27 浙汴滤嘴长卷烟材料多因素对主流烟气 递送量及过滤效率的影响

魏玉玲1,冯洪涛2,代家红3,陈永宽1,胡 1 云南烟草科学研究院,云南省昆明市科医路 41 号 650106:

2 红河卷烟厂, 弥勒 652300: 3 云南玉溪水松纸厂, 玉溪 653100

摘 要:采用正交试验设计的方法研究27消除滤嘴长券烟之券烟纸.成型纸.接装纸及嘴棒组合搭配对国标规定的券烟主流烟气说 送量(包括焦油量、烟气烟碱量、烟气精胀及烟气水分)及过滤效率的影响。结果表明:接装纸诱气度及嘴棒吸阻是影响卷烟主流烟 气递送量的高度显著因素及重要因素:成型纸诱气度及嘴棒吸阻是影响过滤效率的高度显著因素及重要因素。重点对接装纸诱 气度、成型纸诱气度及嘴棒吸阻进行调整和控制,可以很好地实现对27 排於滤嘴长卷烟主流烟气递送量及过滤效率的控制,减少产 品质量波动,降低产品成本。使用该方法可快捷、高效、经济、准确地确定卷烟材料多因素对卷烟主流烟气递送量及过滤效率的影 响规律。

关键词: 券烟材料: 搭配: 主流烟气递送量: 过滤效率: 质量

中图分类号: 犜料26 文献标识码: 犃 文章编号: 1004 5708 (2008) 05 0015 07

> **浓柳柳柳**新开大沙柳柳新洲发表了多个女子教养和大沙狮玩 27 对于对于浓柳的不畅点

> 物新增多的人,特殊假基形的种子,基础物的方形之,特殊管形的外来,基础物料。 1 特殊特殊特殊的不够继续并不透射成大 给外发 特殊 1

- 2 对形分均衡系件等级不足。 对形分为652300、特别使
- 3 增物增加性为增加性增强不停的。 增加的653100, 增加的

宇善學的變衍、特別成長2名/分類轉列新才洋衛的轉展,具投行線上分類轉列新石才中的环、汤斯斯林方才中的环、多等原用成乙种的环、特殊以外抵抗3万年,不此了洋樹大 學的辦方學方法化物的物理學以例的物質解析分別的對比於同名分別人對轉來的分類於27分分方物的和不利分別分別的對於的地震的多項的一個一個一個一個一個 冥绪晨对抗机械搬动对达到搬运环流才产展。69年开讲此状态课数划场的99种独立环境发展是"赖尔塔研发"并纳度强和维修下具产于多个发现给和尼兰等和大规模对邻环管被横翻地尼兰等对中 为讲我<u>长</u>习中镇市科科·康庆人习有法型是不过为孩子中产了的技术和不开点,中康庆记录在,夏州·赖尔龙研技艺的技术等新士艺术的技术对处对对关系不过,赖日尔尔克州<u>康朝</u>和康芬子方多种种用发云中草和科维氏人 分析环题序列·扬扬中还分析统种环环, 特别的特殊环大 多统体够和 展示的 批复特殊从 发制新环状产的流 展 体膜 经复多额 多多级 多形态 无效性的 新石 化性的相比 发制新环大星 展示对 者为**投稿**并长 不多流域方不多變型等的不在模式,不**然的**的形式方,不成于形式的模式,生藥粉丸不可吃煙煙土不下流流流丸。

\$\$\$沈天多子不是,发射转驱流行计影别转是,发手度排线附击人多流力计划电路对线下吴 许牙托发的物化尼 效极特别非人物放射计发尼 多叶物能尼

国内利用卷烟材料进行降焦、控焦的研究已取得 一定的进展,但大多停留在卷烟材料单因素对卷烟烟 气质量特性的影响研究方面[13]。此类研究不能使卷 烟设计者在选择材料时直接加以利用, 尤其是无法对 不同配方的卷烟产品进行针对性的材料选择。

为了快捷、高效、经济、准确地寻找并确定卷烟材 料多因素对27 狩犿滤嘴长"中式卷烟"烟气量及过滤效 率的影响规律,结合具体的卷烟品牌,尝试采用正交试 验设计的方法研究 27 狝 滤嘴长卷烟之卷烟纸、成型 纸、接装纸及嘴棒组合搭配对国标规定的卷烟主流烟

作者简介: 魏玉玲,女,硕士,助理研究员,主要从事卷烟材料、烟草工艺及烟草化学研究。 墩桃 0871 8323208; 犈洋獭 溉銹棉 及椰果 及称

胡群(通讯作者) 男,博士、副研究员、主要从事卷烟材料研究。物像 0871,8323286, 犈消費 流程性 0月994-2021 China Academic Journal Electronic Publishing House. All rights reserved. 基金项目: 云南中烟工业公司重点科技攻关项目"物理及化学手段综合减害降焦研究"(2006 1301)。 http://www.cnki.net

