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ABSTRACT

In a previous paper®' a transformation method of non-Hamiltonian systems has been pra-
sented. In this paper, this method is conmecretized, and the principle, process and forms of two
kinds (the forms of the implicit function and the explicit funetion) of the method are discussed
in detail, with the motion solution of a small celestial hody under the oblateness perturbation
of a principal celestial body given as an example.

1. Tur PrincieLe oF tHE MEeTHOD

If we take coordinates and velocities (or other similar variables) as eclementary
variables, the corresponding motion equations of a nonlinear perturbation system with
n freedoms are just a system of 2n first order differential equations. Let » and X
represent the coordinate vector and velocity vector respectively:

n X,
=2 x={%] (1)
_j;n '"
Note
)

and the corresponding motion 2quation is

j—‘t’ — f(a, t;e), (3)

where € is a small parameter, f is a vector function of 2n dimensions.

Usually z is chosen as the angle coordinate and X as the moment, and they need
not be canonical conjugate variables. The variables of every component of x are
divided into fast and slow variables; the terms which contain fast variables (or at
the same time contain slow variables, but their character depends on the fast vari-
ables) arc called short-period terms; the terms which only contain slow variables are
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called Jong-period terms. If the solutions of Eq. (3) can be constructed in these
period terms and the secular terms which are linearly variables with the time {, then
Eq. (8) can be solved by the present transformation method and the corresponding
transformation may be taken as,

o=o0*~+ Z """ (¥Y.uw t: &™), (4)
pry
Y
* E— v 5
o (y) (5)

where the new variables y and ¥ all are n-vectors, o™ is the mth order period
term that needs to be defined and can be defined in the solving process. The funetion
of™ plays the same role as the generation function in the canonieal transformation and
the transformation is the form of the implicit function which is constructed by mixed
variables. It may also take the form of the explicit funetion, namely,
=o*+ D o™ (0%t &™), - (6)
mz1
‘According tc the transformation (4), the equation of new variable o™ can be
obtained as,

%*“f("" £) + R,
(1)
B =9
ot

where R is named the remainder function of the transformation; if the transforma-
tion does not contain t explicitly, then B = (0. The transformation matrix 8c*/8c and
the vector function f(o,%; €) and do*/8¢ all can be expanded as the power series of
the mixed variables ¥ and z. Let the operator

o)

b= (Y, x)

(8)
denote the partial derivative with the vector ( 3;), then

é’ga E—-——Zo =E+DZo}”“Z( 1)*[1)2?‘*‘]”, (9

flo.t; ) =f(Y,z,t; &) + 2 kt BY" [Z th] S (10)
g 80, (;( )" o %1,0‘.”” [a—‘; Z,Y‘""] )Z_,al""'" (11)

In the right side of (9), E is a unity matrix of 2n dimensions, other terms are all

matrices of 2n dimensions. [DZY?”)]"” is the power of matrices, with the same

m

symbol as in (11). In addition, 8c'™ /8¢ and 8Y /8t denote the partial derivative
with the explicit ¢ in o' and Y.

In the right side of (10), all terms are 2a-vector functions. For every formula,
the arrangement of elements of matrices and vectors is the same as the original, The

i aiadi ol sl
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matrices and vectors with dimensions under 2n must make up the deficiencies with
gero elements. The similar cases in the following will be treated in the same way;
the Y'™ represents the ¥ eomponent of the vector of”’.

The function on the right side of (3) can be expanded to convergent power
geries of the small parameter ¢ (usually the series is finite)., namely,

flo. t:e) = f(X) + ka(X,:r,f:s"): (12)
k=1
where fr = 0(e*). Introducting (9)—(11) inte (7). wIP can obtain the motion equa-
tion for the new variable o* as,

% - f"‘(Y I.r, t E) = fo.‘(}'. x, t: € ). (13)
kel

The functions on the right side are formed by the mixed variables ¥, «. Their

particular forms are:

= fo(Y), (14)

o oy _ B0t
fr= 1Y,z t: 8) + _a_% ¥ — Dotdfy — 22 (15)

[5 =AY, 2 1: €9) + o1y yw 4 1 ar Yy 4 O’fuj(z,
oY 2 ay? ay
Hetei (1) (1)
00" |, Oc 8o 0Y" . (16)

