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Abstract Let E be an elliptic curve over Q. Let ap denote the trace of the Frobenius endomorphism at a
rational prime p. For a fixed integer r, define the prime-counting function as πE,r(x) :=

∑
p⩽x,p∤∆E ,ap=r 1.

The Lang-Trotter conjecture predicts that

πE,r(x) = CE,r ·
√
x

logx
+ o

( √
x

logx

)
as x → ∞, where CE,r is a specific non-negative constant. The Hardy-Littlewood conjecture gives a similar
asymptotic formula as above for the number of primes of the form ax2 + bx + c. Assuming that the Hardy-
Littlewood conjecture holds, we determine the constant CED,r for ED : y2 = x3 + Dx. As a consequence, we
establish a relationship between the Hardy-Littlewood conjecture and the Lang-Trotter conjecture for the elliptic
curve y2 = x3 + Dx. We show that the Hardy-Littlewood conjecture implies the Lang-Trotter conjecture for
y2 = x3+Dx. Conversely, if the Lang-Trotter conjecture holds for some D and 2r (for y2 = x3+Dx, p ∤ D, ap is
always even) with the positive constant CED,r, then the polynomial x2 + r2 represents infinitely many primes.
For a prime p, if ap = 2r, then p is necessarily of the form x2 + r2. Fixing r and D, and assuming that the
Hardy-Littlewood conjecture holds, we obtain the density of the primes with ap = 2r inside the set of primes of
the form x2 + r2. In some cases, the density is 1/4, which aligns with natural expectations, but this does not
hold for all D. In particular, we give a full list of D and r when there is no prime p for ap = 2r.
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1 Introduction

In this paper, we establish a relationship between the Hardy-Littlewood conjecture and the Lang-Trotter
conjecture for the elliptic curve y2 = x3 +Dx. Let us recall these two conjectures first.

Let E be an elliptic curve defined over the rational number field Q with discriminant ∆E . For any
prime p, we denote the finite field of p elements by Fp. As usual, we use Ẽp for E ⊗Zp Fp if E has good
reduction at p. When E has good reduction at a prime p, we define ap to be the trace of the Frobenius
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automorphism ϕp on the first étale cohomology of Ep; it is known that ap = 1+p−#Ẽp(Fp) is an integer.
Then ϕp satisfies the equation

x2 − apx+ p = 0. (1.1)

The problem of determining the precise value of ap is of special interest but is very difficult in general.
We only know the necessary and sufficient condition for ap = 0 in the complex multiplication (CM) case.
Suppose that K is an imaginary quadratic field and E has CM by an order in K, i.e., EndQ̄(E)⊗Q ∼= K.

Then by Deuring’s theorem [5], for any prime number p of good reduction for E, we have

ap = 0 ⇔ p is inert in K.

Let E be an elliptic curve defined over K. In 1987, Elkies [6] proved that in the non-CM case, if [K : Q]

is odd, then E has infinitely many supersingular primes.
By the Hasse inequality, ap ∈ (−2

√
p, 2

√
p). Two celebrated theorems describe the distribution of ap

2
√
p

in (−1, 1) as the rational prime p varies. In the CM case, it is Deuring’s theorem [5]; in the non-CM case,
it is the Sato-Tate conjecture (1960) and proved by Clozel et al. [3], Harris et al. [9] and Taylor [26].

For a fixed integer r, define the prime-counting function

πE,r(x) :=
∑

p⩽x,p∤∆E ,ap=r

1.

Observe that ap ∈ (−2
√
p, 2

√
p). If we conceptualize Prob(ap = r) having an asymptotic value 1

4
√
p , then

πE,r(x) ≈
∑
p⩽x

1

4
√
p
∼ 1

2

√
x

logx
.

By studying a probabilistic model consistent with the Chebotarev density theorem for the division fields
of E and the Sato-Tate distribution, Lang and Trotter [16] generalized the Mazur conjecture, as explained
below, and formulated the following conjecture.
The Lang-Trotter conjecture (1976). Let E be an elliptic curve over Q and r be a fixed integer.
If r = 0, we have to assume additionally that E has no complex multiplication. Then

πE,r(x) = CE,r ·
√
x

logx
+ o

( √
x

logx

)
as x → ∞, where CE,r is a specific non-negative constant.

This conjecture has not been proved for any single elliptic curve. If the constant CE,r = 0, we interpret
the asymptotic to mean that there are only finitely many primes p for which ap = r.

The phenomenon of ap = 1 is of special interest and such primes are named anomalous primes by
Mazur [17]. By [17], one can see that the anomalous primes are critical in the study of the Shafarevich-
Tate group and Iwasawa theory of an abelian variety. Mazur [17] asked the following question:

Can an elliptic curve possess an infinite number of anomalous primes?
Furthermore, Mazur [17] proposed the following conjecture.

The Mazur conjecture (1972). Let D be a rational integer which is neither a square nor a cube
in Q(

√
−3). For the curve ED : y2 = x3 +D, there are infinitely many anomalous primes for the elliptic

curve ED. More precisely, let A.P.D(N) denote the number of primes less than N which are anomalous
for the elliptic curve ED. Then we have the asymptotic estimate

A.P.D(N) ∼ c

√
N

logN
as N → ∞

for some positive constant c.

We have proved in [18] the following result.
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Theorem 1.1. The Hardy-Littlewood conjecture implies the Mazur conjecture, except for D = 80d6,
or D = −268912d6, where d ∈ Z[ 1+

√
−3

2 ] with d6 ∈ Z is a nonzero integer. Moreover,

A.P.D(N) ∼ c

√
N

logN
as N → ∞

for some positive constant c.
Conversely, if the Mazur conjecture holds for some D, then the polynomial 12x2 + 18x+ 7 represents

infinitely many primes.
For related discussions and further results, we refer to [1, 4, 12,14,15,19].
Before we state the Hardy-Littlewood conjecture, let us take a look at the polynomial x2+1, a specific

example in degree two. A natural question is the following:
Can p = x2 + 1 represent infinitely many primes (x ∈ N)?
This question is sometimes called the Euler conjecture in the literature. It is the first one of four basic

questions about primes listed by Landau in his talk in ICM1912 in Cambridge. We have no answer to
this question yet. However, progress can be found in [11].

When we consider the same question for general quadratic polynomials, we have the well-known Hardy-
Littlewood conjecture.
The Hardy-Littlewood conjecture [8]. Let a, b and c be integers subject to the following
conditions:

• a is positive;
• (a, b, c) = 1;
• a+ b and c are not both even;
• D = b2 − 4ac is not a square.

Let P (n) denote the number of primes less than n which are of the form ax2 + bx+ c. Then we have the
asymptotic estimate

P (n) ∼ δ(a, b, c)

√
n

logn
as n → ∞, (1.2)

where

δ(a, b, c) =
gcd(2, a+ b)√

a

∏
p|a, p|b
p>2

p

p− 1

∏
p∤ a
p>2

(
1−

(Dp )

p− 1

)
(1.3)

is a constant. In particular, there are infinitely many primes of the form ax2 + bx+ c.

Let us compare this conjecture with a classical result due to Dirichlet.
Dirichlet’s theorem. Let m and a be relatively prime positive integers. Then there exist infinitely
many primes p such that

p ≡ a (mod m),

i.e., mx+ a represents infinitely many primes.
Let π(n,m, a) denote the number of prime numbers p ⩽ n such that p = mx+ a. Then

π(n,m, a) ∼ 1

ϕ(m)

n

logn
as n → ∞.

Here, ϕ(·) is Euler’s totient function.
Therefore, Dirichlet’s theorem provides the asymptotic formula for the number of primes represented

by polynomials of degree one, and thus establishes the existence of infinitely many such primes. However,
when we consider the situation for the polynomials of degree two, the problem becomes exceedingly
difficult.
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The purpose of this paper is to study the Lang-Trotter conjecture for the elliptic curve y2 = x3 +Dx.
Roughly speaking, we show that in our situation, the validity of the Hardy-Littlewood conjecture and
that of the Lang-Trotter conjecture are equivalent.

Let D be a nonzero integer and ED be the elliptic curve of the affine equation y2 = x3 + Dx. Then
ED has CM by Q(

√
−1). By Deuring’s theorem, if a prime p ≡ 3 (mod 4), then ap(ED) = 0. On the

other hand, if p ≡ 1 (mod 4), then p is the sum of two squares. It turns out that for p = r2+x2, we have
ap(ED) = ±2r,±2x. Meanwhile, if ap(ED) = 2r, then p must be of the form r2 + x2. Fix r. If a prime
p belongs to the quadratic progression r2 + x2, then there are four possibilities for ap(ED). All primes
p belonging to r2 + x2 for which ap(ED) = 2r represents, asymptotically, a non-negative fraction of the
total number of primes of the form r2 + x2. We refer to this fraction as density. A natural question is:
is this density 1/4? In some cases, the density is 1/4, but it fails to be true for all D. It happens that
for some D and r, there are no primes p such that ap(ED) = 2r. We give a full list of such D and r.
Furthermore, the Hardy-Littlewood conjecture implies that for any D and even r, it is impossible that
the density for ap(ED) = 2r is equal to 1/4. Assuming that the Hardy-Littlewood conjecture holds, we
show that this density exists for each D. The explicit values for the density will be given as the main
results of this paper. Applying the density results and the Hardy-Littlewood conjecture again, we show
that the Lang-Trotter conjecture holds for y2 = x3 +Dx.