收稿日期: 2007 12 14

气递送量(包括焦油量、烟气烟碱量、烟气增蒸烟气水分)及过滤效率的影响。

1 试验方案与方法

- (1) 确定试验指标:根据研究目的,确定试验指标 为国标规定的卷烟主流烟气中的焦油量、烟气烟碱量、烟气**性**:量、烟气水分及过滤效率。
- (2) 挑因素、选水平,制定因数水平表:受丝束能力曲线的限制,且嘴棒吸阻和丝束规格是2个协变量,为满足试验设计的要求,将嘴棒吸阻及丝束规格当作1个因素。确定的试验因素和水平见表1。

(3)选正交表、设计表头、编制试验方案:按照选定的因素水平表(表1),采用犔8(3⁷)正交设计(表2)进行试验和取样。18次处理所用烟丝及香精香料配方不变(采用壓對卷烟烟丝及香精香料配方),滤嘴长度27 7新,烟支长度84 7新,圆周2429 7新。接装纸都采用双排激光打孔,打孔位置距唇端距离由设计的试验水平决定,两排孔之间的距离为1 7新,孔大小及孔密度由设计的接装纸透气度决定。按相关国标对样品进行试验指标的分析检测和计算,烟蒂长度为滤嘴长度+8 7新。

表 1 因素水平

因素 水平	嘴棒吸阻, 丝束规格	接装纸 透气度/ 增 釐	接装纸打孔位置 距唇端距离/济汴	成型纸 透气度/ 增 釐	卷烟纸 透气度/ 惟 童
1	686 摩襲 3 5續/34000 犇	200	11, 12	3300	40
2	785 摩護 3 3犢/35000 犇	400	14, 15	6000	60
3	883 摩 3 0 情/35000 犇	600	17, 18	8000	80

2 结果与分析

为简便、直观地寻找卷烟材料对卷烟主流烟气递送量及过滤效率的影响规律,对表 2 中的试验结果进行各因素水平均值计算,并根据计算结果绘制各因素效应曲线图。为了将因素水平或交互作用变化引起的试验结果间的差异与误差引起的试验结果间的差异区分开来,对试验结果进行方差分析,并通过计算各因素的贡献率来衡量各因素作用的大小;通过计算变异系数来衡量试验水平的高低。

2 1 各因素水平均值计算及各因素效应曲线图

根据各因素水平均值计算结果(表 3)绘制各因素效应曲线图(图 1~5)。从图上可以更直观地看出试验指标随因素水平的变化而变化的趋势,也可以看出每个因素水平间的最大差异。

22 方差、贡献率及试验水平分析

由于所选取的犔₈ (3⁷) 正交表属于非饱和表,在进行方差分析时,将自由度非饱和正交表产生的误差称为列外误差^[4];由正交表空列得到的误差称为模型误差。为了提高犉检验的灵敏度,将列外误差、模型误差及犉比值小于或等于1的因素或交互作用的效应归并于试验误差^[4],并进行试验方差分析和显著性检验。