+ [— Dol + Do®DYVjf, — Dot® [ + Oy ,J-
at oY ot

oY

=1 e ) + ELYUH Sty 4 L O yor

oY 2 90Y*
4+ = 1 afo Ym + 010 Y(U_Y{z,_t_ _ﬁ)y{a}
6 aYy? oyY? a8y

+ [—Do® + DoPDY® + Do@DYW — Do'P(DY!" ) 1f

+ [—Do® + DoDYP] - [ fi + —vﬁ‘rf”J

oY
+ [=Do'"] - [f 4+ Shyw y Oloye 4 1 9Fe Y“JJ 9057
oY 8y 2 ay? "’ ot
oy (2] [§H] = ayiz) " 1 myril) (L
+ ( da,j’d ayl + _(g&u Y@ ) . 60}‘ oY, Q_Y,__ an
oY ot Y ot ' 8y 8y ot

We may go on like that if necessary, According to the specifically required
aceuracy it is ecasy to substitute the new variables y for old variables z in the funetion
f*, which will be further discussed later.

According to the transformation form of the explicit function (6), the equation
of new variable ¢* can be obtained by

do* _ Oo* do*
— = t:e)+ R, R= . 1
- o Oo )‘(0 &) ot (18)
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The transformation matrix 8s*/8c, vector funection [ and da*/3F ean be writ-
ten as,

9" _ gk + l(—])“[

o L=1 =
o k
flo,t; €) = f(o* t;e) + Z 10 [Z u;””} , (20)
=1 k! 60“)”‘ "
* k A, lm)
Qg_.: (S"(_]‘k [“ I’m)’ ) dU: - (21)
ot Pt - Ot
If Condition (12) is satisfied, Eq. (18) becomes
*
WL pr(attie) = 3 (0% b ). (22)
dt k20

We still use D to express the new operator:

p=-2
Bo*
Then the particular forms of f* are:
fo=fo(¥), (23)
of 9o, .
P =fi(c* t;e) + =LYP — DoV 24
1 fi(o e) Y fo— PR (24)

i 1 afu u af ¥
= v b5 &%) + Dfio + = Yo 4 Sleym
file™ b ) + Dol + - 55 aY

af 80! » 00
+ [—Do® + (Da®) —-D“’[ fo yw| — 902 4 pyw 207 (95
(—Do (Do )1fs — Do | f1 + 57 Bt Py (25)

1= fi(c* t;6) + Dfo® + Df o + = 5 L pi g0t

1 &%, Yo' 4 2’fq ywy® 4 9fo Y
6 oy’ oy? oY

+ [—Do” + DoPDa® + Do°Do® — (Do) If,

+ (Do + (DoY] |1+ Howy]

8y
. (3
+ (=D} 1+ Dpo + Sy g L2 ypr| 907
. 2 AY? ot
Bo? do; BaV .
Do + Do? — (Do) —% 26
+ (oo ot ar) (Do) 5 (26)

The purpose of transformation (4) is, under a certain accuracy, to lead to

= DY) + D FEY, o t; e, (27)

Fal+

5Y, &) = ((fk))
fi v

s agmr (19)
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U ASL%
} '
iy = ¢ J (ff e =--(“*.)*’z o (h=0.100000) (28)
U - (f:)fn !

where (f¥), expresses the functions on the right side of the equations about y. In
the following paragraphs analogous symbols are not explained any longer. It is in the
similar case with the transformation form (6) of the explicit function, but on the
right side of (27), k =1 + 1 corresponding f§¥ are also the explicit functions, that
is, ff(o*. t: &*). Therefore the new equation (13) or (22) becomes the integrable
form. Under the accuracy O(e’), its solution is

! .
Y =Yoo gyt [Z‘, FHY; s*)J (t — #), (29)
k=0

where Y, and ¢, are integral constants defined by the initial values at ¢,. The solution
for the old variable o c¢un be given through the transformation relation (4) or (6).
in the transformation form of the implicit function ¢/™ contains the mized variables
and the problem of substitution variables ean be dealt with in the same way as in
the von-Zeipel canonical transformation,

As the ¢/™ in the transformation (4) or (6) needs to be defined, so the above
mentioned purpose may be achieved. For example, we can take these terms which
only contain the variable ¥ on the right side of (14)—(17) or (23)—(26) as f7,
f¥s ¥, f¥--+ We can use all other terms which contain fast and slow angle variables
z (or y) to Jead to o™ . But some condition must be satisfied. For that according
to character of variables that they contain we must divide the function f on the
right side of (3) or the function f given by (12) into the short-period terms,
long-period terms and the terms that only contain X (this will become the secular
terms of variables after integrating), and we write them as f,, f;, and f, respectively,
In what follows the related terms that appear are divided in the same way.

