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Medical imaging is involved in all processes of clinical practice.
Approximately 70% of diagnostic information originates from radi-
ologic images, which also account for 90% of the digital data volume
of a hospital. However, the number of physicians has increased only
modestly compared to the rapid growth in the number of medical
images. In China, data from medical imaging increases by 30% every
year, whereas the number of radiologists increases by only 4%
annually. Artificial intelligence (AI), which is representative tech-
nology of the fourth industrial revolution, may alleviate the increas-
ing pressure and job burnout, and further improve the diagnostic
efficiency of radiology services [1]. Despite the urgent and realistic
demand for Al technology, many challenges remain in the develop-
ment and translation of Al products. The rate of the scientific trans-
lation of Al research into clinical applications is extremely low.
Furthermore, Al models that are applied in clinical settings exhibit
unreliable performance and are often impractical [2]. Therefore,
radiologists may not have access to suitable medical imaging Al
models to solve specific clinical problems. This paper analyzes
and discusses this problem according to two aspects: the data
sources and the Al algorithm (Fig. 1).

Medical imaging data exhibit the qualities of big data, such as
diverse types, frequent updates, a large scale, and complex pro-
cessing methods. Thus, radiology is expected to be one of the first
specialties to take full advantage of Al and to be most affected by
developments therein [3]. However, medical imaging data also
have an obvious long-tail effect; that is, most diseases are small
data that are scattered in different centers, thereby forming “data
islands” that lack effective interoperability. As existing Al technol-
ogy remains data-driven, the training data of a single center cannot
satisfy the Al performance requirements [2]. Al models should ide-
ally be trained by combining data from multiple centers; however,
barriers to data sharing often exist.

The construction of multimodal medical image databases (or
datasets) with large sample sizes is the primary means of solving
the problem of data islands, but many challenges are faced in this
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process. First, database construction is a time- and resource-con-
suming task, as each case requires the mutual cooperation of
patients, physicians, technicians, engineers, and other information
technology experts, and major investments in manpower as well as
financial and material resources are necessary [1]. Second, there is
a high technical threshold for database construction. The process
varies substantially depending on the acquisition, cleaning, anno-
tation, and loading of medical images from different sites. The con-
struction and management of databases with different goals
(model training, performance testing, clinical evaluation, and qual-
ity control) may also differ significantly. Finally, the database must
be constantly adjusted to dynamic changes in clinical and social
needs to preserve its expected value [4,5].

A medical image database should be deployed uniformly at the
national level, and led by a multidisciplinary team of experts with
strong professional and organizational abilities. The framework
should be designed from top to bottom, and all aspects of the data-
base construction should be described by the standards or expert
consensus [5]. A particular challenge in establishing standards for
a medical image database is image annotation. High-quality and
trustworthy human-generated labels are a time-consuming,
labor-intensive, and expensive process. Any biases in the process
can be transferred to the outcomes of the Al systems. Fortunately,
an integrated iterative annotation technique proposed by previous
research has the potential to solve this problem. Through the inter-
action between humans and automatically generated annotations
and the “human-in-the-loop” strategy, the labeling ability of this
technology was validated on a dataset of prostate glands while
reducing the annotation burden. Another problem with image
labeling is the inconsistency between expert consensus. Take pul-
monary nodule annotation as an example, some researchers elim-
inated the region corresponding to vessels, bronchus, and air from
the nodule, but others only delineated the outer contours. The
solution to this problem requires further exploration on the impact
of annotation details on downstream tasks (Text S1 online).

At present, the construction of large-sample medical image
databases is the consensus among Al research teams globally [6].
Many public image datasets (or databases), such as the National
Lung Screening Trial (NLST) dataset, Liver Tumor Segmentation
(LiTS) dataset, Multi-Modality Whole Heart Segmentation
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Fig. 1. How to develop medical imaging Al.