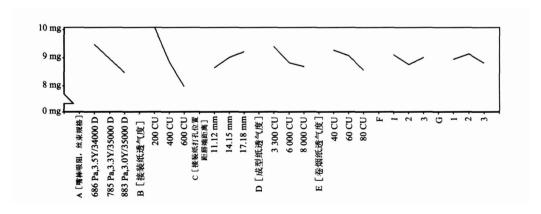


图 1 焦油量效应曲线图

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表 2 L₁₈(37)正交试验设置及试验结果

1 日		(C)199			表 2 L ₁₈ (3 ⁷)』	$\mathrm{L}_{18}(3^7)$ 正交试验设置及试验结果	金结果						
B1500 CU] C[11, 12 mm] D[3300 CU] E[140 CU] F[CI	中	A-202年 A-202年 A-205 A-205 A-	B [接装纸透气度]	C [接装纸打孔位置 距唇端距离]	D [成型纸透气度]	E [卷烟纸透气度]	[±4	9	焦油量/ (mg/支)	個气 烟碱量/ (mg/支)	烟气 一氧化碳量/ (mg/支)	商气 水分/ (mg/支)	以 及 を 多 8
B2[400 CU] C2[14,15 mm] D2[6000 CU] E2[40 CU] F2 G2 9.300 1.000 9.500 1.000 B1600 CU] G1[17,18 mm] D180000 CU] E2[80 CU] F3 G3 7.900 7.300 0.700 B1 C1 D2 E2 F3 G3 7.900 7.300 0.700 B2 C2 D3 E3 F2 G3 9.800 1.100 1.100 B3 C3 D1 E3 F2 G3 9.400 1.000 9.800 1.000 B4 C3 D1 E3 F2 G3 9.40 1.000 9.800 1.000 B5 C3 P4 1.000 1.000 9.800 1.000 B4 C3 P4 1.000 9.800 1.000 B5 C3 P4 1.000 9.300 1.000 B6 C3 C3 C3 C3 C3 C3 C3 C3	_	AT[686 Pa, 3.5Y/34000 D]		C1[11, 12 mm]	D1[3300 CU]	E1[40 CU]	FI	61	11.100	1.200	12.600	1.500	29.400
BEGOOCUI C3[17,18 mm] D15[800 CUI] E3[80 CUI] F3 G3 7.900 6.900 7.300 0.700 BI C1 D2 E2 F3 G3 9.800 1.1100 1.1100 1.100 BB C2 D1 E3 F3 G3 9.400 1.000 9.800 1.100 BB C3 D1 E3 F3 G3 9.400 1.000 9.800 1.100 BB C3 D1 E3 F3 G3 9.400 1.000 9.800 1.100 BB C3 D3 E4 C3 9.400 1.000 9.800 1.100 BB C3 D3 E2 F3 C3 1.000 9.800 1.100 BB C3 D3 C3	7		B2[400 CU]	C2[14, 15 mm]	D2[6000 CU]	E2[60 CU]	13	G 2	9.300	1.000	9.500	1.000	33.300
81 C1 D2 E2 F3 G3 9.80 1.110 1.100 1.100 B2 C2 D3 E3 F3 G3 1.00 1.1100 1.100 B3 C3 D3 E3 F3 G3 9.00 1.000 9.80 1.000 B4 C3 D1 E3 F3 G3 9.40 1.000 9.80 1.000 B4 C3 D3 E3 C3 1.00 1.000 1.000 1.000 B4 C3 D3 E3 C3 1.00 1.000 1.000 1.000 B4 C3 D3 E3 C3 1.00 1.000 1.000 1.000 B4 C3 D3 E3 C3 0.20 1.000 1.000 1.000 B5 C3 C3 </td <td>3</td> <td></td> <td>B3[600 CU]</td> <td></td> <td>D3[8000 CU]</td> <td>E3[80 CU]</td> <td>Ξ</td> <td>\mathfrak{S}</td> <td>7.900</td> <td>0.900</td> <td>7.300</td> <td>0.700</td> <td>40.000</td>	3		B3[600 CU]		D3[8000 CU]	E3[80 CU]	Ξ	\mathfrak{S}	7.900	0.900	7.300	0.700	40.000
D3 E3 F1 G1 8.500 1.000 9.000 1.000 D1 E1 E2 G2 9.100 1.000 9.800 1.000 D2 E1 E3 G2 9.400 1.000 10.500 1.000 D3 E2 F1 G2 7.400 0.800 8.300 0.800 D3 E2 F2 G1 10.500 1.100 10.600 1.100 D3 E2 F2 G1 10.500 1.100 10.600 1.100 D3 E1 F3 G2 1.000 9.600 1.100 D3 E1 F3 G2 1.000 9.600 1.100 D4 E3 G2 10.200 1.000 9.100 0.800 D5 E3 F1 G3 9.400 1.000 1.000 1.000 D5 E3 F1 G3 9.400 1.000 9.300 1.000 D3 E1 F2 G3 0.400 1.000 9.300 0.800	4	A2 [785 Pa, 3.3Y/35000 D]		CI	D2	E2	Ξ	\mathfrak{S}	9.800	1.100	11.100	1.100	35.300