The necessury conditions for the transformation are:

(1) The function f does not contain the first order long-period term, namely,

fu=0, (30)
and
I 0 f(fkr):.
(U (o) o (G .
fro = ((fkt)x s (fkr)x )s (fFr)s ( : X (31)
0 (fke)rn
(k - 0:! ‘l' - ')

If (fi)x is & non-zero vector, the (f§)y, obtained after transforming, is generally
a non-zero veetor. too, Consequently the integrable form ecan not be construeted
directly. Neither ean the solution (29) be given. But the transformation can make
the equation reduce to n—order., Hence, we can first discuss the n—order equation:

G S (Y )y

dt k=0
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Suppose its solution is
Y =Y{tt, ¥y 2).

thereupon the n integrals about y can be immediately construeted, namely,

Y=+ ) SOCFRY (s %))t
k=n

The Van der Pol equation, a typical nonlinear vibration equation, and some non-
attractive perturbation systems (such as the atmospheric resistance for the artificial
earth satellite, ete.) belong to this type, which do not satisfy Condition (31). Another
typical nonlinear vibration equation, the Lindstedt equation, and the attractive pertur-
bation system can satisfy Condition (31) (such as the oblateness perturbation which
is to be discussed in See. III of this paper).

(2) In the courses of the transformation there is not a small divisor appearing
due to commensurability. If the small divisor appears, for example, in the mth order,
the corresponding characteristic value « must satisfy this inequality,

“=> max(sg.e). (32)
Under the above-mentioned conditions an effective transformation series (4) or
(6) can be obtained, but to attain the above purpose the transformation has to be
done time and again. We can use the method of accelerated convergence'® for the
transformation. In the first transformation all the funections are expanded as a power
series of &, by taking ¢’ for o{™, and then making the functions fy and f{ become
integrable forms, and the lowest power of remainder terms should not be less than
two orders, In the second transformation the funetions are expanded as a power
series of v = g¥(N = 2), thereby the present transformation method of non-Hamilto-
nian systems is very simple not only in principle but in its course for perturbation
solution of a problem, This will be discussed in detail in the following two sections.

II. ConstrucTion of Form SorLution

For the sake of convenience, let us suppose that there is just one fast variable
(if there are several fast variables, in this method of transformation there is not any
substantive difference) which is denoted by .,. When & = 0, the angle velocity (or
angle frequency) corresponding to z, is denoted by 6, and 6 is ouly related to
X, (usually z, eorresponds to X,, the notation we use is just for simplicity). Al
the remaining angle variables z,, ©;, *--, @,_, all are slow variables. In addition the
case of containing ¢ explicitly can be reduced to the case of not containing ¢ explicit-
ly. if we ean add a variable or take an appropriate variable transformation. When a
problem needs to be treated as a case of containing f explicitly it would not cause
any trouble, for the general method is already stated in the previous section, Therefore
we will limit ourselves to the discussion of the case not containing ¢ explicitly, The
equation of motion can be written as follows:

D _ 1o, €) = (XD + D) fulos &%), (33)

dt k=1
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fol( X)) =60(X), & =( 0 ) (34

where & is an vector and has only the 2nth component.

The solution of the equation can be obtained by the transformation method of two
kinds, namely, the form of the explicit funetion and the form of the implicit function.
They are given as follows.

{1) The transformation of the form of the implicit function

The first transformation whieh eliminates the fast wvariable (z,) is o = 7%,
namely, Eq. (4). From (14)—(17) we can obtain f¥ and o™ by using

f& = fo(Y,) = 86*(Y,), (35)
8]
ff=f(Y,e), 6 %- = Fu(Y. 25 8) + 6 [g‘; yw] (36)
(2) :
=100, 6 % — (0], +5 [gﬁ, Ym] (37)
“n 1
3)
=10, 6 g& — (@], +6 [g‘; rm] (38)
xn 1 "
Bfs v ao‘“ 1 96* [1 8%*
=, + (_1 Yy — 2% ) YOF,,
Iz ayY 2 1Y) T AY, Tif ¥+ 2 AY?
— (69 )] Yo', (39)
6* \ 3Y,
Ofz v aam of aor @ 1 9f
D, = _E If_l} e ) (_____l sz) R . = 1 ’l]
’ f‘+(ar vk oy © f) (z a1\
_ Bg %) Yo — (39* 1’5:)) B0 (33“= Ye + 1 %" YE:“) oo
oz 8Y 7Y, oz, Y, 2 9Y? 8z,
(1) o 5 636* . 3
60, 5+ {ay YOve + % o YE,’J ) (40)