(MMWHS) dataset, The Cancer Imaging Archive (TCIA) database,
MedPix database, and National COVID-19 Chest Imaging Database
(NCCID), provide enormous image resources to researchers who
are interested in medical imaging Al In July 2022, the National
Health Commission Capacity Building and Continuing Education
Center of China announced the establishment of the Radiographic
Image Database Construction Project, which officially launched
the systematic construction of the medical imaging databases in
China. These large databases, which have already been built or
are currently under construction, offer opportunities for solving
data island problems. The NLST dataset had been extensively used
for the development of machine learning applications. Based on
the NLST dataset, researchers constructed a risk prediction model
called the Lung Cancer Prediction Convolutional Neural Networks
(LCP-CNN) to discriminate malignancy in pulmonary nodules and
validated its performance on external validation. The NCCID is a
centralized database containing mainly chest X-rays and computed
tomography scans from patients with COVID-associated respira-
tory syndrome. This database addressed many common pitfalls
highlighted in a recent meta-analysis of COVID-19 imaging models,
and will be used to support the development of machine learning
(ML) technologies (Text S2 online).

Most traditional multi-center databases adopt centralized stor-
age and analysis, and use desensitization or de-identification to
protect human subject privacy in the sample collection stage. In
this mode, full images or processed copies are transferred from
one center to another, thereby drawing attention to data security.
Issues arising from data security can be solved through relevant
policies or Al technologies.

Laws and regulations relating to personal information protec-
tion are constantly improved owing to the increasing emphasis
on privacy protection. However, the focus on data security has
exacerbated the problems that are caused by data islands. There-
fore, many policies and regulatory standards for data sharing and
privacy have been established worldwide, such as the EU’s General
Data Protection Regulation (GDPR), the US’s Health Insurance
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Portability and Accountability Act (HIPAA), and China’s Personal
Information Protection Law (PIPL). The GDPR requires that partici-
pants should be provided with explicit information regarding how
the personal data will be used, how long it will be used, who will
have access to the data, and whether the data will be shared
anonymously. Similar to GDPR, HIPAA also allows for research
use, disclosure, and data sharing with participant consent. The PIPL
clearly requires processors to take corresponding security tech-
nologies, such as encryption and de-identification, to ensure the
security of personal information (Text S3 online).

The challenges of collecting data from data islands while main-
taining data security can also be addressed at a technical level. Fed-
erated learning (FL), which was developed by Google [7], is a
typical cryptographic distributed ML technique. FL can effectively
realize multisite collaborations while satisfying privacy protection
and data security requirements by establishing a data federation.
As the most common malignant primary brain tumor, the inci-
dence of glioblastoma is extremely low (3/100,000), which means
that large and diverse images can hardly be collected to develop
robust and generalizable Al models. Researchers conducted a large
FL study, involving thousands of multi-parametric MRI scans from
multiple centers, to develop an automatic tumor boundary detec-
tor for glioblastoma by only sharing numerical model updates.
The latest progress in FL is the “No-free-lunch” law that first
reveals the intrinsic constraint between model utility and privacy
protection of FL from an information-theoretic perspective. By
using the “No-free-lunch” law, the security, utility, and efficiency
of trustworthy FL can be coordinated while ensuring data privacy
protection. This provides a new opportunity to solve the contradic-
tion of medical image information islands and data security (Text
S4 online).

However, when the imaging standards are not uniform, it is also
difficult to perform multi-center FL. This brings the issue of image
standardization. The current diversity of medical image data acqui-
sition standards as well as the lack of a unified understanding of
imaging signs create barriers to the interaction between Al models
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and medical image data [8]. The only solution to this problem is
the establishment of unified image standards.

In 2022, the Recommended Practice for Quality Management of
Datasets for Medical Artificial Intelligence, led by the National
Institutions for Food and Drug Control of China, was officially
released by the IEEE Standards Association, thereby becoming the
first global standard in the field of Al medical datasets. In 2020,
an article on the preparation of medical imaging data for Al algo-
rithm development was published in Radiology. Researchers
describe a standard process of labeling, curating, and sharing med-
ical image data for ML in the article. In 2016, the international
organization FORCE11 formally proposed the FAIR guidelines to
provide data assurance for Al research by standardizing the
description and traceability of medical imaging data acquisition,
processing, and management. These specifications are expected
to solve the problem of the inconsistent standardization of clinical
image data, and to assist in developing medical imaging Al models
and providing translational products in the process of clinical prac-
tice (Text S5 online).

It appears that the model performance can be improved signif-
icantly if the Al programs are provided with sufficient high-quality
image data. However, the real world is a huge and unpredictable
open set, and we cannot exhaust all possibilities on the “chess-
board” as with AlphaGo. Therefore, when the training data are lim-
ited, the perspective should be shifted to more central Al
algorithms.