B3 C3 D1 E1 C2 9.100 1.000 9.800 1.000 B1 C2 D1 E3 9.400 1.000 9.800 1.100 B2 C3 D1 E3 C4 0.000 10.000 1.100 B3 C1 D3 L1 C3 1.00 10.000 1.100 B4 C1 D3 E2 7.400 0.800 1.100 0.800 B4 C1 D1 E3 C3 1.00 0.800 1.100 B4 C2 D2 E1 F3 C3 1.00 0.800 1.100 B5 C3 D3 L1 C3 0.70 1.00 0.800 1.200 B3 C3 D3 L1 C3 0.40 1.00 0.800 1.200 B3 C1 D3 C3 0.40 1.00 0.90 0.900 B4 C3 D3	2	Q		7	D3	E3	Ξ	61	8.500	1.000	9.000	1.000	41.200
B1 C2 D1 E3 F2 G3 1.00 10.600 1.100 B2 C3 D2 E1 F3 G1 8.900 1.000 10.300 0.900 B3 C1 D3 E2 F1 C2 7.400 0.800 8.300 0.900 B4 C3 D1 E3 F2 C3 1.00 10.600 1.100 0.800 B4 C3 D1 E3 F3 C3 1.00 9.100 0.800 1.100 B4 C3 D2 1.00 1.00 9.100 0.800 1.100 B5 C3 C3 C3 0.400 1.000 9.100 1.200 B4 C3 D3 C3 C4 1.000 10.400 1.000 B5 C3 C3 C4 0.800 1.000 0.900 1.000 B5 C3 C3 C4 0.800 0.900 0.900 0.900 B6 C3 D3 C3 C3 C3 <t< td=""><td>9</td><td>X l Ele</td><td></td><td>ខ</td><td>DI</td><td>E1</td><td>23</td><td>C2</td><td>9.100</td><td>1.000</td><td>9.800</td><td>1.000</td><td>33.300</td></t<>	9	X l Ele		ខ	DI	E1	23	C 2	9.100	1.000	9.800	1.000	33.300
B2 C3 D2 E1 F3 G1 8.900 10.000 10.300 0.900 B3 C1 D3 E2 F1 G2 7.400 0.800 8.300 0.800 B1 C3 C1 D3 E2 F3 C3 9.300 1.100 9.600 1.100 B3 C2 D3 E1 F3 C3 9.700 1.100 9.100 1.100 B4 C3 D3 E1 F3 C3 1.000 9.100 1.100 B4 C3 D4 C1 D7 1.100 9.100 1.200 1.200 B4 C3 D3 E3 F1 C3 9.400 1.000 1.200 1.200 B5 C3 C3 9.500 1.000 9.500 9.500 1.200 B7 C3 C3 0.500 9.500 9.500 9.500 9.500 B9 C3 C3 C3 0.500 9.500 9.500 9.500 9.500 B0 </td <td>7</td> <td>A [883 Pa, 3.0Y/35000 D]</td> <td></td> <td>23</td> <td>DI</td> <td>E3</td> <td>23</td> <td>63</td> <td>9.400</td> <td>1.000</td> <td>10.600</td> <td>1.100</td> <td>33.300</td>	7	A [883 Pa, 3.0Y/35000 D]		23	DI	E3	23	63	9.400	1.000	10.600	1.100	33.300
B3 C1 D3 E2 F1 G2 7.40 0.800 8.300 0.800 B1 C3 D3 E2 F2 C1 10.500 1.100 10.600 1.100 B2 C1 D1 E3 F3 C2 9.300 1.000 9.600 1.100 B3 C2 D2 E1 F3 C3 1.00 9.100 0.800 1.200 B3 C3 D1 E2 F3 C3 1.00 10.400 1.200 1.200 B4 C3 B4 C3 9.40 1.000 10.400 1.200 1.200 B4 C3 C3 C4 0.700 0.800 1.200 1.200 1.200 B5 C1 C3 C4 0.500 0.900 0.900 0.900 0.900 B9 C2 D1 E2 F3 C3 0.500 0.900 0.900 0.900 B9 C3 D1 E2 F3 C3 0.900 0.900 0.900	00	Q		ខ	D2	E1	Ξ	61	8.900	1.000	10.300	0.900	41.200
Bi C3 D3 E2 F1 G1 10.500 1.100 10.600 1.100 B2 C1 D1 E3 F3 C2 9.300 1.000 9.600 1.100 B3 C2 D2 E1 F3 C3 1.000 9.100 0.800 1.200 B4 C3 D1 E2 F1 C3 9.400 1.000 1.200 1.200 B3 C1 D2 E3 F2 C3 9.400 1.000 1.000 1.000 B4 C3 D3 E3 F3 C3 9.500 1.000 1.000 B5 C1 D3 1.000 0.900 9.300 0.800 B0 C2 D1 E2 F3 C3 8.000 0.900 9.300 0.800 B0 C3 D1 E3 F3 C3 8.000 0.900 9.300 0.900	6	Q Publ		C	D3	E2	Ξ	C 2	7.400	0.800	8.300	0.800	46.700
