2004年11月

城市埋地燃气管网失效树的研究*

孙永庆¹ 李又绿² 张 峥¹ 钟群鹏¹

(1. 北京航空航天大学材料科学与工程学院 2. 西南石油学院石油工程学院储运研究所)

孙永庆等. 城市埋地燃气管网失效树的研究. 天然气工业,2004;24(11):124~126

摘 要 城市埋地燃气(主要包括天然气、煤气)管网在运行中会受到复杂环境因素和人为因素的影响,如果发生失效,就会直接威胁着管道沿线附近人员生命和国家财产的安全,因此有必要对燃气管道进行可靠性分析。失效树分析(Fault Tree Analysis)是一种已被广泛应用的可靠性分析方法。文章选取失效树分析法对引起城市埋地燃气管网失效的各方面因素进行了全面地系统分析,建立了以燃气管网失效为顶事件,包含了116个基本事件的城市埋地燃气管网失效树。通过逻辑运算,得到了失效树的287个最小割集,并通过实例计算与分析对上述失效树进行了验证。通过对最小割集的分析,得到了影响城市埋地燃气管网可靠性的各影响因素的逻辑关系。结果表明,第三方破坏、腐蚀、制造缺陷等是影响城市埋地燃气管网可靠性最主要的因素,并提出了相应的措施以提高燃气管网的可靠性。

主题词 城市 燃气 埋地管道 管网 失效树 事故分析

失效树分析(Fault Tree Analysis)方法较之于其他可靠性分析方法而言,前者比较简明、灵活⁽¹⁾,适于对城市燃气管网进行可靠性分析和管理维护。曾有研究者将失效树分析法用于长输燃气管线的可靠性研究领域⁽²⁾。笔者在详细考察了引起城市埋地燃气管网失效的各方面原因后,参考相关文献⁽³⁾,编制了城市埋地燃气管网失效树,对失效原因进行了归纳和总结,并提出了相应建议以提高城市埋地燃气管网的可靠性。

一、城市埋地燃气管网失效树的建立

选定失效树的顶事件为"管网失效"。根据欧洲输气管道事故数据组织(EGIG)对于管道事故的分类,将引起城市燃气管网失效的直接原因选定为管道穿孔、管道破裂与泄漏(主要考虑附件的泄漏)中的任意一个或几个。同样将上述3个因素列为次一级顶事件,对其原因分别进行分析。

本次研究共列举了 116 个基本事件(表 1),由此 建立了城市埋地燃气管网失效树(图 1)。

二、城市埋地燃气管网失效树的分析

采用布尔代数法对失效树进行简化,求最小割

集⁽⁴⁾。由相关计算可知,城市埋地燃气管网失效树 共存在 287 个最小割集,其中一阶最小割集 83 个, 二阶最小割集 168 个,三阶最小割集 36 个。这 83 个一阶最小割集是整个管网系统中的最薄弱环节, 需引起高度重视。

三、主要影响因素和改进措施

(1)第三方破坏对城市燃气管网的安全会造成较大的威胁,市政施工、违章占压、交通破坏等都是比较突出的造成管网破坏的因素。应保证管道沿线标志及防护设施的完好,与建设、交通部门加强沟通,协同解决施工破坏和车辆破坏等问题。

(2)随着使用时间的延长,腐蚀一类的因素必然会引起管道穿孔或破裂,而且城市的土壤环境较为复杂,腐蚀失效因素也较多。控制城市燃气管网腐蚀的发生一方面要依据标准严格控制腐蚀性杂质气体⁽⁵⁾,明确管道附近存在的杂散电流;另一方面要定期、及时地检测防腐涂层和阴极保护装置的完好性与保护效果。

(3)城市埋地燃气管网的设计、制造、安装、埋设时存在的缺陷,如材质缺陷、管道变形缺陷,特别是焊接缺陷对管道的强度性能有着很大的影响。应建

^{*}本成果为国家"十五"科技攻关课题资助项目(课题号 2001BA803B03-01)。

作者简介:孙永庆,1978 年生,博士研究生;研究方向为机械(含构件)的失效分析及预测预防。地址:(100083)北京航空 航天大学一系八研。电话:(010)82317108,13681029155。E-mail; y. q. sun@sina. com

