用双过渡金属复合催化剂制备长链支化聚乙烯

张启兴^{*} 范新刚 胡明鹏 王海华 (中山大学化学与化学工程学院高分子研究所 广州 510275)

摘 要 制备了以 TiCl₄ 乙酰丙酮(acac) 改性的 TiCl₄和 Co(acac) $_2$ 为主催化剂, SiO $_2$ M gCl $_2$ 为载体的复合负载型催化剂(TiCl₄-Co(acac) $_2$ / SiO $_2$ M gCl $_2$, TiCl₄-acac/ SiO $_2$ M gCl $_2$ 和 TiCl₄-acac Co(acac) $_2$ / SiO $_2$ M gCl $_2$),并以所制得的催化剂催化乙烯合成了支化聚乙烯。IR、DSC、 13 C NMR 分析表明,聚合产物具有低熔点、低结晶度和高支化度,其己基以上长支链含量达 55.0%以上。实验结果表明,Ti-Co复合催化剂具有齐聚原位共聚性能。关键词 复合催化剂,乙烯聚合,支化聚乙烯,原位共聚合

中图分类号: 0632, 12

文献标识码: A

文章编号: 1000-0518(2003)09-0888-05

通过改变催化剂的活性种或使用 2 种助催化剂^[1],在聚合反应过程中通过 β -H 转移生成的高级 α -烯烃的聚合可形成长链支化聚乙烯;以二亚胺合镍为代表的后过渡金属催化剂^[2,3],催化乙烯齐聚生成 α -烯烃,并立即与乙烯原位共聚生成支化聚乙烯,可用单一乙烯单体制备出支化聚乙烯。这些方法中大多使用价昂的甲基铝氧烷(M AO)作助催化剂。

本文用 $TiCl_4$ -acac- $Co(acac)_2$ 复合负载在 SiO_2 - $MgCl_2$ 载体上形成新颖的负载型Ti-Co复合催化剂,以烷基铝为助催化剂(不用 MAO),催化乙烯单体聚合制得了以长支化链为主的支化聚乙烯。用 IR、DSC、 I^3C NMR 等分析方法,对不同组成的 Ti-Co 复合催化剂制得的产物进行了分析和表征。

1 实验部分

1.1 原料和试剂

 $M gCl_2$ (抚顺炼铝厂); SiO₂(美国 Davison 公司 955 $^{\sharp}$); CoCl₂(AR); TiCl₄(CP); 乙酰丙酮(AR), 蒸馏后经 3A 分子筛干燥; 二氯甲烷(AR), 经 3A 分子筛干燥, 甲苯(AR), 用金属钠回流脱水蒸馏后使用。 $Et_2AlCl_3Al_4Bu_3$ 使用前均配成质量分数为 30%的庚烷溶液。以上原料及试剂均为市售产品。

1.2 Ti-Co 复合负载催化剂的制备

 $Co(acac)_2$ 采用文献[4] 方法合成。将 1. 2 g M g Cl 2 溶解于 2. 2 m L 无水乙醇(EtOH)和 25 m L 四氢呋喃(THF)混合溶液中($n(M g Cl_2)$:n(EtOH)=1 :3),65 $^{\circ}$ C下回流搅拌溶解得均相溶液。将经 600 $^{\circ}$ C煅烧6 h 的 5. 0 g SiO 2 固体加入该溶液中,搅拌反应 2 h,过滤除去母液,60 $^{\circ}$ C下抽真空,除去四氢呋喃。搅拌条件下加入二氯甲烷,同时加入 0. 7 m L TiCl 4、1. 3 m L A cac 和 0. 54 g Co(acac) 2 ($n(TiCl_4)$: $n(Co(acac)_2)=3$:1, $n(TiCl_4)$:n(A cac)=1 :2),室温下搅拌反应 1 h,过滤,用己烷洗涤 3 次,真空干燥得固体催化剂。整个过程在 N_2 气气氛下进行。

1.3 乙烯聚合

将 100 mL 圆底烧瓶经加热抽真空,彻底清除微量水、空气后,在 N_2 气气氛下,加入 30 mL 甲苯或 庚烷作为溶剂,在磁力搅拌下油浴控制聚合温度 50 $^{\circ}$ C, 加入 0. 041 mmol 主催化剂和 4. 92 mmol 助催化剂A lEt₂Cl, 通入乙烯,用电磁阀维持 105. 7 kPa 压力,聚合反应 1. 5 h。 聚合产物用 20 mL V(乙醇):V(盐酸(体积比为 1 · 3))为 1 · 1 的混合溶液搅拌洗涤,过滤,乙醇洗涤抽干,真空干燥。