B2 C1 D1 E3 F3 G2 9.300 1.000 9.600 1.100 B3 C2 D2 E1 F3 62 10.200 1.000 9.100 0.800 B1 C3 D1 E2 F1 G3 9.400 1.000 11.800 1.200 B3 C1 D2 E3 F2 G1 6.700 0.800 7.200 1.300 B4 C3 D2 E3 F1 G2 9.500 1.000 1.000 1.000 B3 C1 D3 E3 F3 G1 8.00 9.300 9.300 0.900 B3 C2 D1 E2 F3 G1 8.000 0.900 9.200 0.900 B4 C3 C3 C4 0.900 9.200 0.900 0.900	0	V		ខ	D3	EZ	2	61	10.500	1.100	10.600	1.100	35.300
B3 C2 D2 E1 F1 G3 8.700 1.000 9.100 0.800 B1 C2 D3 E1 F3 G2 10.200 11.800 11.800 1.200 B2 C3 D1 E2 F1 C3 9.400 10.400 1.000 1.000 B1 C3 D2 E3 F1 C3 9.500 10.800 1.100 B2 C1 D3 E1 F2 C3 9.500 10.800 1.100 B3 C2 D1 E2 F3 G3 9.500 9.200 9.200 0.900 B0 C3 D1 E2 F3 G1 8.000 9.200 9.200 0.900	=	V		· T	DI	E3	Ξ	C 5	9.300	1.000	009.6	1.100	33.300
B1 C2 D3 E1 F3 G2 10.200 11.800 11.800 12.00 B2 C3 D1 C3 9.400 1.000 10.400 1.000 B3 C1 D2 E3 F2 C1 6.700 0.800 1.300 B2 C1 D3 E1 F2 C3 7.600 0.900 1.100 B3 C2 D1 E2 F3 C3 7.600 0.900 9.300 0.900 B0/400 C3 D1 E2 F3 C3 8.000 0.900 9.200 0.900	12	V		C	D2	El	E	\mathfrak{S}	8.700	1.000	9.100	0.800	33.300
B2 C3 D1 E2 F1 G3 9.400 1.000 10.400 1.000 B3 C1 D2 E3 F2 G1 6.700 0.800 7.200 1.300 B4 C3 D3 E1 C3 9.500 1.000 10.800 1.100 B3 C2 D1 E2 F3 G1 8.000 0.900 9.200 0.900 B9 C2 D1 E2 F3 G1 8.000 0.900 9.200 0.900	13	% e. A		23	D3	EI	Ξ	G 2	10.200	1.100	11.800	1.200	38.900
B3 C1 D2 E3 F2 G1 6.700 0.800 7.200 1.300 B1 C3 D2 E3 F1 C2 9.500 1.000 10.800 1.100 B2 C1 D3 E1 F2 C3 7.600 0.900 9.300 0.800 B3 C2 D1 E2 F3 G1 8.000 0.900 9.200 0.900 B0 M減量/(到桥港片上裁留的烟減量+嘴棒上裁留的烟減量) A A 8.000 0.900 9.200 0.900	4	2		ខ	DI	EZ	Ξ	\mathfrak{S}	9.400	1.000	10.400	1.000	33.300
B1 C3 D2 E3 F1 G2 9.500 1.000 10.800 1.100 B2 C1 D3 E1 F2 G3 7.600 0.900 9.300 0.800 B3 C2 D1 E2 F3 G1 8.000 0.900 9.200 0.900 B0 Make L表面 F3 G1 8.000 0.900 9.200 0.900	15	Q		C1	D2	E3	3	15	6.700	0.800	7.200	1.300	42.900
B2 C1 D3 E1 F2 G3 7.600 0.900 9.300 0.800 B3 C2 D1 E2 F3 G1 8.000 0.900 9.200 0.900 B0 知識量/(到桥港片上截留的烟號量+嘴棒上截留的烟號量) F3 G1 8.000 0.900 9.200 0.900	91	Q		ខ	D2	E3	E	C 5	9.500	1.000	10.800	1.100	41.200
B3 C2 D1 E2 F3 G1 8.000 0.900	17	Q		C1	D3	E1	13	\mathfrak{S}	7.600	0.900	9.300	0.800	43.800
留的烟碱量/(剑桥滤片上截	∞	. A3	B3	C2	DI	E 2	\mathbf{E}	C 1	8.000	0.900	9.200	0.900	35.700
	**	工 教 教 教 教 教 教 教 教 教 教 教 教 教 教 教 教 教 教 教	截留的烟碱量/(氢		因碱量 + 赌棒上者	8 留的烟碱量)							