表 1 失效树中符号所代表的事件表

序号		序号	事件	序号	事件	序号	
7, 7 T	 管网失效	E4		f35	大气中存在腐蚀性气体	f77	安全阀堵塞
Al	管道穿孔	E 5	防腐涂层失效	f36	大气湿度较高	f78	操作人员的失误
A2	管道破裂	E6	酸性介质	f37	大气温度较高	f79	防误操作硬件措施不完善
A 3	附件泄漏	E7	管道内积水	f38	套管内支撑物垮塌	f80	操作规范不完善
B1	管道腐蚀	E8	焊接工艺缺陷	f39	套管内进水	f81	土壤 pH 值低
B2	管道缺陷	E9	! 焊接材料缺陷	f40	套管破裂	f82	附近倾倒腐蚀性液体
Вз	第三方破坏	Fl	 外加电流保护失效	f41	 涂层的修补、更换不及时	f83	土壤有污水渗入
В4	机械破坏	F2	牺牲阳极保护失效	f42	涂层检测频率低	f84	管道附近埋有其他金属
В5	调压器泄漏	f1	洪水、台风、山火等自然灾害	f43	涂层老化剥离	f85	土壤中存在显著的氧浓差
В6	阀门泄漏	f2	人员无意破坏	f44	涂层遭到外力毁损	f86	土壤含 SO42-或其他硫化物
C1	埋地腐蚀	f3	蓄意破坏	f45	涂层施工质量不合格	f87	土壤电极电位低
C2	内腐蚀	f4	内部超压	f46	杂质含量偏高	f88	土壤电阻率小
СЗ	大气腐蚀	f5	薄膜或导压管振动破坏	f47	晶粒大小不均匀	f89	土壤含盐量高
C4	管道初始缺陷	f6	薄膜老化	f48	热处理不当	f90	土壤含水量高
C5	施工不当	f7	密封垫片损坏	f49	选材不当	f91	存在促进腐蚀的微生物
C6	施工破坏	f8	管道线路不明确	f50	变形不均匀	f92	存在深根茎植物
C7	违章占压	f9	违章施工	f51	壁厚不均匀	f93	外力挖掘毁损
C8	交通车辆破坏	f10	施工失误	f52	焊接缺陷严重	f94	管沟回填对涂层毁损
C9	管道承压能力低	f11	未及时发现	f53	焊后热处理不合格	f95	涂层施工毁损
C10	管道承受大应力作用	f12	未及时处理	f54	管道椭圆度不符合要求	f96	燃气含 CO₂
C11	填料与阀杆间泄漏	f13	沟底不平整	f55	强制性安装	f97	燃气含 H₂S
C12	法兰泄漏	f14	未采取必要保护措施	f56	管段间错口大	f98	燃气未经脱水处理
C13	阀体泄漏	f15	未按实际交通强度设计	f57	附件连接错误	f99	管道埋在冰冻线之上
D1	土壤腐蚀环境	f16	阀杆受到外力变形	f58	未按规定进行返修	f100	管道内排水设计不合理
D2	外防腐失效	f17	阀杆受到严重腐蚀	f59	未进行压力试验	f101	焊后未清渣
D3	内腐蚀环境	f18	阀杆磨损	f60	未进行缺陷评定	f102	焊接质量较差
D4	内防腐失效	f19	填料装填不规范	f61	监检单位无资格保证	f103	未进行焊接预处理
D 5	腐蚀性的大气环境	f20	螺帽松脱	f62	埋深不够	f104	坡口尺寸不正确
D6	保护措施失效	f21	螺栓预紧力不均匀	f63	边坡角度不合格	f105	焊接工艺参数选择不当
D7	材质缺陷	f22	螺栓预紧力不足	f64	沟底不平整	f106	焊接方式选择不当
D8	卷制工艺差	f23	垫片安装不正确	f65	回填土不符合要求	f107	 焊前未进行除锈烘干
D9	管道焊接	f24	垫片老化	f66	阀门布置不合理	f108	焊条药皮脱落
D10	管道安装	f25	垫片压紧不足	f67	安保系统设计不合理	f109	焊接材料选择不正确
D11	管道监检	f26	阀体选用 不当	f68	系统设计安全系数小	f110	测试桩间距过大
D12	管沟施 工	f27	阀体严重腐蚀	f69	管道设计安全系数小	f111	保护间距过大
D13	设计失误	f28	阀体制造缺陷	f70	管道附近存在地下空腔 	f112	保护电位小
D14	土层沉降	f29	燃气成分未定期检测	f71	管道上方交通载荷过大	f113	保护电流密度小
D15	安装应力大	f30	内防腐层施工质量差	f72	管底未夯实	f114	未考虑管道附近的金属构筑物
D16	严重憋压	f31	缓蚀剂失效	f73	路面与土壤压力过大	f115	阳极材料选择不当
E1	化学腐蚀环境	f32	管道内衬脱落	f74	管道强度设计错误	f116	阳极材料失效
E 2	电化学腐蚀环境	f33	内涂层老化破损	f75	管 道遇热受到膨胀应力		
E3	微生物腐蚀环境	f34	清管效果差	f76	管段间错口大		

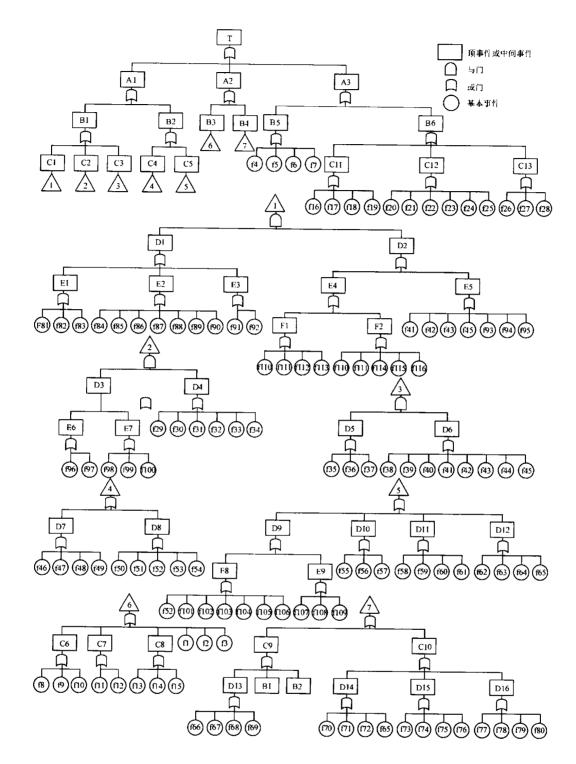


图 1 城市埋地燃气管网失效树示意图

立完善的监检与监理制度,严格选材,完善加工工艺,提高制造水平。

参考文献

- 1 石剑荣等. 突发事故概率估算研究. 中国安全科学学报. 1999;4(2):46~53
- 2 廖柯熹等. 天然气管线失效故障树分析. 天然气工业. 2001;21(3):94~96
- Muhlbauer M Kent. Pipeline risk management manual.2nd ed, Gulf Publishing Company
- 4 钟群鹏,田永江. 失效分析基础. 北京,机械工业出版社, 1989
- 5 国家标准 GB 50028-93:城镇燃气设计规范

(修改回稿日期 2004-07-19 编辑 居维清)