Theorem 1.2. The Hardy-Littlewood conjecture implies the Lang-Trotter conjecture for y2 = x3+Dx.

Moreover, for any non-zero integer r,

πED,2r(x) ∼ δ ·
√
x

logx
as x → ∞

for some non-negative constant δ.
Conversely, if the Lang-Trotter conjecture holds for some D and r with the positive constant CED,2r,

then the polynomial x2 + r2 represents infinitely many primes.
The constant δ will be given explicitly in this paper. In particular, we give a full list when the constant

δ = 0. Recently, joined with Hu and Lei1), we show that the constant δ keeps consistent with the constant
suggested by Jones [13]. In this paper, we will directly cite some knowledge about quartic reciprocity
and elliptic curves without further explanation. Readers may refer to references such as [7, 10,20–25].

2 Preliminaries

Let D be a nonzero integer and ED be the elliptic curve: y2 = x3 + Dx. For any odd prime p ∤ D,

ap = 1 + p−#ẼD(Fp). The following well-known result is useful for us to compute the values of ap.
Lemma 2.1 (Gauss). Let p = α2 + β2 (α, β ∈ Z) with α ≡ 1 (mod 4) be an odd prime. Then(

p−1
2

p−1
4

)
≡ 2α (mod p).

Proof. See, for example, [2].

Lemma 2.2. Let p be an odd prime. Then for t ̸≡ 0 (mod p− 1),

p−1∑
x=0

xt ≡ 0 (mod p)

and
p−1∑
x=0

xp−1 ≡ −1 (mod p).

1) Hu L X, Lei K S, Qin H R. The Lang-Trotter conjecture for CM elliptic curves and the Hardy-Littlewood conjecture.
Preprint
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Proof. The result follows immediately from a direct computation.

Lemma 2.3. Let E be the elliptic curve: y2 = x3 +Dx, and p ≡ 1 (mod 4) be an odd prime. Then

ap ≡

(
p−1
2

p−1
4

)
D

p−1
4 (mod p).

Assume further that p = α2+β2 (α, β ∈ Z) with α ≡ 1 (mod 4) is a prime. If p ∤ D, then ap = ±2α,±2β.

More precisely,

ap =



2α, if D p−1
4 ≡ 1 (mod p),

−2α, if D p−1
4 ≡ −1 (mod p),

2β, if D p−1
4 ≡ β

α
(mod p),

−2β, if D p−1
4 ≡ −β

α
(mod p).

Proof. Let p ∤ D be an odd prime. Then

#ẼD(Fp) = 1 +

p−1∑
x=0

(
1 +

(
x3 +Dx

p

))
= 1 + p+

p−1∑
x=0

(
x3 +Dx

p

)
.

Note that (
x3 +Dx

p

)
≡ (x3 +Dx)

p−1
2 (mod p).

Hence, if p ≡ 1 (mod 4) is a prime, then by Lemma 2.2,

ap(ED) = −
p−1∑
x=0

(
x3 +Dx

p

)
≡ −

p−1∑
x=0

(x3 +Dx)
p−1
2 ≡

(
p−1
2

p−1
4

)
D

p−1
4 (mod p),

and if p ≡ 3 (mod 4) is an odd prime, then ap ≡ 0 (mod p), and hence ap = 0 by the Hasse inequality.
Now assume that p = α2 + β2, where α, β ∈ Z with α ≡ 1 (mod 4) is a prime. By the Gauss lemma

(see Lemma 2.1), (
p−1
2

p−1
4

)
≡ 2α (mod p).

On the other hand, D
p−1
4 ≡ ±1,± β

α (mod p), so the result follows by applying the Hasse inequality
again.

Let D be a nonzero integer. Fix an integer r. If p ∤ D with ap = 2r ̸= 0, then p must be of the form
r2 + x2. In fact, since p ∤ D and ap ̸= 0, p is the sum of two squares. By Lemma 2.3, we can write
p = r2 + x2. On the other hand, if p = r2 + x2, then ap(ED) = ±2r,±2x. There are four possibilities
for ap(ED). We are interested in the distribution of such four possibilities for ap(ED). To study this
distribution, we introduce the following definition.
Definition 2.4. Let ED : y2 = x3 +Dx. Put

Q(r,N) = {p | p prime, p = r2 + x2 ⩽ N}.

For any integer r, we put

ap(ED, 2r) = limN→∞
#{p | ap(ED) = 2r, p ∈ Q(r,N)}

#Q(r,N)
.

We simply write ap(2r) for ap(ED, 2r).
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Therefore, ap(ED, 2r) represents a natural density for all primes with ap = 2r inside primes of the
form r2 + x2. We show that ap(ED, 2r) exists in the next section.

We now recall some basic facts about the biquadratic residue. By definition, a nonunit a + b
√
−1

∈ Z[
√
−1] is primary if either a ≡ 1, b ≡ 0 (mod 4) or a ≡ 3, b ≡ 2 (mod 4). Let π be a prime primary

element in Z[
√
−1] with π ∤ 2. For any λ ∈ Z[

√
−1], relatively prime to π, the biquadratic residue symbol

(character) (λπ )4, which takes values ±1 and ±
√
−1, is characterized by the congruence(

λ

π

)
4

≡ λ
Nπ−1

4 (mod π).

Theorem 2.5 (The law of biquadratic reciprocity). Let λ and π be relatively prime primary elements
in Z[

√
−1] with π ∤ 2 and λ ∤ 2. Let (λπ )4 denote the biquadratic residue character. Then(

λ

π

)
4

=

(
π

λ

)
4

· (−1)
Nλ−1

4 ·Nπ−1
4 .

For a rational odd prime p = α2+β2 with α odd, by a choice of signs, we assume that β > 0. Suppose
that p = ρρ̄ is its prime factorization in Z[

√
−1]. Assume that ρ = α + β

√
−1 is primary. When D is a

nonzero integer with p ∤ D, for convenience, we use (Dp )4 for (Dρ )4. Under this setting, in Z/pZ, we have√
−1 ≡ α/β (mod p) and (

D

p

)
4

≡ D
p−1
4 (mod p).

The following lemma gives the precise value (Dp )4 for D = 2.

Lemma 2.6. We have the following formula for 2
p−1
4 (mod p) :

2
p−1
4 ≡



1 (mod p), if β ≡ 0 (mod 8),

−1 (mod p), if β ≡ 4 (mod 8),

β

α
(mod p), if β ≡ 2α (mod 8),

−β

α
(mod p), if β ≡ 6α (mod 8).

Proof. Let p = α2 + β2 with α odd be a prime. Clearly (αp ) = 1. Since (α + β)2 + (α − β)2 = 2p, we
have (

α+ β

p

)
= (−1)

1
8 ((α+β)2−1)

and
(α+ β)2

α2
≡ 2 · β

α
(mod p).

Hence,

2
p−1
4 · β

p−1
4

α
p−1
4

≡ (α+ β)
p−1
2

α
p−1
2

(mod p).

It follows that

2
p−1
4 ≡ (α+ β)

p−1
2 · β

− p−1
4

α− p−1
4

(mod p)

≡ β
1
4 ((α+β)2−1)

α
1
4 ((α+β)2−1)

· β
− p−1

4

α− p−1
4

(mod p)

≡ β
1
4 (2αβ)

α
1
4 (2αβ)

(mod p)

≡ β
αβ
2

α
αβ
2

(mod p).
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Note that β ≡ 2α (mod 8) if and only if αβ ≡ 2 (mod 8), and β ≡ 6α (mod 8) if and only if αβ ≡ 6

(mod 8). Hence, 2 p−1
4 ≡ 1 (mod p) if and only if β ≡ 0 (mod 8); 2

p−1
4 ≡ −1 (mod p) if and only if β ≡ 4

(mod 8); 2
p−1
4 ≡ β

α (mod p) if and only if β ≡ 2 (mod 8); 2
p−1
4 ≡ − β

α (mod p) if and only if β ≡ 6

(mod 8).

Remark 2.7. Dirichlet gave a beautiful criterion for the solvability of x4 ≡ 2 (mod p). The proof
given above was inspired by his idea.

As an immediate application of the law of biquadratic reciprocity, we have the following lemma.
Lemma 2.8. Let p = r2 + x2 and p′ = r2 + x′2 be two primes. Assume that D is an odd integer.

(i) If x ≡ x′ (mod D), then (Dp ) = (Dp′ ).
(ii) If x ≡ x′ (mod 4D), then (Dp )4 = (Dp′ )4.
(iii) If x ≡ x′ (mod 8D), then ( 2Dp )4 = ( 2Dp′ )4.
We conclude this section by giving the following lemma, which is useful in the next two sections.