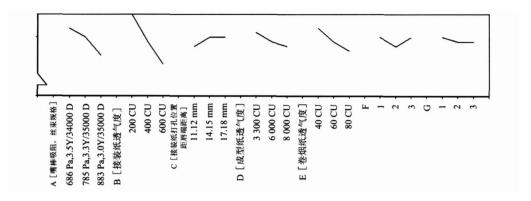


图 2 烟气烟碱量效应曲线图

表 3 各因素水平均值计算结果

试验指标	均值	犃 [嘴棒吸阻, 丝束规格]	犅 [接装纸 透气度]	犆 [接装纸打孔位 置距唇端距离]	犇 [成型纸 透气度]	卷 [卷烟纸 透气度]	犉	犌
4- N. F	均值1	9 467	10 083	8 650	9 383	9 267	9 100	8 950
焦油量 / (液 /支)	均值2	8 950	8 833	9 017	8 817	9 067	8 767	9 133
, (1)2 (2)	均值3	8 467	7 967	9 217	8 683	8 550	9 017	8 800
M 는 M 라 트	均值1	1 033	1 083	0 967	1 017	1 033	1 000	1 000
烟气烟碱量/(%/2/支)	均值2	1 000	0 983	1 000	0 983	0 983	0 967	0 983
	均值3	0 933	0 900	1 000	0 967	0 950	1 000	0 983
园东 复儿	均值1	9 783	11 250	9 683	10 367	10 483	10 033	9 817
烟气一氧化 炭量/ <i>(防</i> /支)	均值2	9 883	9 683	9 867	9 667	9 850	9 500	9 967
八至/ (1)6 久/	均值3	9 750	8 483	9 867	9 383	透气度] 9 267 9 100 8 950 9 067 8 767 9 133 8 550 9 017 8 800 1 033 1 000 1 000 0 983 0 967 0 983 0 950 1 000 0 983 10 483 10 033 9 817		
	均值1	1 033	1 183	1 100	1 100	1 033	1 033	1 117
烟气水分 / (% /支)	均值2	1 100	0 967	1 000	1 033	0 983	1 050	1 033
, (100 X)	均值3	0 933	0 917	0 967	0 933	1 050	0 983	0 917
\ 1\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	均值1	34 100	35 567	38 567	33 050	36 650	37 517	37 617
过滤效率 /%	均值2	37 483	37 683	35 950	37 867	36 600	36 983	37 783
/ /0	均值3	40 317	38 650	37 383	40 983	38 650	37 400	36 500

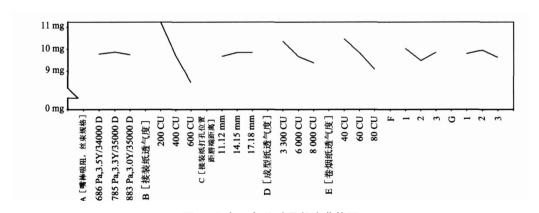
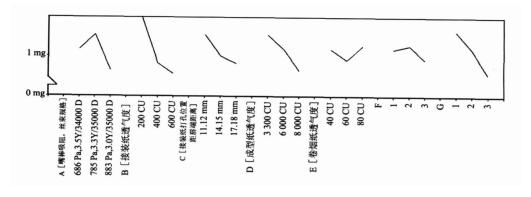
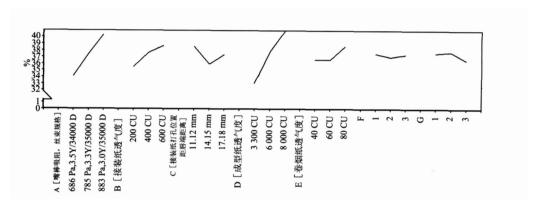




图 3 烟气一氧化碳量效应曲线图

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

烟气水分效应曲线图

过滤效率效应曲线图 图 5

由于因素的偏差平方和屬中除了因素的效应外, 还包含误差,从而称犛狗·糌、其中狗为因素的自由 度, 構造, 为试验误差的偏差平方和) 为因素的纯平方 和,将因素的纯平方和与总偏差平方和充的比称为因 素的贡献率[45]。通过贡献率的计算,可衡量各因素、 交互作用以及误差对各试验指标总波动所作贡献大 小。实践表明,试验误差的均方差与试验指标的平均 值之比镇在试验中基本保持为常数,称镇为变异系 数,并用镇衡量试验水平的高低。一般而言,镇<5% 属于优等, 14=5%~10%属于一般水平, 14>10%属 干不良[4]。

2 2 1 焦油量

焦油量方差及各因素对焦油量的贡献率分析结果 (表 4) 表明, 嘴棒吸阻、丝束规格、接装纸透气度是影 响卷烟焦油量的高度显著因素,成型纸透气度、卷烟纸 透气度是影响卷烟焦油量的显著因素。其中接装纸透 气度的水平变化引起的卷烟焦油量波动占数据总波动 的 60 948%, 嘴棒吸阻、丝束规格占总波动的 12 478%(與它因素的水平变化列起的数据波动都吧nic P动小,因此可以认为其它因素不重要。ht试验变异系数net 误差引起的数据波动小,因此可以认为其它因素不重