1.4 产物表征

相对分子质量用粘度法以十氢奈为溶剂,135 ℃下测定。按下式计算[5]:

2,62

$$\eta_{\rm sp}/c = [\eta] + 0.07[\eta]^2$$
 $[\eta] = 6.67 \times 10^{-4} \overline{M}_{\rm w}^{0.67}$

式中, $\eta_{\rm sp}$ 为增比粘度; c 为试样质量浓度 $(10^{-2}\,{\rm g/mL})$, $[\eta]$ 为特性粘度。

熔点 (T_m) 、结晶度 (X_c) 用美国 Perkin Elmer 公司 DSC 7A 热分析仪测定,结晶度 X_c 以下式计算:

$$X_c = 100 \times \Delta Hf / \Delta Hf^0$$

式中, $\triangle Hf^0$ 为完全结晶的聚乙烯热容,取文献值 61 288 J/g, $\triangle Hf$ 为由 DSC 测得的聚乙烯样品热容,。 密度用梯度法测定。

用日本 N icolet 205 型红外光谱仪测定支化度,采用位于 1378 cm^{-1} 附近支链甲基的对称变形振动谱带为分析谱带,以无支链的相对分子量为 3.0×10^6 的超高分子量聚乙烯作参照,用差示光谱法测定试样在 1378 cm^{-1} 附近的吸收强度,依下式计算[7]:

$$N = K \times (A/T)/D$$

式中, N 为支链浓度(每 1 000 个碳原子所具有的支链数), A 为分析谱带的红外光谱吸收值, T 为薄膜样品厚度(cm), D 为样品密度(g/cm³), K 为吸收系数, 对丁基和己基支链, K=0. 74。

 13 C NMR 用美国 Varian Unity INOVA500NB 分析仪测定。溶剂为邻二氯苯,聚乙烯质量分数为10%, 90° 脉冲角, 延时时间 15 s,采样时间 1 s,光谱宽度 25 000 Hz,双精度去偶,测试温度 120 $^{\circ}$ C。

催化剂中 Ti、Co、Mg 用美国 Perkin Elmer 公司等离子体发射光谱仪(ICP)测定。

2 结果与讨论

Catalyst

A

B

2.1 Ti-Co 复合载体催化剂组成

3种复合载体催化剂的基本组成及组分含量见表 1。

 $\begin{aligned} & \operatorname{TiCl_4-Aca\,c'} \operatorname{SiO_2-M} \operatorname{gCl_2} \\ & \operatorname{TiCl_4-A} \operatorname{cac-Co\,(a\,cac\,)} / \operatorname{SiO_2-M} \operatorname{gCl_2} \end{aligned}$

表 1 Ti-Co 复合催化剂的组成及组分含量

		·		
C	ω (Component)/ $\frac{9}{0}$			
Com position	Ti	Co	М g	
$\mathrm{TiCl_4^-Co(acac)_2/SiO_2^-MgCl_2}$	2. 72	1. 21	2. 20	
TiCl ₄ -Acac/SiO ₂ -MgCl ₂	4. 45		2.60	

2.56

Table 1 The composition and component content of three Ti-Co combined catalysts

B 型催化剂实际上是生成了 Ti (acac) 2Cl2, 然后负载在 SiO2、MgCl2载体上; C 型催化剂实际上是 Ti(acac) 2Cl2和 Co(acac) 2复合负载在载体上。由表 1 可见, TiCl4、Co(acac) 2复合负载时(Cat-A), 催化剂中 Ti、Co 含量与 C 型催化剂中相近, 而没有加入 Co(acac) 2的 B 型催化剂, Ti 含量略高。3 种催化剂中Mg 含量则相近。由于 Ti、Co、Mg 离子半径相近(各为 68、82 和 75 nm), 容易形成混晶, Ti、Co 均可以通过 MgCl2的氯桥形成Ti-Cl-Mg、Co-Cl-Mg进而负载在 SiO 2表面, 形成 Ti-Cl-Mg-O-Si, Co-Cl-Mg-O-Si的潜在活性中心。