Lemma 2.9. Let l ≡ 3 (mod 4) be a prime. If l > 3 and 1 ⩽ k < l+1
4 , then

ordl

( l2−1
4

k(l − 1)

)
= 1;

in particular, ( l2−1
4

k(l − 1)

)
≡ 0 (mod l).

Proof. Assume that m is a positive integer. For a fixed prime l, we write m = a0 + a1l + · · · + arl
r,

0 ⩽ ai < l. A useful formula for ordlm! is the following:

ordlm! =
1

l − 1
(m− (a0 + a1 + · · ·+ ar)).

It is easy to see that

l2 − 1

4
=

3l − 1

4
+

l − 3

4
l,

k(l − 1) = l − k + (k − 1)l,

l2 − 1

4
− k(l − 1) =

(
l − 3

4
− k

)
l +

3l − 1

4
+ k.

Since l > 3,

ordl

( l2−1
4

k(l − 1)

)
= 1.

This completes the proof.

3 ap ≡ 2 (mod 4)

In this section, we consider the case where ap = 2α with α ≡ 1 (mod 4) being a fixed integer. Suppose
that p = α2 + β2 is a prime. Assume that β takes the values from the arithmetic progression 4Dx+ 2k.
Consider the quadratic polynomial in one indeterminate x:

p(D,α, k, x) = α2 + (4Dx+ 2k)2 = 16D2x2 + 16kDx+ 4k2 + α2. (3.1)

One can see that p(D,α, k, x) satisfies the assumption in the Hardy-Littlewood conjecture if and only
if (4k2 + α2, D) = 1.
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Let

H(D,α) = {k | 1 ⩽ k ⩽ 2D, (D, 4k2 + α2) = 1}. (3.2)

To count the elements in H(D,α), we introduce the following notation.
Notation. Given a prime l, we define

τ(lr) =

{
lr, if l ≡ 3 (mod 4) or l = 2,

lr−1(l − 2), if l ≡ 1 (mod 4).

Extend this definition to any integer D ∈ Z by defining τ(±1) = 1 and

τ(D) =
∏
l|D

τ(lvl(D)).

It is clear that for two nonzero integers D and t, ED is isomorphic to EDt4 . Thus we may assume that
the general D is of the form as follows:

D = ±2σp1 · · · pr(q1 · · · qs)2(l1 · · · lt)3,

where σ = 0, 1, 2, 3 and pi, qi and li are distinct odd primes. We write D = dd̄, where (d, d̄) = 1 and for
any odd prime l if l | d, then l | α. By this definition, (D,α) | d, but it is possible that (D,α) ≠ d. For
a non-zero integer n, we define Rad(n) =

∏
l|n l, where the product is over all odd prime factors of n.

Then d and d̄ are determined by D = dd̄, d > 0 odd, Rad(d) | α and (α, d̄) = 1. With this notation, we
have the following lemma.
Lemma 3.1. Let ϕ(·) be Euler’s totient function. Then #H(D,α) = 2ϕ(d)τ(d̄). In particular, If
(D,α) = 1, then #H(D,α) = 2τ(D).

Proof. By definition, we have

H(D,α) = {k | 1 ⩽ k ⩽ D, (D, 4k2 + α2) = 1} ∪ {k | D + 1 ⩽ k ⩽ 2D, (D, 4k2 + α2) = 1}.

We have

#{k | 1 ⩽ k ⩽ D, (D, 4k2 + α2) = 1} = #{k | D + 1 ⩽ k ⩽ 2D, (D, 4k2 + α2) = 1}.

Write t(D,α) = #{k | 1 ⩽ k ⩽ D, (D, 4k2 + α2) = 1}. If D = D1D2 with (D1, D2) = 1, then

t(D,α) = t(D1, α)t(D2, α).

We see that t(d, α) = ϕ(d) and t((d̄, α) = τ(d̄). Hence, #H(D,α) = 2ϕ(d)τ(d̄).

When (D,α) = 1, d = 1 and D = d̄, hence #H(D,α) = 2τ(D).

It is easy to see that H(D,α) can be partitioned into the following disjoint union of two subsets:

H(D,α) = HI(D,α) ∪HII(D,α), (3.3)

where

HI(D,α) = {k ∈ H(D,α) | k ≡ 1 (mod 2)}, (3.4)
HII(D,α) = {k ∈ H(D,α) | k ≡ 0 (mod 2)}. (3.5)

We use Q(α,∞) for the set of all primes which are of the form p = α2 + β2. For a positive integer N ,
let

Q(α,N) = {p ⩽ N | p ∈ Q(α,∞)}. (3.6)
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For k ∈ H(D,α), put

P (D,α, k,N) = {p ∈ Q(α,N) | p = p(D,α, k, x) for some x ∈ Z}, (3.7)
P (D,α, k) = {p ∈ Q(α,∞) | p = p(D,α, k, x) for some x ∈ Z}. (3.8)

So we have a disjoint union

Q(α,N) =
⋃

k∈H(D,α)

P (D,α, k,N). (3.9)

The Hardy-Littlewood conjecture predicts that for the fixed D,α and k,

#P (D,α, k,N) ∼ c(D,α, k)

√
N

logN
(3.10)

as N → ∞, where c(D,α, k) = δ(16D2, 16kD, 4k2 + α2) is a constant. Applying the explicit expression
of the constant given by the conjecture, we can show that c(D,α, k) does not depend on k ∈ H(D,α),

which enables us to write c(D,α, k) = c(D,α). Therefore,

#Q(α,N) ∼ δ(1, 0, α2)

√
N

logN
∼ 2ϕ(d)τ(d̄)c(D,α)

√
N

logN
. (3.11)

Suppose that pk1 , pk2 , . . . , pk2τ(D)
∈ Q(α,∞) with pki ∈ P (D,α, ki) and pki ∤ D. Put

P (D,α) = {pk1
, pk2

, . . . , pk2τ(D)
}. (3.12)

Corresponding to the partition of H(D,α), the primes set P (D,α) can be partitioned into

P (D,α) = PI(D,α) ∪ PII(D,α), (3.13)

where

PI(D,α) = {pk ∈ P (D,α) | k ≡ 1 (mod 2)}, (3.14)
PII(D,α) = {pk ∈ P (D,α) | k ≡ 0 (mod 2)}. (3.15)

Then #P (D,α) = #H(D,α).
We introduce the following summations:∑(2)

(D) :=
∑

p∈P (D,α)

(
D

p

)
,
∑(4)

(D) :=
∑

p∈P (D,α)

(
D

p

)
4

. (3.16)

∑(2)
(D) (resp.

∑(4)
(D)) will be simply denoted by

∑(2) (resp.
∑(4)

) if no confusion arises. For
σ = 2, 4 and κ = I, II, we put

∑(σ)

κ
:=

∑
p∈Pκ(D,α)

(
D

p

)
σ

. (3.17)

Of course, (Dp )2 = (Dp ) is the Legendre symbol.
It is immediate that ∑(σ)

=
∑(σ)

I
+
∑(σ)

II
. (3.18)

We want to determine the exact number of primes p ∈ P (D,α), for which (Dp )4 equals a fixed value in
{±1,±i}.
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Let

xα = #{p | ap = 2α, p ∈ P (D,α)},
x−α = #{p | ap = −2α, p ∈ P (D,α)},
xβ = #{p | ap = 2β, p ∈ P (D,α)},
x−β = #{p | ap = −2β, p ∈ P (D,α)},

equivalently,

xα = #{p | D
p−1
4 ≡ 1 (mod p), p ∈ P (D,α)},

x−α = #{p | D
p−1
4 ≡ −1 (mod p), p ∈ P (D,α)},

xβ = #

{
p

∣∣∣∣D p−1
4 ≡ β

α
(mod p), p ∈ P (D,α)

}
,

x−β = #

{
p

∣∣∣∣D p−1
4 ≡ −β

α
(mod p), p ∈ P (D,α)

}
.

Theorem 3.2. Assume that the Hardy-Littlewood conjecture holds. Then

ap(ED, 2α) =
xα

2ϕ(d)τ(d̄)
, ap(ED,−2α) =

x−α

2ϕ(d)τ(d̄)
. (3.19)

Proof. Recall that
Q(r,N) = {p | p prime, p = r2 + x2 ⩽ N}.

By definition,
ap(ED, 2r) = limN→∞

#{p | ap(ED) = 2r, p ∈ Q(r,N)}
#Q(r,N)

.

Let p = α2 + x2 be a prime. By Lemma 2.8, if p, p′ ∈ P (D,α), then (Dp )4 = (Dp′ )4. With the notation as
above, we suppose that 1 ⩽ k1, . . . , kxα

⩽ 2D are integers such that(
D

pkj

)
4

= 1.