At present, the most important problem with Al algorithms is
interpretability (also known as transparency), whereby attempts
are made to reveal the mechanisms behind Al systems with a
black-box nature [9]. The explainability crisis that results from
the enormous code and complicated structure of ML models, par-
ticularly deep learning (DL) models, raises human concerns regard-
ing the use of Al in high-stakes scenarios such as healthcare [10].
First, it is difficult to interpret the relationships between image
biomarkers and clinical endpoint events for disease diagnosis and
treatment; thus, imaging Al applications are highly susceptible to
being challenged by experts. Second, physicians are primarily
interested in the diagnosis or prediction of patient prognoses based
on clinical images. However, the current unexplainable technolo-
gies result in weak engagement with doctors. Meanwhile, owing
to unknown internal principles of Al, the design, optimization,
and upgrading of the models are dependent on the experience of
IT experts or engineers; therefore, it is difficult for Al to move from
the inherent pattern of training data and accurately respond to
open data in the real world. Finally, inexplainable Al raises several
social issues, such as the definition of ethics and morality, patient-
clinician relationships, the legal responsibility for medical errors,
and medical humanistic care [11].

Two main approaches to interpretability are used at present:
inherent explainability and post-hoc explainability [10]. Represen-
tative examples of inherent interpretability include models or fea-
tures with explicit definitions and formulas that are closely related
to the semantic descriptions of lesions in diagnostics, and thus, can
be used to approximate their potential biological meaning. For
example, Bayesian inference networks encapsulate expert knowl-
edge for the generation of differential diagnoses in brain MRI and
vessel tortuosity by measuring the abnormal shape of tumor-asso-
ciated vasculature in breast MRI. Post-hoc interpretability focuses
on explainable technologies that aim to dissect the decision-mak-
ing procedure of a model. For example, researchers interpreted the
variability in the importance of different anatomic regions (carpus,
thumb, and metacarpophalangeal joint) in predicting the bone age
in hand radiographs using gradient-weighted class activation map-
ping (Grad-CAM), which is a typical technology of heat maps (or
saliency maps). Furthermore, it was found that models rely on
regions outside the lung fields, such as laterality markers, to make
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predictions regarding COVID-19, through generative adversarial
networks (GANs) and counterfactual explanations (CE). In one
study, researchers used radiology-pathology coregistration to
explain the biological rationale behind the radiomic features that
are used to predict the outcomes of non-small cell lung cancer
(NSCLC) patients, they found that peritumoral Gabor features were
associated with the density of tumor-infiltrating lymphocyte (TIL)
on diagnostic biopsy samples. Other approaches, such as agent
interpretation and importance ranking interpretation, have also
facilitated the understanding of the logic behind medical imaging
Al (Text S6 online).

Despite the rapid development of interpretable Al, two ques-
tions remain to be addressed when discussing the limitations of
the current technologies. First, is the “relationship” that is inferred
by Al and that we wish to explain really correct? Researchers found
that biases in the training datasets may cause spurious correlations
between predictors and outcomes. Patients with severe COVID-19
typically receive chest X-rays in a supine or recumbent position,
whereas healthier patients undergo imaging in an upright position.
Such datasets will result in spurious correlations when predicting
COVID-19 severity based on the position rather than semantic
image features [12]. Second, does the current interpretable tech-
nique truly explain the logic behind the black box? In one study,
researchers quantitatively evaluated seven saliency maps across
multiple Al architectures, they found that although Grad-CAM
could generally localize pathologies in chest X-rays more effec-
tively than other heat maps, there was still a large gap in the local-
ization performance between Grad-CAM and experts, particularly
for pathologies with smaller sizes and complex shapes. This
demonstrates that caution should be exercised when leveraging
common explainable approaches to understand Al models (Text
S7 online).

The “human-centered design” that was introduced by Chen
et al. [9] in a recent systematic review is a promising means of
overcoming the above limitations. Chen et al. [9] proposed the
INTRPRT guideline, which is a design directive for explainable
medical imaging Al systems. Human-centered design principles
recommended formative user research as the first step towards
understanding user needs and domain requirements. For example,
unexpected correlations that are caused by the dataset biases of
chest X-rays, as we discussed in the previous section, may be antic-
ipated if a radiologist is included in the multidisciplinary team that
designs the model. In one study, the utility of potential explanatory
information in Al was assessed using a user-centered iterative
design system to enable physicians to understand the Al analysis
tool for chest X-rays. Similarly, in another study, target users were
consulted in the design of an image retrieval system for medical
decision making and a system that preserves human agency was
developed to guide the search process (Text S8 online).