2.2 Ti-Co 复合载体催化剂的乙烯聚合

用 $A \setminus B \setminus C$ 催化剂进行乙烯聚合,结果见表 2。由表 2 可看出,当使用 $B \setminus C$ 催化剂时,得到的产物密度、熔点、结晶度均较低,相对分子量较小,支化度较高。

表 2 A、B和 C型催化剂的乙烯聚合结果

Table 2 The results of ethylene polymerization over A, B and C catalysts

Catalyst	Cat aly tic activity/(kg°mol ⁻¹ °h ⁻¹)	T_{m} /°C	$X_{\rm c}/\sqrt[9]{_0}$	Degree of branching	$10^{-5}\overline{M}_{\rm v}$	Density/(g°cm ⁻³)
A	64. 5	132. 3	48.4	5. 4	4. 23	0. 940
В	35. 5	124. 3	25.3	17. 5	1.63	0. 893
C	95. 2	124. 4	25.4	14. 1	2. 69	0. 906

Polymerization condition; Ti+Co=0.041 mmol; cocatalyst; Et₂AlCl, n(Al)/n(Ti+Co)=120, T_p : 50 °C; P: 105.7 kPa; time: 1.5 h; Solvent; toluene.

B、C 型催化剂是加入乙酰丙酮改性四氯化钛,具有

$$\begin{array}{c} \operatorname{CH_3} & C \\ \operatorname{CH_2} & \operatorname{Ti}(Co) \\ \operatorname{CH_3} & C \\ \end{array} \quad \begin{array}{c} \operatorname{C}_2\operatorname{H_5} \\ \end{array}$$

结构。由于乙酰丙酮 2 个氧原子与 Ti (Co) 配位, 氧的供电子能力大大改变了过渡金属活性中心金属离 子配位环境,有利于乙烯的齐聚和原位共聚。Ti-Co 复合催化剂在 EtzAlCl 的作用下,可形成活性中心 离子对.

$$\begin{bmatrix} CH_3 & CO \\ CH_2 & Ti(Co) \\ CH_2 & CO \end{bmatrix}^+ \begin{bmatrix} EtAlCl_2 \end{bmatrix}^-$$

这一活性中心, 既催化乙烯齐聚生成 α-烯烃, 又催 化乙烯原位共聚生成相对分子量较高的支化聚乙 烯。A、B和C3种催化剂催化乙烯聚合反应表观动 力学曲线如图 1 所示。由图 1 可以看出, B 和 C 型 催化剂的聚合动力学曲线均为速升衰减型, 而 A 型 催化剂在整个聚合过程中基本无衰减,属渐升平稳 型。C型催化剂与B型催化剂相比,组分中多了 Co(acac)₂, 其活性增大约为 B 的 200%。C 型催化 剂与 A 型相比较,组分中多了 Acac,其支链浓度由 A 型催化剂的 5.4 上升到 14.1,表明 A cac 的加入使 得用 Ti-Co 复合催化剂制得的聚乙烯支化度大大提 高。

根据以上结果和 Brook hart [28] 乙烯齐聚原位 共聚原理,提出如下的反应机理: Ti(acac)2Cl2首先 与Et₂AIC1形成离子对活性中心, 然后进行齐聚反

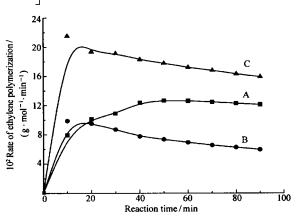
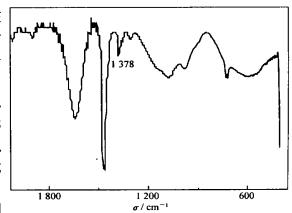


图 1 A、B 和 C 型催化剂的乙烯聚合动力学曲线

Fig. 1 Kinetics curves of ethylene polymerization over A, B and C catalysts

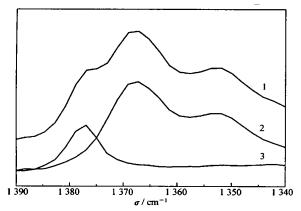
The polymerization conditions see Table 2


应并通过 β -H 消除反应生成 α -烯烃, 最后实现原位共聚生成支化聚乙烯:

$$(\overset{O}{\underset{O}{\text{C}}} \overset{C1}{\underset{O}{\text{C}}}) \overset{C1}{\underset{C1}{\text{C}}} + \text{ Et}_2 \text{A lCl} \longrightarrow \left[\overset{O}{\underset{O}{\text{C}}} \overset{C1}{\underset{CO}{\text{C}}} \overset{CH}{\underset{D}{\text{C}}} \overset{CH}{\underset{CO}{\text{C}}} \overset{CH}{\underset{D}{\text{C}}} \overset{CH}{\underset{D}} \overset{CH$$