We have

ap(ED, 2α) = limN→∞
#{p | ap(ED) = 2α, p ∈ Q(α,N)}

#Q(α,N)

= limN→∞

∑xα

j=1 #P (D,α, kj , N)

#Q(α,N)

= limN→∞
xαc(D,α)

√
N

logN

#H(D,α)c(D,α)
√
N

logN

=
xα

2ϕ(d)τ(d̄)
.

The case where ap = −2α can be checked similarly.

Lemma 3.3. Let D and D′ with (D,D′) = 1 be two odd integers. Then for κ = I, II,

Σ(2)
κ (DD′) = Σ(2)

κ (D)Σ(2)
κ (D′), Σ(4)

κ (DD′) = Σ(4)
κ (D)Σ(4)

κ (D′). (3.20)

Proof. It is sufficient to show that Σ
(4)
κ (DD′) = Σ

(4)
κ (D)Σ

(4)
κ (D′). By the Chinese remainder theorem,

we see that there is a canonical bijection between the set of {2k (mod 4DD′), k is odd} and the set of
pairs {(2t (mod 4D), 2s (mod 4D′)), t and s are odd}. The same is true if we replace “odd” with “even”.
With the help of the law of biquadratic reciprocity, we obtain (3.20).
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We set the following notation:

Σ = #H(D,α) = 2ϕ(d)τ(d̄). (3.21)

Lemma 3.4. If Σ(4) ∈ Z, then

xα =
1

4
(Σ + Σ(2) + 2Σ(4)), x−α =

1

4
(Σ + Σ(2) − 2Σ(4)).

Proof. It follows immediately from the system
xα + x−α + xβ + x−β = Σ,

xα − x−α + (xβ − x−β)
√
−1 = Σ(4),

xα + x−α − xβ − x−β = Σ(2).

(3.22)

This completes the proof.

In the following, we first establish the density results when D is a prime. The conclusions are applicable
for D to be any nonzero integer. In the following lemmas and theorems, except for Lemma 3.12, we assume
that the Hardy-Littlewood conjecture holds.

It is immediate that for any odd prime l,
∑(2)

I =
∑(2)

II .

Lemma 3.5. For any odd prime l,
∑(2)

I =
∑(2)

II = −1.

Proof. Let l be an odd prime. Fix α. Then

∑(2)

I
=

l∑
y=1

(
α2 + y2

l

)
≡ −1 (mod l).

Clearly, we have |
∑(2)

I | ⩽ l, and hence∑(2)

I
= −1 or

∑(2)

I
= l − 1.

However,
∑(2)

I is odd, and hence
∑(2)

I = −1.

Lemma 3.6. Let l be an odd prime. Fix an odd integer α. Then
(1) ∑(4)

I
=

{
1, if l ≡ 5, 7 (mod 8),

−1, if l ≡ 1, 3 (mod 8).

(2) ∑(4)

II
=

{
1, if l ≡ 3, 5 (mod 8),

−1, if l ≡ 1, 7 (mod 8).

(3) For p ∈ PI(D,α), (−1
p )4 = −1, and for p ∈ PII(D,α), (−1

p )4 = 1.

Proof. Assume that l ≡ 1 (mod 4) is a prime. For any prime p of the form α2 + (4ly + 2k)2, we may
assume that α+ (4ly + 2k)

√
−1 is primary. Write l = ρρ̄ for the prime factorization of l in Z[

√
−1]. By

the law of biquadratic reciprocity,(
l

α+ (4ly + 2k)
√
−1

)
4

=

(
ρρ̄

α+ (4ly + 2k)
√
−1

)
4

=

(
α+ (4ly + 2k)

√
−1

ρ

)
4

(
α+ (4ly + 2k)

√
−1

ρ̄

)
4

≡ (α+ 2k
√
−1)

l−1
4 (α− 2k

√
−1)

3
4 (l−1) (mod ρ).
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Therefore,

Σ
(4)
I ≡

l∑
k=1

(α+ 2k
√
−1)

l−1
4 (α− 2k

√
−1)

3
4 (l−1) (mod ρ)

≡
l∑

k=1

(2k
√
−1)

l−1
4 (−2k

√
−1)

3
4 (l−1) (mod ρ)

≡ (l − 1)(−1)
3
4 (l−1) (mod ρ)

≡

{
1 (mod l), if l ≡ 5 (mod 8),

−1 (mod l), if l ≡ 1 (mod 8).

Since |Σ(4)
I | is odd up to l,

Σ
(4)
I =

{
1, if l ≡ 5 (mod 8),

−1, if l ≡ 1 (mod 8).

It is easy to see that for a prime l ≡ 1 (mod 4), Σ
(4)
I = Σ

(4)
II .

Assume now that l ≡ 3 (mod 4). If k is odd, then by the law of biquadratic reciprocity,(
l

α+ (4ly + 2k)
√
−1

)
4

= −
(
α+ (4ly + 2k)

√
−1

l

)
4

= −
(
α+ 2k

√
−1

l

)
4

.

Hence,

Σ
(4)
I ≡ −

l∑
k=1

(α+ 2k
√
−1)

l2−1
4 (mod l)

≡ −
l∑

k=1

(2k
√
−1)

l2−1
4 (mod l)

≡ −(l − 1)(−1)
l2−1

8 (mod l)

≡ (−1)
l2−1

8 (mod l).

Hence, Σ(4)
I = (−1)

l2−1
8 , i.e.,

Σ
(4)
I = (−1)

l2−1
8 =

{
−1, if l ≡ 3 (mod 8),

1, if l ≡ 7 (mod 8).

If k is even, then the law of biquadratic reciprocity implies that(
l

α+ (4ly + 2k)
√
−1

)
4

=

(
α+ 2k

√
−1

l

)
4

.

A similar computation as above shows that

Σ
(4)
II = −(−1)

l2−1
8 =

{
1, if l ≡ 3 (mod 8),

−1, if l ≡ 7 (mod 8).

This proves (1) and (2).
(3) is immediate.

Theorem 3.7. Assume that D = l is an odd prime.
If l ≡ 1 (mod 8), then

ap(2α) =
l − 5

4(l − 2)
, ap(−2α) =

l − 1

4(l − 2)
.
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If l ≡ 5 (mod 8), then
ap(2α) =

l − 1

4(l − 2)
, ap(−2α) =

l − 5

4(l − 2)
.

If l ≡ 3 (mod 4), then
ap(2α) = ap(−2α) =

l − 1

4l
.

Proof. We have the following computation for Σ, Σ(2) and Σ(4).
For l ≡ 1 (mod 8),

Σ = 2(l − 2), Σ(2) = −2, Σ(4) = −2.

For l ≡ 5 (mod 8),

Σ = 2(l − 2), Σ(2) = −2, Σ(4) = 2.

For l ≡ 3 (mod 4)

Σ = 2l, Σ(2) = −2, Σ(4) = 0.

Now the result follows from the formula, i.e.,

xα =
1

4
(Σ + Σ(2) + 2Σ(4)), x−α =

1

4
(Σ + Σ(2) − 2Σ(4)).

This completes the proof.
For

D = ±2σp1 · · · pr(q1 · · · qs)2(l1 · · · lt)3,

where σ = 0, 1, 2, 3 and pi, qi and li are distinct odd primes. We define
• δ = 0 if D > 0 and δ = 1 if D < 0;
• ri = #{l | p1 · · · pr, l ≡ i (mod 8)};
• ti = #{l | l1 · · · lt, l ≡ i (mod 8)}.
For a rational odd prime p = α2 + β2 with α odd, replacing α by −α if necessary, we can specify α

uniquely by α ≡ 1 (mod 4). This choice is assumed from now on.
Theorem 3.8. Assume that (D,α) = 1. If D ≡ 1 (mod 4), then

ap(2α) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r7+s+t1+t7

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2α) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r7+s+t1+t7

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

If D ≡ 3 (mod 4), then

ap(2α) = ap(−2α) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)

)
.

Proof. We compute Σ, Σ(2) and Σ(4). First, we have Σ = 2τ(D). We see that

Σ
(2)
I = Σ

(2)
II = (−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2.

Hence,
Σ(2) = 2(−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2.

We have

Σ
(4)
I = (−1)r1+r3+s+t1+t3+δq1 · · · qsl21 · · · l2t , Σ

(4)
II = (−1)r1+r7+s+t1+t7q1 · · · qsl21 · · · l2t .

If D ≡ 1 (mod 4), then (−1)r1+r3+s+t1+t3+δ = (−1)r1+r7+s+t1+t7 , and if D ≡ 3 (mod 4), then
(−1)r1+r3+s+t1+t3+δ = −(−1)r1+r7+s+t1+t7 , and hence

Σ(4) =

{
2(−1)r1+r7+s+t1+t7q1 · · · qsl21 · · · l2t , if D ≡ 1 (mod 4),

0, if D ≡ 3 (mod 4).
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Now the theorem follows from Lemma 3.4.

Theorem 3.9. Assume that (D,α) = 1 and 4∥D.
If D

4 ≡ 3 (mod 4), then

ap(2α) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r7+s+t1+t7

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2α) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r7+s+t1+t7

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

If D
4 ≡ 1 (mod 4), then

ap(2α) = ap(−2α) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)

)
.