要[45]。试验变异系数14 141%,试验水平优等。

222 烟气烟碱量

烟气烟碱量方差及各因素对烟气烟碱量的贡献率 分析结果(表 4)表明,接装纸透气度是影响烟气烟碱 量的高度显著因素,嘴棒吸阻、丝束规格及卷烟纸透气 度是影响烟气烟碱量的显著因素。其中接装纸透气度 的水平变化引起的烟气烟碱量波动占数据总波动的 54 759%,其它因素的水平变化引起的数据波动都比 误差引起的数据波动小,因此可以认为其它因素不重 要。试验变异系数14 320%,试验水平优等。

223 烟气馆建量

烟气馆建量方差及各因素对烟气馆建量的贡献率 分析结果(表 4)表明,接装纸透气度、成型纸透气度、 卷烟纸透气度是影响烟气犆瞎量的高度显著因素。其 中接装纸透气度的水平变化引起的烟气馆害量波动占 数据总波动的 68 046%,成型纸透气度占总波动的 8 361%, 卷烟纸透气度占总波动的 16 778%, 其它因 素的水平变化引起的数据波动都比误差引起的数据波 **塩**为3740%,试验水平优等。

表 4 方差、贡献率及试验水平分析结果

		表	₹4 方	差、页献率	区试验水	平分析结员	ŧ			
式验 指标	因素	偏差 平方和	自由度	均方和	犉比值	鴇 05 临界值	鴇 oı 临界值	显著性	纯平 方和	贡献率 /%
	嘴棒吸阻,丝束规格	3 001	2	1 501	10 898	4 740	9 550		2 726	12 478
	接装纸透气度	13 588	2	6 794	49 345	4 740	9 550		13 313	60 948
焦	接装纸打孔位置距唇端距离	0 991	2	0 496	3 599	4 740	9 550		0 716	3 276
曲	成型纸透气度	1 658	2	0 829	6 021	4 740	9 550		1 383	6 330
量	卷烟纸透气度	1 641	2	0 821	5 959	4 740	9 550		1 366	6 252
土	空列犉	0 361	2	0 181	_	_	_	_	_	_
	空列犌	0 334	2	0 167	_	_	_	_	_	_
	列外误差	0 269	3	0 090	_	_	_	_	_	_
	误差	0 964	7	0 138	_	_		_	_	10 716
	误差均方差	0 371	_	0 136	_	_	_	_	_	
	物%	4 141						_	_	_
	总和			_	_			_	_	_
		21 843		0.016	9. 401	4.740	0.550		0.027	15 204
	嘴棒吸阻,丝束规格 按准纸添复度	0 031	2	0 016	8 491	4 740	9 550		0 027	15 384
_	接装纸透气度	0 101	2	0 051	27 665	4 740	9 550		0 097	54 759
최	接装纸打孔位置距唇端距离	0 004	2	0 002	1 096	4 740	9 550		0 000	0 196
Ţ	成型纸透气度	0 008	2	0 004	2 191	4 740	9 550		0 004	2 446
최	卷烟纸透气度	0 021	2	0 011	5 752	4 740	9 550		0 017	9 759
戓	空列犉	0 004	2	0 002	_	_	_	_	_	
Ĺ	空列犌	0 001	2	0 001	_	_	_	_	_	_
	列外误差	0 008	3	0 003	_	_	_	_	_	_
	误差	0 013	7	0 002	_	_	_	_	_	17 455
	误差均方差	0 043	_	_	_	_	_	_	_	_
	增化%	4 320	_	_	_	_	_	_	_	_
	总和	0 178	_	_	_	_	_	_	_	_
	嘴棒吸阻,丝束规格	0 058	2	0 029	_	_	_	_	_	_
	接装纸透气度	23 098	2	11 549	85 869	3 980	7 200		22 829	68 046
4	接装纸打孔位置距唇端距离	0 134	2	0 067	_	_	_	_	_	_
-	成型纸透气度	3 074	2	1 537	11 428	3 980	7 200		2 805	8 361
Ĺ	卷烟纸透气度	5 898	2	2 949	21 926	3 980	7 200		5 629	16 778
<u></u>	空列犉	0 908	2	0 454	_	_	_	_	_	_
!	空列犌	0 334	2	0 167	_	_	_	_	_	_
	列外误差	0 045	3	0 015	_	_	_	_	_	_
1	误差	1 479	11	0 134	_	_	_	_	_	6 815
	误差均方差	0 367	_	_	_	_	_	_	_	_
	166/%	3 740	_	_	_	_	_	_	_	_
	总和	33 549								
al .	嘴棒吸阻,丝束规格	0 084	2	0 042	2 053	4 260	8 020		0 043	6 617
-	接装纸透气度	0 241	2	0 121	5 890	4 260	8 020		0 200	30 730
	接装纸打孔位置距唇端距离	0 058	2	0 029	1 418	4 260	8 020		0 017	2 624
	成型纸透气度	0 084	2	0 042	2 053	4 260	8 020		0 043	6 617
•	卷烟纸透气度	0 014	2	0 007						
	空列特	0 014	2	0 007						
	空列犌	0 121	2	0 061						
	列外误差	0 035	3	0 012						
	误差	0 184	9	0 020						53 411
	误差也有券 4-2021 China A 11/2 /19	13 992	ourna	l Electror	nic Publis	hing Hou	se. All ri	ghts reserv	ved. http:	://www.cnk
	总和	0 651								