2.3 聚合产物的 IR 和 DSC 分析

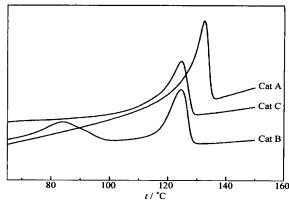
由 B 催化剂制得产物的 IR 谱图见图 2, 在 $1378 \; {
m cm}^{-1}$ 附近的吸收峰是支化聚乙烯支链甲基对 称变形振动的特征吸收峰,它与聚乙烯链-CH2-而外摇摆振动谱带 1 368 和 1 353 cm⁻¹产生重叠, 因此, 需用差减法测定支链甲基的吸收强度(见 图 3)。结果表明, 差减后聚乙烯链—CH₂— 1 368 和1 353 cm⁻¹面外摇摆振动吸收峰完全消失,出现 了1 378 cm⁻¹的支链甲基特征吸收峰,即可由公式 计算支链浓度(见实验部分)。


由A、B和C催化剂制备的聚乙烯的 DSC 图 (见图 4)可以看出,这些聚合物的熔融峰较宽,峰面 积较小,与无支链的聚乙烯 9 DSC 峰形尖锐,峰面

由B催化剂制得的聚乙烯红外光谱图

Fig. 2 The IR spectrum of PE obtained by using Cat B

积大形成鲜明对比,由 B 催化剂制备的聚乙烯 DSC 曲线在 84 $^{\circ}$ 附近出现 1 个熔融吸热 關 说明其中含有一定量的低分子量聚乙烯。表 2 中的数据表明,由 A 、B 和 C 催化剂制备的聚乙烯熔点、结晶度明显低于由纯粹 TiCl4载体催化剂制得的聚乙烯(熔点为 135 $^{\circ}$, 结晶度为 51.1 $^{\circ}$) $^{[9]}$ 。



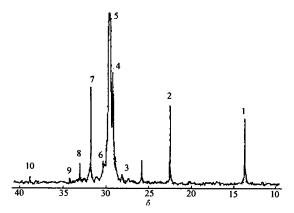

图 3 由 B 催化剂制得的聚乙烯(1)与超高分子量 聚乙烯(2)的红外光谱及其差减谱(3)

Fig. 3 The IR spectra of (1)PE prepared with Cat B, (2)UHMWPE and (3)their differential spectrum

图 4 由 A、B 和 C 催化剂制得的聚乙烯 DSC 曲线 Fig. 4 DSC curves of polyethylene obtained using catalyst A、B and C

2.4 聚合产物的¹³C NMR 表征

B、C 型催化剂聚合产物的¹³C NMR 分别如图 5、图 6 所示。结果表明,B 型催化剂所得聚合物中有丁基支链特征吸收 δ 13. 61 (1B₄),戊基支链特征吸收 δ 32. 96 (3B₅)和己基或己基以上特征吸收 δ 22. 42(2B₆),31. 73(3B₆),29. 2(4B₆),38. 2(brB_{4-n})等。C 型催化剂所得聚合物中有丁基支链特征吸收 δ 13. 61(1B₄)和己基或己基以上特征吸收 δ 22. 44(2B₆),31. 74(3B₆),38. 2(brB_{4-n})等。

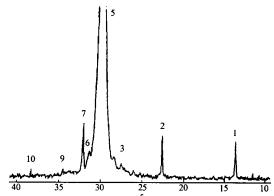


图 5 由催化剂 B制得的聚乙烯¹³C NMR 谱图 Fig. 5 ¹³C NMR spectrum of PE obtained using Cat B

图 6 由催化剂 C 制得的聚乙烯¹³C NM R 谱图 Fig. 6 ¹³C NM R spectrum of PE obtained using Cat C

采用 $U_{\text{sami}}^{[10]}$ 支化聚乙烯的命名法, ^{13}C NMR 各吸收峰归属结果列于表 3。由文献 71 :

$$N = \frac{1.000 \, (\text{IM e/0.90} + \text{IEt/0.84} + \text{IPr/0.83} + \text{IBu/0.90} + \text{IPe/0.90} + \text{ILg/0.80})}{\text{Imain} + 5.5 \, (\text{IEt/0.84}) + \text{IPr/0.83} + 8.0 \, (\text{IBu/0.90} + \text{IPe/0.90} + \text{ILg/0.80})}$$