Proof. Observe that Σ(2)(D) = 4Σ(2)(D4 ), Σ
(4)
I (D) = −4Σ

(4)
I (D4 ) and Σ

(4)
II (D) = 4Σ

(4)
II (

D
4 ). Using the

results for D/4, we have the following computation for Σ, Σ(2) and Σ(4):

Σ = 2τ(D),

Σ(2) = 8(−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2,

Σ(4) =

{
8(−1)r1+r7+s+t1+t7q1 · · · qsl21 · · · l2t , if D

4 ≡ 3 (mod 4),

0, if D
4 ≡ 1 (mod 4).

Then the theorem follows from Lemma 3.4.

Theorem 3.10. Assume that 2∥D or 8∥D. Then

ap(2α) = a(−2α) =
1

4
.

Proof. Assume that 2∥D. The situation that 8∥D is analogous. We claim that Σ(2) = 0 and Σ(4) = 0.
In fact, for any prime p = p(D,α, k, x), we have ( 2p ) = −1 if k ∈ HI(D,α) and ( 2p ) = 1 if k ∈ HII(D,α).

On the other hand, for D/2, Σ(2)
I = Σ

(2)
II . Hence, Σ(2) = 0.

We introduce a new partition for H(D,α):

H(D,α) = H(D,α)1 ∪H(D,α)2,

where for H(D,α)1, 1 ⩽ k ⩽ D, and for H(D,α)2, D + 1 ⩽ k ⩽ 2D. We establish the following one to
one correspondence from H(D,α)1 to H(D,α)2 as follows:

pk1
= α2 + (4Dy + 2k)2 → pk2

= α2 + (4Dy + 2D + 2k)2.

Note that (
D/2

pk1

)
4

=

(
D/2

pk2

)
4

,(
2

pk1

)
4

= −
(

2

pk2

)
4

.

Hence, Σ(4) = 0. Now the theorem follows from Lemma 3.4.

In particular, taking α = 1, we have the following corollary, which answers a question proposed to the
author by Mazur.
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Corollary 3.11. (1) If D ≡ 1 (mod 4) or D/4 ≡ 3 (mod 4), then

ap(2) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r7+s+t1+t7

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r7+s+t1+t7

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

(2) If D ≡ 3 (mod 4) or D/4 ≡ 1 (mod 4), then

ap(2) = ap(−2) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)

)
.

(3) If 2∥D or 8∥D, then
ap(2) = a(−2) =

1

4
.

We turn to deal with the general case and thus the case (D,α) > 1 is included. We need some notation.
Recall the notation above Lemma 3.1 and further assume that

d = dp · d2q · d3l , d̄ = ±2σd̄p · d̄q
2 · d̄l

3
,

where dp, dq, dl and d̄p, d̄q, d̄l are all square-free integers. We define
• r′′ = #{l | l | d̄p};
• s′′ = #{l | l | d̄q};
• t′′ = #{l | l | d̄l};
• r′i = #{l | dp, l ≡ i (mod 8)};
• r′′i = #{l | d̄p, l ≡ i (mod 8)};
• t′i = #{l | dl, l ≡ i (mod 8)};
• t′′i = #{l | d̄l, l ≡ i (mod 8)}.

Lemma 3.12. Given any nonzero integer D, assume that

p = p(D,α, k, x) = α2 + (4Dx+ 2k)2

is a prime. For any odd prime factor l of D, if l | α, then ( l
p ) = 1 and

l
p−1
4 ≡

{
1 (mod p), if l ≡ 1, 3 (mod 8),

−1 (mod p), if l ≡ 5, 7 (mod 8),

provided that k is odd;

l
p−1
4 ≡

{
1 (mod p), if l ≡ 1, 7 (mod 8),

−1 (mod p), if l ≡ 5, 3 (mod 8),

provided that k is even.
Proof. Since p ≡ 1 (mod 4), we have(

l

p

)
=

(
p

l

)
=

(
(2k)2

l

)
= 1.

On the other hand, by assuming that α+ (4lx+ 2k)
√
−1 is primary, we see that

l
p−1
4 ≡

(
l

α+ (4lx+ 2k)
√
−1

)
4

(mod p).

If l ≡ 3 (mod 4), then(
l

α+ (4lx+ 2k)
√
−1

)
4

= (−1)k
(
α+ (4lx+ 2k)

√
−1

l

)
4
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≡ (−1)k((4lx+ 2k)
√
−1)

l2−1
4

≡ (−1)k+
l2−1

8 (mod l).

If l ≡ 1 (mod 4) and l = ρρ̄ is the prime factorization of l in Z[
√
−1], then(

l

α+ (4ly + 2k)
√
−1

)
4

=

(
ρρ̄

α+ (4ly + 2k)
√
−1

)
4

=

(
α+ (4ly + 2k)

√
−1

ρ

)
4

(
α+ (4ly + 2k)

√
−1

ρ̄

)
4

≡ (2k
√
−1)

l−1
4 (−2k

√
−1)

3
4 (l−1)

≡ (−1)
l−1
4 (mod ρ).

This proves the lemma.

Theorem 3.13. Assume that Rad(D) | α, i.e., for any odd prime factor l of D, l | α.
(1) If D ≡ 1 (mod 4), then

ap(2α) =
1

2
(1 + (−1)r3+r5+t3+t5),

ap(−2α) =
1

2
(1− (−1)r3+r5+t3+t5).

(2) If D ≡ 3 (mod 4), then
ap(2α) = ap(−2α) =

1

2
.

(3) Assume 4∥D.
If D

4 ≡ 1 (mod 4), then
ap(2α) = ap(−2α) =

1

2
.

If D
4 ≡ 3 (mod 4), then

ap(2α) =
1

2
(1 + (−1)r3+r5+t3+t5),

ap(−2α) =
1

2
(1− (−1)r3+r5+t3+t5).

(4) If 2∥D, or 8∥D, then
ap(2α) = ap(−2α) =

1

4
.

Proof. By Lemma 3.12, if p = p(D,α, k, x) = α2 + (4Dx+ 2k)2 is a prime, then for odd k,

D
p−1
4 ≡ (−1)r5+r7+t5+t7 (mod p),

and for k even,
D

p−1
4 ≡ (−1)r3+r5+t3+t5 (mod p).

If D ≡ 1 (mod 4), then
(−1)r5+r7+t5+t7 = (−1)r3+r5+t3+t5 ,

and if D ≡ 3 (mod 4), then
(−1)r5+r7+t5+t7 = −(−1)r3+r5+t3+t5 .

Note that 4
p−1
4 ≡ ( 2p ) (mod p) and ( 2p ) = −1 if k is odd, and 1 if k is even. Hence, the assertions (1)–(3)

follow.
If 2∥D or 8∥D, then for odd k, 2 p−1

4 ̸≡ ±1 (mod p), and hence ap ̸= ±2α. On the other hand, if 2∥k,
then 2

p−1
4 ≡ −1 (mod p), and if 4 | k, then 2

p−1
4 ≡ 1 (mod p). Hence, ap(2α) = ap(−2α) = 1

4 .
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Remark 3.14. We can make an explicit computation of Σ, Σ(2) and Σ(4) to give an alternative proof of
the above theorem. For example, in the case (4), the proof of Theorem 3.10 works here. Hence, Σ(2) = 0

and Σ(4) = 0, and consequently, ap(2α) = ap(−2α) = 1
4 .

Theorem 3.15. (1) Assume that D is odd.
If D ≡ 1 (mod 4), then

ap(2α) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
+

2(−1)r
′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′

τ(d̄p · d̄q · d̄l)

)
,

ap(−2α) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
− 2(−1)r

′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′

τ(d̄p · d̄q · d̄l)

)
.

If D ≡ 3 (mod 4), then

ap(2α) = ap(−2α) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)

)
.

(2) Assume that D is even.
If 4∥D and D

4 ≡ 1 (mod 4), then

ap(2α) = ap(−2α) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)

)
.

If 4∥D and D
4 ≡ 3 (mod 4), then

ap(2α) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
+

2(−1)r
′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′

τ(d̄p · d̄q · d̄l)

)
,

ap(−2α) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
− 2(−1)r

′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′

τ(d̄p · d̄q · d̄l)

)
.

If 2∥D or 8∥D, then
ap(2α) = ap(−2α) =

1

4
.

Proof. (1) We have

Σ = 2ϕ(d)Σ(d̄) = 2ϕ(d)τ(d̄),

Σ(2) = 2ϕ(d)Σ(2)(d̄) = 2(−1)r
′′+t′′ϕ(d)τ(d̄q

2 · d̄l
2
),

Σ
(4)
I = (−1)r

′
5+r′7+t′5+t′7+r′′1 +r′′3 +t′′1 +t′′3 +s′′+δϕ(d) · d̄q · d̄l

2
,

Σ
(4)
II = (−1)r

′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′ϕ(d) · d̄q · d̄l

2
.