If the computation continues to 0(g?), the z in fF can be replaced by y directly,
but for the f¥, when z is replaced by y directly, (8f¥/8y)y" will be introduced
and then put into ®;. Therefore after eliminating «,, the function on the right
side of the new equation becomes

f*(o*. 6) = f:(yl) +‘ﬁk(Yu S) +f§“(1’,yu Yzs =9 Yn-1r 53)

+f.=f(Yi?hr Yar** "y Yn-1s 93)+ e (_41)
The second transformation which eliminates the slow variables (¥, s =+ Yo-r)

is o* = o**, that is,
o* = o** + D oi"(Z,y, &™), (42)

mae1
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z .
t= ( i ). (43)
e S

From (14)-—(17), after transforming, the functions fj on the right side of the
new equation and o;™ can be obtained by

* = f:(zl) = 86**(Z,). (44)
fi*=fN2Z.e). (45)
ez gy Ly g |8 gy)
Tr=fN2Z €) By P=fh+ 52 l (46)
T * Ogi® —_f_ . 66 ’
= [@F],. Do} oF), + Z¥+ 8 I z‘”J, 47
] [ P: ayf (@3], Y, oz, 21 (47)

af B 1 842 0 B0 BfF\ ,u
¥ = f + 2 z(la —_ MY ll) + (__ Yvi: Zfl_ — ! Z )_ 48
(az By k 2 az¢ " oy 02/ (48)

It ¢an be shown that Z!{P = (0 because of the condition that f,, = 0. After
€liminating all the fast and slow angle variables, the function on the right side of
the equation of the new variables is

f**(o** &) = fE*(Z,) + fI*(Z. &) + [3%(Z. €) + f3*(Z,&°) + - - (49)

In this vector function, the frontal n components (f**),, (f**)z, «-+, (f**)z, all
are zero. Thereby the solution for o** is

Z = Zo, g = 20+ [Zfr*(ZOyek)J (f - to). (50)
k=0

After transforming twice the solution for the old variable ¢ can be obtainded from

0o=0** 4+ o +0P+ -+ +oP+ - (51)

(2) The transformation of the form of the explicit function

The first transformation which eliminates fast variable (y,) yields

f: = fn(}vl) + 86*(1/1)! (52)
* r * fr“ 6* o I. [
fr=f(Y.e), ® % = fu(0*, &) + & [2—1’, HRJ, (53)

8o'? o6*
R TS R A R 54
f? ] oy, 2 oY, (54)
do'? 06
LA P A 55
! Jea ay, ’ 87, (55)
P 1) 20% N
Y,=1f;, + (qu"ﬁ: o — 60‘ flr) [% gf’f iy J 3 (56)
- 0f: o aﬂin of, 60' :2) 1 azf 1)t
Wy=f. + ('é; o) - fz) (a& o — fu) 9 Ho* a,”
& [QE YOyE 4 1 7%6* I'(;)’] ) (57)
oY} ) 61’3

The second transformation which eliminates the slow variables (zy, 25, <+, 2,-,)

b e caia

i
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yields

ot = f3(Z,) = o067 (Z,>. (58)
i'”"— ¥ (Z.e), (59)
¥ fX(7 6, C'a"' - d zZm +b[ Zu)] 60)
f2 ) 82 fl fzr az o2, ( ’

. (2)
Fr* = Iwa 1. %‘f] [wF), + f1 Z('z) + 8 [____zd)] (61)

z

;o . gl :

oi =13+ (2o — 2l gr) 4 1 DL 5 (62)

After transforming twice the solution of (33) ecan be obtained. As the case is
similar with the transformation of the implicit funection form, it is not necessary to
repeat,

According te the course of obtaining the perturbation solution by using two
transformation methods, the explicit funetion form is clearer than the implicit one,
but the latter is a bit simpler and has some special advantages for solving certain
problem as will be shown in the next section. It must be mentioned both are simpler
than the Lie transformation of non-Hamiltonian systems.