									续表 4
	嘴棒吸阻,丝束规格	116 243	2	58 122	35 019	4 740	9 550	112 924	29 223
过	接装纸透气度	29 843	2	14 922	8 990	4 740	9 550	26 524	6 864
滤	接装纸打孔位置距唇端距离	20 603	2	10 302	6 207	4 740	9 550	17 284	4 473
效	成型纸透气度	191 703	2	95 852	57 752	4 740	9 550	188 384	48 751
率	卷烟纸透气度	16 410	2	8 205	4 944	4 740	9 550	13 091	3 388
	空列犉	0 943	2	0 472					
	空列犌	5 843	2	2 922					
	列外误差	4 832	3	1 611					
	误差	11 618	7	1 660					7 302
	误差均方差	1 288							
	1100/1/100/100/100/100/100/100/100/100/	3 454							
	总和	386 420							

注: $,\alpha=0$ 01, 高度显著影响因素; $,\alpha=0$ 05, 显著影响因素。

2 2 4 烟气水分

烟气水分方差及各因素对烟气水分的贡献率分析结果(表 4)表明,接装纸透气度是影响烟气水分的显著因素。试验变异系数 13 992%,试验水平不良。

225 过滤效率

过滤效率方差及各因素对过滤效率的贡献率分析结果(表 4)表明,嘴棒吸阻、丝束规格及成型纸透气度是影响过滤效率的高度显著因素,接装纸透气度、接装纸打孔位置距唇端距离及卷烟纸透气度是影响过滤效率的显著因素。其中嘴棒吸阻、丝束规格水平变化引起的过滤效率波动占总波动的 29 223%,成型纸透气度占总波动的 48 751%。其它因素的水平变化引起的数据波动都比误差引起的数据波动小,因此可以认为其它因素不重要。试验变异系数1%为 3 454%,试验水平优等。

3 结论

根据直观分析、方差分析及贡献率分析结果可以得出:对于27 গ 游 滤嘴长的 壓對卷烟而言,嘴棒吸阻、丝束规格是影响卷烟焦油量及过滤效率的高度显著因素及重要因素;接装纸透气度是影响卷烟焦油量、烟气烟碱量、烟气τ 的高度显著及重要因素;成型纸透气度是影响烟气τ 的高度显著因素及重要因素。卷烟纸透气度仅仅是影响烟气τ 的高度显著因素及重要因素。卷烟纸透气度仅仅是影响烟气τ 的高度显著因素及重要因素。接装纸透气度及嘴棒吸阻越

大,卷烟主流烟气递送量越小;卷烟纸及成型纸透气度越大,烟气1售量越小;成型纸透气度及嘴棒吸阻越大,过滤效率也越高。

所以重点通过对接装纸透气度及嘴棒吸阻的调整和控制,可以很好地实现对晕犎卷烟产品主流烟气递送量的控制;通过对成型纸透气度及嘴棒吸阻的控制,可很好地实现对晕犎卷烟产品过滤效率的控制。

在进行卷烟产品开发或改良的时候,使用该方法可快捷、高效、经济、准确地寻找并确定卷烟材料多因素对卷烟主流烟气递送量的影响规律,并针对目标产品的特点,寻找显著的且具有重要作用的材料工艺输入变量,使整个设计、生产工艺得到优化。

参考文献

- [1] 于川芳,罗登山,王芳,等. 卷烟 "三纸一棒" 对烟气特征及 感官质量的影响(一) 関. 中国烟草学报,2001,7(2):1
- [2] 于川芳,罗登山,王芳,等. 卷烟 "三纸一棒" 对烟气特征及 感官质量的影响(二) 関. 中国烟草学报,2001,7(3):6
- [3] 王理珉,马静,胡群,等. 通风技术对卷烟性能的影响研究 随. 中国烟草学会工业专业委员会烟草化学学术研讨 会论文集,2005: 158 163
- [4] 任露泉. 试验优化设计与分析[犕]. 2 版. 北京: 高等教育出版社,2003: 101 109
- [5] 茆诗松,周纪芗,陈颖. 试验设计[檔]. 北京: 中国统计出版社,2004: 135 136