If D ≡ 1 (mod 4), then

(−1)r
′
5+r′7+t′5+t′7+r′′1 +r′′3 +t′′1 +t′′3 +s′′+δ = (−1)r

′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′ ,

and if D ≡ 3 (mod 4), then

(−1)r
′
5+r′7+t′5+t′7+r′′1 +r′′3 +t′′1 +t′′3 +s′′+δ = −(−1)r

′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′ .

Hence, if D ≡ 1 (mod 4), then

Σ(4) = 2(−1)r
′
3+r′5+t′3+t′5+r′′1 +r′′7 +t′′1 +t′′7 +s′′ϕ(d) · d̄q · d̄l

2
,

and if D ≡ 3 (mod 4), then
Σ(4) = 0.

Then the formula in Lemma 3.4 gives the desired results.
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(2) For 4∥D, we can use

Σ(2)(D) = 4Σ(2)

(
D

4

)
, Σ

(4)
I (D) = −4Σ

(4)
I

(
D

4

)
, Σ

(4)
II (D) = 4Σ

(4)
II

(
D

4

)
to obtain the assertion.

For 2∥D or 8∥D, we have Σ(2) = Σ(4) = 0.

This proves the theorem.

4 ap ≡ 0 (mod 4)

Let β > 0 be a fixed even integer. In this section, we consider the case where ap = 2β ≡ 0 (mod 4). The
idea here is analogous to ap ≡ 2 (mod 4), but some different technical details are needed. Throughout
this section, except for Lemmas 4.5 and 4.7, we assume the Hardy-Littlewood conjecture. Changing α

to β, we collect some corresponding, but modified, notations from Section 3. Suppose that p = β2 + α2

is a prime. Assume that α takes values from the arithmetic progression 4Dx + 2k + 1. Consider the
quadratic polynomial in one indeterminate x:

p(D,β, k, x) = β2 + (4Dx+ 2k + 1)2.

Then p(D,β, k, x) satisfies the assumption in the Hardy-Littlewood conjecture if and only if
((2k + 1)2 + β2, D) = 1.

We have

H(D,β) = {k | 1 ⩽ k ⩽ 2D, (D, (2k + 1)2 + β2) = 1} (4.1)

and its partition

H(D,β) = HI(D,β) ∪HII(D,β), (4.2)

where

HI(D,β) = {k ∈ H(D,β) | k ≡ 1 (mod 2)}, (4.3)
HII(D,β) = {k ∈ H(D,β) | k ≡ 0 (mod 2)}. (4.4)

Then #HI(D,β) = #HII(D,β) = ϕ(d)τ(d̄) and #H(D,β) = 2ϕ(d)τ(d̄).
In correspondence to H(D,β), we have the primes set P (D,β) and its partition

P (D,β) = PI(D,β) ∪ PII(D,β), (4.5)

where

PI(D,β) = {pk ∈ P (D,β) | k ≡ 1 (mod 2)}, (4.6)
PII(D,β) = {pk ∈ P (D,β) | k ≡ 0 (mod 2)}. (4.7)

Define ∑(2)
(D) :=

∑
p∈P (D,β)

(
D

p

)
,
∑(4)

(D) :=
∑

p∈P (D,β)

(
D

p

)
4

. (4.8)

Again, we simply write
∑(2)

(D) (resp.
∑(4)

(D)) as
∑(2) (resp.

∑(4)
).

We also have ∑(σ)
=
∑(σ)

I
+
∑(σ)

II
, (4.9)
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where for σ = 2, 4 and κ = I, II, ∑(σ)

κ
:=

∑
p∈Pκ(D,β)

(
D

p

)
σ

. (4.10)

As in Section 3, we put

xβ = #{p | ap = 2β, p ∈ P (D,β)},
x−β = #{p | ap = −2β, p ∈ P (D,β)},
xα = #{p | ap = 2α, p ∈ P (D,β)},
x−α = #{p | ap = −2α, p ∈ P (D,β)}.

Then 
xβ + x−β + xα + x−α = Σ,

(xβ − x−β)
√
−1 + xα − x−α = Σ(4),

−xβ − x−β + xα + x−α = Σ(2).

(4.11)

This implies the following lemma.
Lemma 4.1. If Σ(4) ∈ Z, then

xβ = x−β =
1

4
(Σ− Σ(2)).

Theorem 4.2. Assume that the Hardy-Littlewood conjecture holds. Then

ap(ED, 2β) =
xβ

2ϕ(d)τ(d̄)
, ap(ED,−2β) =

x−β

2ϕ(d)τ(d̄)
. (4.12)

Proof. See the proof of Theorem 3.2.

Lemma 4.3. Let l be an odd prime. Fix an even integer β. Then
(1) Σ

(2)
I = Σ

(2)
II = −1;

(2) for l ≡ 1 (mod 4),
Σ

(4)
I = Σ

(4)
II = −1;

for l ≡ 3 (mod 4),
(2a) if 2∥β, then Σ

(4)
I = Σ

(4)
II = 1;

(2b) if 4 | β, then Σ
(4)
I = Σ

(4)
II = −1.

Proof. (1) The proof for the fixed odd α works for the fixed even β.
(2) For any prime of the form p = (4ly + 2k + 1)2 + β2, we may assume that 4ly + 2k + 1 + β

√
−1 is

primary.
Let l ≡ 1 (mod 4) be a prime and l = ρρ̄ be the prime factorization of l in Z[

√
−1]. It holds that(

l

4ly + 2k + 1 + β
√
−1

)
4

=

(
ρρ̄

4ly + 2k + 1 + β
√
−1

)
4

=

(
4ly + 2k + 1 + β

√
−1

ρ

)
4

(
4ly + 2k + 1 + β

√
−1

ρ̄

)
4

=

(
2k + 1 + β

√
−1

ρ

)
4

(
2k + 1 + β

√
−1

ρ̄

)
4

≡ (2k + 1 + β
√
−1)

l−1
4 (2k + 1− β

√
−1)

3
4 (l−1) (mod ρ).

Hence,

Σ
(4)
I ≡

l∑
k=1

(2k + 1 + β
√
−1)

l−1
4 (2k + 1− β

√
−1)

3
4 (l−1) (mod ρ)
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≡
l∑

k=1

((2k + 1)
l−1
4 + · · ·+ (β

√
−1)

l−1
4 )

× ((2k + 1)
3
4 (l−1) + · · ·+ (−β

√
−1)

3
4 (l−1)) (mod ρ)

≡
l∑

k=1

(2k + 1)l−1 (mod ρ)

≡ −1 (mod ρ).

Hence, Σ(4)
I = −1.

Let l ≡ 3 (mod 4) be a prime. Then(
l

4ly + 2k + 1 + β
√
−1

)
4

= (−1)
β
2

(
4ly + 2k + 1 + β

√
−1

l

)
4

= (−1)
β
2

(
2k + 1 + β

√
−1

l

)
4

.

Hence,

Σ
(4)
I = (−1)

β
2

l∑
k=1

(
2k + 1 + β

√
−1

l

)
4

≡ (−1)
β
2

l∑
k=1

(2k + 1 + β
√
−1)

l2−1
4 (mod l)

≡ (−1)
β
2

l∑
k=1

((2k + 1)l−1)
l+1
4 (mod l)

≡ −(−1)
β
2 (mod l).

Therefore, Σ(4)
I = −1 if 2∥β, and Σ

(4)
I = 1 if 4 | β.

It is clear that Σ
(4)
I = Σ

(4)
II . This proves the lemma.

Theorem 4.4. Assume that D = l is an odd prime.
If l ≡ 1 (mod 4), then

ap(2β) = ap(−2β) =
l − 1

4(l − 2)
.

If l ≡ 3 (mod 4), then
ap(2β) = ap(−2β) =

l + 1

4l
.

Proof. By Lemma 4.3, Σ(4) ∈ Z. Applying the results on Σ, Σ(2) and Lemma 4.1 leads to the
formulae.

Lemma 4.5. Given any nonzero integer D. Assume that p = p(D,β, k, x) = β2 + (4Dx+ 2k + 1)2 is
a prime. For any odd prime factor l of D, if l | β, then ( l

p ) = 1 and

l
p−1
4 ≡

{
1 (mod p), if l ≡ 1 (mod 4),

−1 (mod p), if l ≡ 3 (mod 4),

provided that 2∥β;
l
p−1
4 ≡ 1 (mod p),

provided that 4 | β.
Proof. This proof follows similarly to that of Lemma 3.12.
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As in the case ap ≡ 2 (mod 4), for any nonzero integer D, we write

D = dd̄,

where (d, d̄) = 1, and for any odd prime l | d, we have l | β, i.e., Rad(d) | β and (β, d̄) = 1. Note that
d (d > 0) is odd. We adopt all notations from the case ap ≡ 2 (mod 4).
Theorem 4.6. Assume that D = dd̄ with D odd or 4∥D.

(1) If d = 1, then

ap(2β) = ap(−2β) =
1

4

(
1− (−1)r+t

τ(p1 · · · prl1 · · · lt)

)
.