11I. Sorution oF OBLATENESS PERTURBATION

To see the advantage of our method, we may use it to obtain the motion solution
of a small celestial body under oblateness perturbation. We may take the six elements
of an elliptical orbit: a, e, ¢, Q, w. M, as the elementary variables because of their
very simple and definite geometric meaning, namely,

a. Q.
X=(e), x=(m). (63)
Yq M

The equator coordinate system of the prineipal celestial body is taken to be the coordi-
nate system, while the centroid of the principal body is taken to be the origin of
the coordinate system. In the computing unit of the system, as is often used in study-
ing an artificial earth satellite; ‘the perturbing potential function of oblateness J; is

, J;(:} - 1) .
AV = — = sin‘p — — |, 64
rP\2 ¢ 2 (64)

where 7 and ¢ are respectively the radial veetor and latitude of the small body. So
the relation between ¢ and orbit elements is

' sin ¢ = sinisin (v + w), (65)
where v is the true anomaly.

Then substitution of the potential funetion ¥V into the Lagrangian motion equa-
tion™ yields the system of the first order ordmdry differential equations of the six

elements:
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99 _ fayeri, Qo M3 Ty). (66)
dt
The function on the right side of this system is independent of f and the angle
variable z, = @, while the small parameter € is J,. The function f on the right
side ecan be expanded to the following finite terms:

f="fo(a) + fla,e, %, 0, M; 1)), (67)
where
fo=080, O=n=at. (68)
fu= fia o5 1) + fulas eyiy @, M5 1), fu = 0. (69 -

Notice that the vector function f,, just contains the last three components. If only
the critical inelination is removed (i = 4, = 63°26’ or 116°34’) then the two condi-
tions given in the first section are fully satisfied, and the solution can be obtained
by the transformation method. We now use the transformation of the form of the
implieit funetion, in addition to the method of the accelerated convergence.

The first transformation which separates the first order short-period term is
(X,z) = (¥,y), namely,

g =%+ (¥, 2;J2), (70)
.a* PR
P Y I
*=( ) Y= 6*], y=kw*)- (71)
y \"*/ *
Then Eqs. (85)—(38) become

fo = fo(a*) = én*(a™*), (72)

(n B

ff = flr(a‘*! e*, i*;.2), n* g;} - fu(a se* i 0, M ) 4+ 5 '_‘?-’ *_%Giu] s

(73)

_[/8f 3 2\ Ofi w4 Of jo _ B0 60,

ﬁh[(aa;_"é—?‘p) T w0 1T G (1= g (Fu
[ -t 7 (1)], (’74)
[( f, a4+ 1 2%, RO Ffr s o O, alPe®
2 Ba* ) 5 pe* 2 it Ba*de*
afl "IEU *{1) + 6Zfl eil) ﬁl)] _ BU“) (6(f1)m a(u -+ a(fl)m (1)
Ba*oi* de*or* Bw \ de*
+ O(f)w -i;'") 3”(1)(6@_).« 4 6(f )M‘ 0 4 O(f du fu)]
o* oM oa* or*

=22 (o 22 (). + 222 (f:).] +o[2aap]. (15)

If the computation just continues to J3, the w, M on the right side of fF can
be replaced by w*, M* directly, for f5 on the right side after being replaced in the
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same way, the two terms

Of; o + 6}2 M
dw* aM*

are introduced into f3. Then the first transformation gives
f* = f:‘(a*) + f?(a*! 3*, i*; Jz) -+ f;‘(a’*: 6*9 ‘i*v C("*v l"'{‘; Ji,)
+ f;:(a*’ e®, ¥ 0% M¥,; J3). (76)

The second transformation is (Y,y) = (Z,z), at this moment the small param-
eter &€ = J%, f* can be written as,

f* = F:(a*: e*, 1;*; Jz) + F?(a*! e*, 1% J1s €),

. (17)
s =fr+ff, F¥=f}+7fi.
Its corresponding transformation is
o* =o** +of(Z,y:¢), (78)
a*¥ OF*
Z
P g (o) aw
2 gk T Rl
where of'? can be divided into four parts, namely,
o¥ 0 = g@ 4 o + gD + g, (80)
The result of the transformation is
r.;;a: —_— fnak(a**) —+ ff(a**: ett, ,‘:#ax; ']2)’ (81)
FE* = FE™, 6%, %5 ) = [2(a**, 0%, %% ) + (0], (82)
n**——v-aa; =fi+e [ j a*"“%aﬁz”], (83)
* ;
(f'i‘.)w 60: =5+ [aifl efn + ;1-1*1* -i}”] + 3[ _: a**~igin|, (84)
.xy O off aft
G022 = g4 | 2L ap 4+ 2L o 4 2T i) + (0,
+5 [__ i;_an—éa;nJ‘ (85)
[6"1‘ e 4+ af?; ﬂl)] + [_]_ __azf;lk 6,fl) + = 1 a_j
()8** 65** 2 66**2 2 61**1
o’ft REY) 00.- a(f1 )m (1) a(ff)w o) .
+ W e§"1; (fh‘)w e’ + YT b l (86)

0¥ is the third order short-period term which can be neglected.

