metal was calculated using 
both LDA+U and LDA+G methods, with different U values. 

Figure 5 (Color online) Calculated PDOS for LFP. (a)‒(c) The total DOS and DOS on each element; (d)‒(f) the DOS on different orbitals of Fe. Calculated 
(a) and (d) by Hylanemos, (b) and (e) by VASP, and (c) and (f) by QE.  
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The calculation was based on a conventional cell with 4 Ni 
atoms, as conducted by Schickling et al. [63]. A k-point mesh 
of 12×12×12 and the LDA functional, as used in Schickling’s 
work, were employed. PseudoDojo was used because cur
rently, only NCPP is supported. 

The experimental value was also obtained from Schick
ling’s work. Figure 9 shows that for U=0, both LDA+U and 
LDA+G methods produce similar results, as expected. When 
U=0, both methods have no correction, and their outcome 
aligns with the basic KS-DFT LDA approach. As the U value 
increases, the LDA+U method yields a decreasing lattice 
constant, deviating further from the experimental value. On 

the contrary, for the LDA+G method, the calculated lattice 
constant approaches the experimental value as the U value 
increases. The LDA+G curve is similar to the results from 
Schickling [53]. 

4  Conclusions  

In this work, we present an analysis of techniques for de
signing an integrated solution for materials simulations. The 
core of the proposed approach lies in the flexibility of three 
layers: the task layer, the SP method layer, and the correction 

Figure 6 (Color online) Calculated COHP for LFP. (a)‒(c) The COHP for the nearest Fe‒O, and (d)‒(f) for the nearest P‒O. Calculated (a) and (d) by 
Hylanemos with Eacomp PP, (b) and (e) by VASP, and (c) and (f) by Hylanemos with GBRV.  

Table 4  Mechanical properties of AgCl calculated by Hylanemos, VASP, and QE, along with experimental values  a) 

AgCl (GPa) C11 C12 C44 YM SM BM 

Exp [58] 73.91 39.07 6.94 29.1 10.3 50.7 

HY 69.942 41.055 4.821 21.772 7.621 50.684 

VASP 70.762 41.578 4.608 21.381 7.473 51.307 

QE 73.7 33.9 4.1 23.290 8.214 47.167 

a) YM, SM, and BM represent Young’s modulus, shear modulus, and bulk modulus, respectively. The outputs of ElaStic for stiffness tensors contain only 
one digit after the decimal point.  
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and modification layer. We demonstrate the use of a distinct 
function for each new algorithm in the task layer, a multi- 
layer design for accommodating different SP methods in the 
second layer, and the utilization of electronic status (ES) to 

enhance the flexibility of the SCF process in the third layer. 
With these techniques, we implemented Hylanemos, an in
tegrated solution based on PW-PP KS-DFT. In particular, 
Hylanemos enables the LDA+G calculations, which is un
common in the previous KS-DFT packages. 

It should be emphasized that the proposed flexible design 
does not compromise the accuracy or the efficiency of Hy
lanemos. Besides, we also developed a set of highly opti
mized USPP called Eacomp PP, which has energy cutoffs 
and valence electron numbers similar to VASP PAW poten
tials. A comparison of Hylanemos with VASP and QE on 
various calculation tasks reveals that the overall performance 
of Hylanemos is comparable and arguably better than these 
widely used packages in terms of accuracy and efficiency. 
The improvements of Eacomp PP over commonly used 
GBRV USPP are also significant and crucial to achieve ef
ficiency comparable with VASP. Despite the numerous ad
vantages that Hylanemos has demonstrated, it is important to 
recognize that this is merely the starting point of its journey. 
The field of computational materials science is evolving at an 
astonishing pace, and Hylanemos has substantial room for 
further evolution. Particularly, challenges remain in effec
tively scaling with the system size and the number of pro
cesses. Future work could focus on enhancing the code’s 
parallel efficiency, perhaps by exploring novel parallel al
gorithms and optimizing the distribution of computational 
tasks. Additionally, more sophisticated numerical techniques 
might be introduced to improve the handling of large-scale 
systems without sacrificing accuracy. We envision that 
through continuous efforts in research and development, we 
can bridge these existing gaps, making Hylanemos a more 
robust and versatile tool for the scientific community and the 
industry of computational material science applications.  
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