(2) If d̄ has no odd prime factor, then

ap(2β) = ap(−2β) = 0.

(3) If d̄ has some odd prime factor, then

ap(2β) = ap(−2β) =
1

4

(
1− (−1)r

′′+t′′

τ(d̄p · d̄l)

)
.

Proof. (1) We always have Σ(4) ∈ Z, so we only need to compute Σ and Σ(2). Clearly, Σ = 2τ(D). We
see that

Σ
(2)
I = Σ

(2)
II = (−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2.

Hence,
Σ(2) = 2(−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2,

and (1) follows.
(2) By the assumption, for any odd prime l | D, we have l | β. For any prime p = β2 + x2, by

Lemma 4.5, D p−1
4 ≡ ±1 (mod p). On the other hand, applying the Gauss lemma (see Lemma 2.1) and( p−1

2
p−1
4

)
≡ 2α (mod p),

we see that

ap ≡
( p−1

2
p−1
4

)
D

p−1
4 ̸≡ ±2β (mod p).

(3) We have
Σ = 2ϕ(d)Σ(d̄) = 2ϕ(d)τ(d̄)

and
Σ(2) = 2ϕ(d)Σ(2)(d̄) = 2(−1)r

′′+t′′ϕ(d)τ(d̄q
2 · d̄l

2
).

This proves the theorem.

Lemma 4.7. Let p = α2 + β2 with α ≡ 1 (mod 4) and β ≡ 2 (mod 8) be an odd prime. Then(
2

p

)
4

( p−1
2

p−1
4

)
≡ 2β (mod p). (4.13)

Proof. Since β ≡ 2 (mod 8) and α ≡ 1 (mod 4), by Lemma 2.6,(
2

p

)
4

≡ β

α
(mod p).

However, ( p−1
2

p−1
4

)
≡ 2α (mod p).

This proves the congruence (4.13).
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The lemma above shows that for 2∥D and 2∥β, determining the values of ap(2β,D) and ap(−2β,D) is
reduced to some computations of the case for D/2.
Theorem 4.8. Assume that 2∥D.

(1) Assume that 2∥β, and write β ≡ 2 (mod 8).
(1a) d = 1.
For D = 2p1 · · · pr(q1 · · · qs)2(l1 · · · lt)3,

ap(2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

For D = −2p1 · · · pr(q1 · · · qs)2(l1 · · · lt)3,

ap(2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

(1b) d̄ = ±2 (equivalently Rad(D) | β) :

ap(2β) =
1

2
(1 + (−1)

1
2 (

D
2 −1)), ap(−2β) =

1

2
(1− (−1)

1
2 (

D
2 −1)).

(2) Assume 4|β. Then

ap(2β) = ap(−2β) =
1

4

(
1− (−1)r+t

τ(p1 · · · prl1 · · · lt)

)
.

Proof. Assume that 2∥D and 2∥β. By Lemma 4.7,(
2

p

)
4

(
p−1
2

p−1
4

)
≡ 2β (mod p),

where β ≡ 2 (mod 8). Hence, for a prime p = β2 + x2, we have ap ≡ (D/2)
p−1
4 (mod p). It is reduced to

calculate

#

{
p ∈ P (D/2, β)

∣∣∣∣ (D/2

p

)
4

= 1

}
and #

{
p ∈ P (D/2, β)

∣∣∣∣ (D/2

p

)
4

= −1

}
.

We have Σ(2)(D/2) = 2(−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2 and

Σ
(4)
I (D/2) = Σ

(4)
II (D/2) = (−1)r1+r5+t1+t5+s+δq1 · · · qsl21 · · · l2t .

One can check that under our assumption,

ap(2β) =
1

4

(
1 +

Σ(2)

Σ
+

2Σ(4)

Σ

)
, ap(−2β) =

1

4

(
1 +

Σ(2)

Σ
− 2Σ(4)

Σ

)
,

where Σ = Σ(D/2) and Σ(σ) = Σ(σ)(D/2) for σ = 2, 4. Using the formula, we obtain (1a).
(1b) is a consequence of Lemmas 4.5 and 4.7.
(2) For 4 |β, we have ( 2p ) = 1 and ( 2p )4 = ±1, which depends on 4∥β or 8 |β. Hence,

Σ4(D) = ±Σ4(D/2) ∈ Z,

so we only need to apply the known result on Σ and Σ(2). Recall that

Σ
(2)
I = Σ

(2)
II = (−1)r+tτ((q1 · · · qs)2) · (l1 · · · lt)2.

This proves the theorem.
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Theorem 4.9. Assume that 8∥D.
(1) Assume that 2∥β, and write β ≡ 2 (mod 8).
(1a) d = 1.
For D = 8p1 · · · pr(q1 · · · qs)2(l1 · · · lt)3,

ap(2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

For D = −8p1 · · · pr(q1 · · · qs)2(l1 · · · lt)3,

ap(2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
+

2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r+t

τ(p1 · · · prl1 · · · lt)
− 2(−1)r1+r5+t1+t5+s

τ(p1 · · · prq1 · · · qsl1 · · · lt)

)
.

(1b) d̄ = ±2 (equivalently Rad(D) | β) :

ap(2β) =
1

2
(1− (−1)

1
2 (

D
8 −1)), ap(−2β) =

1

2
(1 + (−1)

1
2 (

D
8 −1)).

(2) Assume 4 |β. Then

ap(2β) = ap(−2β) =
1

4

(
1− (−1)r+t

τ(p1 · · · prl1 · · · lt)

)
.

Proof. (1) For 2∥β, we have ( 2p ) = −1, and hence, ( 8p )4 = −( 2p )4. So the proof is reduced to that of
Theorem 4.8.

Theorem 4.10. Assume 2∥D and d̄ has some odd prime factor.
(1) If 2∥β, writing β ≡ 2 (mod 8), then for D > 0,

ap(2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
+

2(−1)r
′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
− 2(−1)r

′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
.

For D < 0,

ap(2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
− 2(−1)r

′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
+

2(−1)r
′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
.

(2) If 4 |β, then

ap(2β) = ap(−2β) =
1

4

(
1− (−1)r

′′+t′′

τ(d̄p · d̄l)

)
.

Proof. (1) As in the proof of Theorem 4.8, we have

ap(2β) =
1

4

(
1 +

Σ(2)

Σ
+

2Σ(4)

Σ

)
, ap(−2β) =

1

4

(
1 +

Σ(2)

Σ
− 2Σ(4)

Σ

)
,

where Σ = Σ(D/2) and Σ(σ) = Σ(σ)(D/2) for σ = 2, 4. A computation based on Lemma 4.5 shows that

Σ = 2ϕ(d)Σ(d̄) = 2ϕ(d)τ(d̄),
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Σ(2) = 2ϕ(d)Σ(2)(d̄) = 2(−1)r
′′+t′′ϕ(d)τ(d̄q

2 · d̄l
2
),

Σ4 = 2ϕ(d)Σ(2)(d̄) = 2(−1)r
′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2 +δϕ(d)τ(d̄q
2 · d̄l

2
).

So (1) follows.
(2) For 4 |β, we have Σ4(D) ∈ Z. Now

Σ = 2ϕ(d)Σ(d̄) = 2ϕ(d)τ(d̄), Σ(2) = 2ϕ(d)Σ(2)(d̄) = 2(−1)r
′′+t′′ϕ(d)τ(d̄q

2 · d̄l
2
)

give the assertion of (2).

Theorem 4.11. Assume 8∥D and d̄ has some odd prime factor.
(1) If 2∥β, writing β ≡ 2 (mod 8), then for D > 0,

ap(2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
− 2(−1)r

′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
+

2(−1)r
′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
.

For D < 0,

ap(2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
+

2(−1)r
′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
,

ap(−2β) =
1

4

(
1 +

(−1)r
′′+t′′

τ(d̄p · d̄l)
− 2(−1)r

′′
1 +r′′5 +t′′1 +t′′5 +s′′+ d−1

2

τ(d̄p · d̄q · d̄l)

)
.

(2) If 4 |β, then

ap(2β) = ap(−2β) =
1

4

(
1− (−1)r

′′+t′′

τ(d̄p · d̄l)

)
.

Proof. The proof follows a similar approach to that of Theorem 4.10.

5 The Hardy-Littlewood conjecture and the Lang-Trotter conjecture

Let r be a nonzero integer. Let ρ(r) = 0 if r is odd and ρ(r) = 1 if r is even. We have seen that under
the assumption of the Hardy-Littlewood conjecture, the necessary and sufficient condition for

p(D, r, k, x) = r2 + (4Dx+ 2k + ρ(r))2 = 16D2x2 + 8(2k + ρ(r))Dx+ (2k + ρ(r))2 + r2

to represent infinitely many primes is (D, (2k + ρ(r))2 + r2) = 1. If k1 and k2 are two integers satisfying
(D, (2ki+ ρ(r))2+ r2) = 1 for i = 1, 2, then the constants are the same (see the asymptotic formula (1.2)
and the constant expression in the Hardy-Littlewood conjecture (1.3)). This constant is denoted by
δ(D, r).
Lemma 5.1. Let D and r be two non-zero integer. Then the necessary and sufficient conditions for
ap(2r) = ap(ED, 2r) = 0 are given in Tables 1 and 2.
Proof. We see from the formulae for ap(2r) that the necessary conditions for ap(2r) = 0 are τ(d̄p · d̄l)
= τ(d̄p · d̄q · d̄l) = 3. Hence, d̄ = ±2i · 5,±2j · 53,±2k · 3,±2l · 33, where i, j, k, l ∈ {0, 1, 2, 3}. Then one
can check case by case to obtain a full list given by Tables 1 and 2.