计算得 B 催化剂聚合产物丁基支链 33.5%、戊基支链 11.5%、己基或己基以上长支链 55.0%。 C 催化剂聚合产物丁基支链 32.1%、己基或己基以上长支链 67.9%。表明 Ti-Co 复合催化剂在 Et_2AICI 作助催化剂条件下(不用 MAO),催化单一乙烯聚合制得了己基以上为主的支化聚乙烯。

表 3 B. C型催化剂的支化聚乙烯¹³ C NMR 谱化学位移归属 Table 3 The chemical shift assignment for ¹³ C NMR spectrum of

branched polyethylene obtained using Cat-B and Cat-C

Peak No	C hemical shift/δ experimental (refrence ^[11])	Assignment	Peak No	Chemical shift/ δ experimental(refrence ^[11])	Assignment
1	13. 61(14. 08)	1B _{4− n}	6	30. 2(30. 5)	γB_6
2	22. 42(22. 84)	$2B_6$	7	31. 73(32. 18)	$3B_6$
3	27. 26(27. 33)	βB_{4-n}	8	32. 96(33. 26)	$3B_5$
4	29. 2(29. 54)	$4B_6$	9	34. 1(34. 6)	αB_{4-n}
5	29, 5(30, 0)	Backbone CH ₂	10	38.2(38.23)	brB.

参考文献

- 1 LIU Zhong-Yang(柳忠阳), JIA Ming(贾明), GUO Cun-Yue(郭存悦), et al. Acta Polym Sin(高分子学报)[J], 2001, (6):751
- 2 Killian C M, Johnson L K, Brookhart M. Organometallics [J], 1997, 16: 2 005
- 3 Gates D P, Svejda S A, Onate E, et al. Macromolecules [J], 2000, 33:2 320
- 4 William L J, Auth(著). LI Shi-Qi(李士绮), CHEN Hui-Xuan(陈惠萱) Trans(译). SHEN Pan-Wen(申泮文)Proof (校). Inorganic Synthesis(无机合成)[M]. Beijing(北京): Science Press(科学出版社), 1975: 70
- 5 Francis P S, Cooke R C, Elliott J H. J Polym Sci J, 1958 31:453
- 6 Takayanagi M, Kijima T, Imada K, et al. Proceedings 4th International Conference High Prossure CJ, Kyoto Gakuin Publ. Co., 1974, 51
- 7 Usami T, Takayama S. *Polymer J*[J], 1984, **16**(10): 731
- 8 Svejada S A, Brookhart M. Organometallics J, 1999, 18, 65
- 9 ZHANG Qi-Xing(张启兴), YANG Xuan(杨萱), WU Gao(吴杲), et al. Synth Resin Plast(合成树脂及塑料)[J], 2002, 19(2): 11
- 10 Usami T, Takayama S. Macromolecules [J], 1984, 17: 1756
- 11 Galland G B, Souza R F D, Mauler R S, et al. Macromolecules [J], 1999, 32: 1620

Preparation of Long-Branching Chain Polyethylene Using Double Transition Metal TiCl₄-Co(acac)₂ Combined Catalyst

ZHANG Qi-Xing *, FAN Xin-Gang, HU Ming-Peng, WANG Hai-Hua (Institute of Polymer Science, Institute of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275)

Abstract The novel catalysts of TiCl₄-acac-Co (acac)₂, TiCl₄-Co (acac)₂ and TiCl₄-acac supported on SiO₂-MgCl₂ carrier(Ti-Co combined catalyst) were prepared. They catalyze polymerization of ethylene giving branched polyethylene when Et₂ AlCl was used as a cocatalyst. The polymerization products have low melting point, low crystallinity and high degree of branching as evaluated by FTIR, DSC and ¹³C NMR spectrum. The results of ¹³C NMR suggested more than 55.0% of the polyethylene contain long branch chain ($n \ge 6$). Experimental results showed that the Ti-Co combined catalyst exhibites an excellent catalytic property for oligomerization and *in situ* copoly merization of ethylene.

Keywords Ti-Co combined catalyst, ethylene polymerization, branched polyethylene, copolymerization *in situ*