Having analyzed the importance of interpretability and current
explainable techniques, we pose another question: is the inter-
pretability of Al still necessary when we need to provide a diagno-
sis or treatment for a disease in a short time (for example, COVID-
19)? In traditional research and development process, a new drug
must undergo multiple stages of clinical trials and data collection
to become commercially available. However, when faced with sud-
den public health events that urgently require therapy, the advan-
tages and disadvantages of accelerating the launch of new drugs
require careful consideration. The interpretability of an Al algo-
rithm is similar in that its advantages and disadvantages must be
weighed.

Many researchers have proposed that the performance of Al in
the real world should receive more attention than its interpretabil-
ity [10]. A case in point is acetaminophen. Despite the mechanism
for how acetaminophen works remains only partially understood,
it still has been used for more than a century due to its extensive
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validation in numerous trials. Furthermore, although many
explainable techniques have been developed to provide a broad
description of Al systems, these explanations are unreliable or pro-
vide only a superficial level of interpretation in specific cases [10].
For example, researchers developed a CheXNet model that reached
a radiologist-level detective accuracy of pneumonia at chest X-rays
[13]. By using a saliency map approach, CheXNet takes a chest X-
ray as input, and outputs the areas in the image most indicative
of the pathology. However, the model may make decisions based
on features that cannot be identified by human eyes, such as
pixel-level characteristics. Meanwhile, it is hard to confirm
whether the highlighted areas in the heat map (e.g., airspace opac-
ity) really have an important predictive effect on the results, and
whether other areas (e.g., heart border or pulmonary artery) that
are not shown are really of no value in the decision. In most cases,
the black-box only caused comprehension difficulties but did not
affect validations or practical applications [14]. Thus, “an essential
caveat is why the original model is needed at all if better models
are available” [8].

Technical bottlenecks and compromises based on practical
application requirements are encountered when exploring Al
interpretability, but one criterion is clear: Al models must have
good generalizability [5]. This generalizability is reflected in the
repeatability or reproducibility of the model performance as well
as in the portability [15]. To date, most studies that have evaluated
Al applications have not been vigorously validated for repro-
ducibility, following well-defined processes and testing standards
to develop high-quality Al systems may be the most executable
and actionable solution. Recently, the Microsoft Research teams
identified a linear nine-stage ML workflow informed by prior expe-
riences developing Al applications (e.g., natural language process-
ing) and data science tools (e.g., bug reporting). Researchers from
NASA similarly proposed a Machine Learning Technology Readi-
ness Levels (MLTRL) framework to simplify the ML workflows
and to produce robust, reliable, and responsible Al models. All of
these frameworks can be introduced into the healthcare domain,
providing opportunities for further development of medical imag-
ing Al (Text S9 online).

In this paper, we provide an overview of the challenges and
opportunities of medical imaging Al from the perspective of two
major factors: the data sources and the Al algorithm. By reviewing
previous studies, we think that an important development direc-
tion of Al in the future is to realize real brain-like intelligence.
Although the current single-mode learning of Al is still not perfect,
its continued development is expected to gradually replace the sin-
gle-mode human work, such as ChatGPT, which can already
replace some language-based work. Thus, multi-modal, multi-
channel, and multi-dimensional learning and understanding of
information is a challenging task that arouses researchers’ atten-
tion. The same goes for medical imaging Al. Most existing Al algo-
rithms are “single disease”, “single device”, or even ‘“single site”
models, which cannot meet the actual needs of radiologists for
medical image interpretation. Therefore, many challenges remain.
How can a model be expanded from a single disease to a complex
disease? How can different types of image data be handled? How
should the model include additional imaging devices? How can it
achieve deeper “comprehensive” and efficient integration with
clinical work? These questions will be the key directions of the
future development of medical imaging Al As a final example, it
is not sufficient for Al to detect only pulmonary nodules in patients
who have undergone a chest CT examination. Only when diseases
of the entire thorax can be detected can the clinical and social
requirements truly be satisfied [16].
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There is still a huge gap between Al and human intelligence, but
we believed that the collaboration between academia and industry
will play an important role in creating useful medical imaging Al
products with good generalizability [17]. The development of Al
will also constantly broaden human imagination and unleash
greater value in healthcare.
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