Remark 5.2. For the elliptic curve ED : y2 = x3 +Dx, it has bad reduction at a prime p if and only
if p | D, where ap ̸= 2r for any non-zero integer r. Hence, the assertion that there is no prime p with
ap = 2r is equivalent to ap(2r) = ap(ED, 2r) = 0.
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Table 1 α ≡ 1 (mod 4)

D ≡ 1 (mod 4) or D
4

≡ 3 (mod 4)

d̄ = ±1,±4

r3 + r5 + t3 + t5 ≡ 1 (mod 2) ap(2α) = 0

r3 + r5 + t3 + t5 ≡ 0 (mod 2) ap(−2α) = 0

D ≡ 1 (mod 4)

d̄ = ±5,±3,±53,±33
r′3 + r′5 + t′3 + t′5 ≡ 1 (mod 2) ap(2α) = 0

r′3 + r′5 + t′3 + t′7 ≡ 0 (mod 2) ap(−2α) = 0
D
4

≡ 3 (mod 4)

d̄ = ±4 · 5,±4 · 3,±4 · 53,±4 · 33
r′3 + r′5 + t′3 + t′5 ≡ 1 (mod 2) ap(2α) = 0

r′3 + r′5 + t′3 + t′7 ≡ 0 (mod 2) ap(−2α) = 0

Table 2 β ≡ 0 (mod 2)

D odd or 4 ||D
Rad(D) |β ap(2β) = ap(−2β) = 0

2 ||D or 8 ||D, β ≡ 2 (mod 8)

d̄ = ±2
D
2

≡ 1 (mod 4) ap(−2β) = 0
D
2

≡ 3 (mod 4) ap(2β) = 0

d̄ = ±8
D
8

≡ 1 (mod 4) ap(2β) = 0
D
8

≡ 3 (mod 4) ap(−2β) = 0

d̄ = 2 · 5, 2 · 53,−2 · 3,−2 · 33,
−8 · 5,−8 · 53, 8 · 3, 8 · 33

d ≡ 1 (mod 4) ap(2β) = 0

d ≡ 3 (mod 4) ap(−2β) = 0

d̄ = 2 · 3, 2 · 33,−2 · 5,−2 · 53,
−8 · 3,−8 · 33, 8 · 5, 8 · 53

d ≡ 1 (mod 4) ap(−2β) = 0

d ≡ 3 (mod 4) ap(2β) = 0

Theorem 5.3. The Hardy-Littlewood conjecture implies the Lang-Trotter conjecture for y2 = x3+Dx.

Moreover,

πED,2r(N) ∼ δ(D, r) ·
√
N

logN
as N → ∞,

where the constant δ(D, r) = δ(1, 0, r2)ap(ED, 2r), in which the constant δ(1, 0, r2) is given by the Hardy-
Littlewood conjecture and ap(ED, 2r), is given explicitly in theorems in Section 3 when r is odd and
Section 4 when r is even. In particular, if D and r are not in Table 1 or Table 2, then the constant
δ(D, r) is positive.

Conversely, if the Lang-Trotter conjecture holds for some D and r with the positive constant CED,2r,

then the polynomial x2 + r2 represents infinitely many primes.
Proof. Since there are only finite primes with p | ∆ED

, up to a constant,

πED,2r(N) =
∑

p⩽N,p∤∆ED
,ap=2r

1

= #{p | ap(ED) = 2r, p ∈ Q(r,N)}
= ap(ED, 2r)#Q(r,N)

∼ ap(ED, 2r)δ(1, 0, r2) ·
√
N

logN
as N → ∞.

Conversely, if ap(ED) = 2r, then we must have p = x2 + r2, and hence the assumption that the Lang-
Trotter conjecture holds for ED and r with the positive constant CED,2r implies that x2 + r2 represents
infinitely many primes.

Example 5.4. (1) D = 1. We have ap = 2α if and only if p = α2 + x2. In particular, ap ̸≡ 0 (mod 4).

Hence,

πE1,2α(N) ∼ δ(1, 0, α2) ·
√
N

logN
as N → ∞.
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In addition, for r ≡ −1 (mod 4) or r ≡ 0 (mod 2), we have δ(1, 2r) = 0.

(2) D = −1. We have

ap =

{
2α, if p = α2 + x2 ≡ 1 (mod 8),

−2α, if p = α2 + x2 ≡ 5 (mod 8).

Hence,

πE−1,2α(N) ∼ 1

2
δ(1, 0, α2) ·

√
N

logN
as N → ∞

and

πE−1,−2α(N) ∼ 1

2
δ(1, 0, α2) ·

√
N

logN
as N → ∞.

In addition, for r ≡ 0 (mod 2), we have δ(1, 2r) = 0.

(3) D = 2. We have

ap =

{
2α, if p = α2 + (8x)2,

−2α, if p = α2 + (8x+ 4)2.

When β ≡ 2 (mod 8), ap = 2β always holds for p = β2 + x2; in particular, ap ̸= −2β. Hence,

πE2,2α(N) ∼ 1

4
δ(1, 0, α2) ·

√
N

logN
as N → ∞,

πE2,−2α(N) ∼ 1

4
δ(1, 0, α2) ·

√
N

logN
as N → ∞

and

πE2,2β(N) ∼ δ(1, 0, β2) ·
√
N

logN
as N → ∞.

Moreover, δ(2,−2β) = 0, and for β ≡ 0 (mod 2), δ(2, 2β) = 0.

(4) D = −2. We also have

ap =

{
2α, if p = α2 + (8x)2,

−2α, if p = α2 + (8x+ 4)2.

Hence,

πE−2,2α(N) ∼ 1

4
δ(1, 0, α2) ·

√
N

logN
as N → ∞,

πE−2,−2α(N) ∼ 1

4
δ(1, 0, α2) ·

√
N

logN
as N → ∞

and

πE−2,−2β(N) ∼ δ(1, 0, β2) ·
√
N

logN
as N → ∞.

Moreover, δ(−2, 2β) = 0, and for β ≡ 0 (mod 2), δ(2, 2β) = 0.

(5) D = −21. This is the case where D ≡ 3 (mod 4). All eight constants, which appear in the following
asymptotic formulae, can be computed by theorems in Sections 3 and 4.

(a) 3 ∤ α, 7 ∤ α: πE−21,±2α(N) ∼ 11
42δ(1, 0, α

2) ·
√
N

logN as N → ∞.

(b) 3 | α, 7 ∤ α: πE−21,±2α(N) ∼ 3
14δ(1, 0, α

2) ·
√
N

logN as N → ∞.

(c) 3 ∤ α, 7 | α: πE−21,±2α(N) ∼ 1
6δ(1, 0, α

2) ·
√
N

logN as N → ∞.

(d) 3 | α, 7 | α: πE−21,±2α(N) ∼ 1
2δ(1, 0, α

2) ·
√
N

logN as N → ∞.
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(e) 3 ∤ β, 7 ∤ β: πE−21,±2β(N) ∼ 5
21δ(1, 0, β

2) ·
√
N

logN as N → ∞.

(f) 3 | β, 7 ∤ β: πE−21,±2β(N) ∼ 2
7δ(1, 0, β

2) ·
√
N

logN as N → ∞.

(g) 3 ∤ β, 7 | β: πE−21,±2β(N) ∼ 1
3δ(1, 0, β

2) ·
√
N

logN as N → ∞.

(h) 3 | β, 7 | β: the constant is δ(−21,±2β) = 0. So we omit the asymptotic formula since it is trivial.
(6) D = −n2, where n is a non-zero integer. The curve y2 = x3 − n2x is called the congruent elliptic

curve if n is square-free. Let p ∤ n be an odd prime. Then

ap =


2α, if p = α2 + x2 with

(
2n

p

)
= 1,

−2α, if p = α2 + x2 with
(
2n

p

)
= −1

and ap ̸= 2β, if 2 | β. Hence, for (n, α) = 1,

πEn2 ,2α(N) ∼ 1

2
δ(1, 0, α2) ·

√
N

logN
as N → ∞

and

πEn2 ,−2α(N) ∼ 1

2
δ(1, 0, α2) ·

√
N

logN
as N → ∞.

The constant is δ(n2,±2β) = 0 if (n, β) = 1. When (n, α) > 1 or (n, β) > 1, one can apply theorems in
Sections 3 and 4 to calculate the constants, which are omitted here.
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