After transforming twice under the aceuracy O(e’), the new equations have
become an integrable form. By computing the form solution of f**, 0!V, o/, -+, it
can be shown that the method is simpler than Lie transformation of non-Hamiltonian

systems and the. inean elements method. In addition it also has two characteristies:
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(1) It avoids the difficulty which we come across in uging the mean elements

method to compute o, o2, ---™ The eclosed solutior about ¢ ean be obtained

directly.
) da,® Ba;" d
(2) As we use (; (f1)ws —M(f:)m -+« instead of ;L: ), g}%— M®, ... the
sin qf
difficulty is avoided in integrating these terms hke( ) (f — ( f)’ (p,g =
\cosq

0,1, ---) which appear in the mean elements method and the eanonieal transformation
in caleulating the higher order terms. It simplifies the calculation remarkably and is
convenient to use the computer to calculate the closed solution about e.

The above-mentioned transformation method c¢an also be employed to solve pertur-
bation problems of other types. Therefore, to some extent the transformation method
of non-Hamiltonian systems presented in this paper can certainly replace the mean
elements method.

Because of the limited space, the specific result will appear elsewhere. The
jmportant short periodie term a!® to O(g?) is as follows:

. - .
o = .}_23 (1 —e)? {(1 — ¢*)sin’ (9 — %4'-3— sin’q ) (v—M
P

X Z Ape*4sin (kv + 2w) + Z [(1 — % sin® 1 (A;k

k=-1

-4 ——L:—e——Agk) + —g (1 — €?) sin*idy + ésin‘ iAskJ e*eos kv
]

o 3 [Fami (= e )+ —

k=—4

+ 6_4 (1 — ¢*) sin*1dq ] e'*Heos (kv + 2w)

[—-— sin* 'I;Ag]‘j e*Meos (kv + 4m)} (87)
k=-2
where p = a(1 — ¢?). On the right side of the formula o should be ¢* anud we have
already considered the added two terms beecause of transformation variables,

aau Il) 4 & aﬂ I)Mlu_
Ow oM

The coetficients of every term are:

Ap=—2, =3 —(i+iez), (1+ie,, ~(2+2¢),
4 2 8 2 ) g8/

1

8

1
8
3
47

27 15 , 27 ) (21 3, 9 ,‘) (9 3 0 21 9 1.
==+ = —=¢ 3 - —_ - == s | — ]
(2 9 ¢ CPA\TTT TRt TR 1w 2 3
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(3 15, ) 9 _.)i:i. 0
.4.,_& (2 H + ( L 4! 32! ’

A = (26 +4§’e=‘), (21 + 4e?), ? L 0, 03

s

Ase = (— 140 + 389¢ + 3456*), (—54 + 36827 + 109¢*), (35 + 1306%),

(67 +1607 ), —9, — 2,
2 4

Ag = L, 2, —l 5, ) (—q+ e’), 0, k14+“‘“ o 53—1»‘)
T 4 3
(10+47.«; + 3 ) ( ]61 2+78'3 ‘)

(67 + 1082 — .l_g:;‘), (ﬁ—lzgz)’ (6 -— .lgz), E, L; .
2 3 4 16 2 16" 3
1 1 1 ( 1 ) 2

Ap =0, — — —e% 0, |—1+ 3¢+ —¢* 8 + 3e?),

7k L] 16’ 4 16 ) ’ ( )

) -
(7+1263 +2.0), (13+11 2)’ (9+” ’), u s,
3 - 2 16 4’ 16

Age =0, 0, —6, —39, 0, (— 84— 69¢?), (—24 — 846 — 12¢*),
(—20—21e%), 6, 9, 2, 0, 0;

Ag = %, 9, 0, (133 + 32e2), (]_98 + 168¢? + %—1 e‘), (140 + 379¢?

+ 75e'), (32 4 364¢% + 285e* + 12¢%), (108 + 387e? + 492%),
=4 k <
(150 + 208" + 22 1), (109 + 560, (2 + 66 )y 9, 4
The above coefficients are arranged according to the values of % in summation

of the original formula (87).
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