地质与勘测

含量-面积法和奇异性分析法在采用 测氡法探测采空区中的应用

徐 萍¹,张新军¹,刘鸿福¹,李 峰¹,梁桂玲²

(1. 太原理工大学 矿业工程学院,山西 太原 030024; 2. 新奥气化采煤有限公司,内蒙古 乌兰察布 012000)

[摘 要] 在氡值数据处理过程中,由于传统统计方法应用于低放射区域具有一定的局限性,运用含量-面积法对山西省某公司场地探测区地面测氡结果进行数据分析,并首次应用奇异性分析法对其进行结果补充,所得采空区范围与对该区进行的其他物探方法综合解译成果基本相符。结果表明,两种方法的结合使用,能有效综合含量-面积法的简单可行性与奇异性分析法的局部灵敏性,在处理采空区氡值数据时具有明显优势。

[关键词] 含量-面积法: 奇异性分析: 测氡法: 采空区

[中图分类号] TD166 [文献标识码] A [文章编号] 1006-6225 (2014) 03-0036-04

Application of Content-area Method and Singularity Analysis in Exploring Gob by Radon Value Method

XU Ping¹, ZHANG Xin-jun¹, LIU Hong-fu¹, LI Feng¹, LIANG Gui-ling²

(1. Mining Engineering School, Taiyuan University of Technology, Taiyuan 030024, China;

2. Xinao Gasification Coal Mining Co., Ltd., Wulanchabu 012000, China)

Abstract: Typical statistic method has some limitation for low radiation area in processing data of radon value. This paper applied content-area method to processing radon value from a surface test of a company, Shanxi Province, and firstly applied singularity analysis to supplying result. Gob range determined by this method was accordance with comprehensive explanation fruit from another geophysical method. Results showed that combination application of two methods would effectively utilize simplicity of content-area method and local sensitivity of singularity method in processing radon value data for detecting gob.

Keywords: content-area method; singularity analysis; radon method; gob

在煤矿生产中,采空区的存在直接影响了煤层开采工作面的布置,若对其分布范围判断不准确,会给煤矿安全生产带来极大的隐患。采空区一旦形成,其内部氡元素会通过储气、集气、通道三方面作用,形成积聚区[1-2]。由于氡及其子体"自身"具有较强的向上运移能力,且纵向运移能力远大于横向运移能力[3-5],其由地下深处向地表迁移后,必然会在地表形成与采空区形态相对应的氡异常区。圈定出氡异常区,即可获知相应地下采空区的范围。

传统方法圈定氡异常区,是基于统计学原理的方法,即将所测氡值的平均值加上相应倍数的标准差,倍数一般选取 1.5 倍或者 2 倍^[6],作为氡值异常下限。这种基于测区氡含量高低的方法,适用于测区数据为正态分布或者经过数学转换后符合正态

分布的情况,且人为给定背景场与异常场(即采空区与非采空区)分解界限,在低放射性区域容易造成背景场中具有地质意义的局部弱异常信息遗漏,具有一定的局限性。针对以上问题,本文运用含量-面积法对测区氡值进行数据处理。对其造成的局部采空区遗漏,应用奇异性分析法进行了结果补充,取得了较好的结果。

1 原理简述

1.1 含量-面积法

该方法是基于分形理论所得出的一种数据处理方法。1967 年,Mandelbrot^[7] 首次提出了分形的概念,近年来,该理论在地质学中得到了广泛应用^[8-9]。所谓分形,是指组成成分即局部以某种方式与整体在形态、信息、功能上相似,即自相似

[收稿日期] 2013-11-13 [DOI] 10. 13532/j. cnki. cn

[基金项目] 国家高技术研究发展计划 (863 计划) 项目 (2011AA050102); 国家自然科学基金项目 (41103052/D0309) [作者简介] 徐 萍(1989-),女,山西繁峙人,硕士研究生,研究方向为应用地球物理勘探及地质灾害勘察治理。

[引用格式] 徐 萍,张新军,刘鸿福,等.含量-面积法和奇异性分析法在采用测氡法探测采空区中的应用 [J]. 煤矿开采,2014,19 (3):36-39.

[DOI] 10. 13532/j. cnki. cn
11–3677/td. 2014. 03. 010

性。许多地质过程,包括地壳中元素的迁移聚集,都具有自相似性。若某一过程具有分形特征,那么要求:大于某一尺度的数目或者数与物体的某种性质存在幂函数关系。即:

$$N(r) \propto r^{-D} \tag{1}$$

式中,r 表示特征尺度,D>0,称为分维数; N (r) 表示尺度大于等于r 的数目或和数。在不同的地质作用范围内,例如背景场与异常场,会得到不同的幂指数,对应不同的自相似性。在N(r)-r 的双对数图上,则表示为具有不同斜率的直线关系。此时,其交点值r则对应氡值异常分界点。

应用该方法,首先将所测数值从小到大排列,分为若干级别,分别统计大于等于某一分组数据r的总面积N(r),用最小二乘法对 $\lg r - \lg N(r)$ 进行线性关系拟合,所得曲线拐点即为正常场与异常场的分界点。

1.2 奇异性分析

在低放射区域,场的局部变化性对于识别异常场具有重要意义。对于元素含量进行差值时应尽量保持局部奇异性。常规方法并不能有效识别少数奇异数据所反映的局部异常。奇异性分析法以单个测点作为计算对象,其结果具有明显的局部灵敏性。作为对含量-面积法使用的补充,文中引入奇异性分析法[10]。

奇异性分析法的提出同样基于分形理论。具有 自相似性的地质过程,在改变度量尺度时,场依然 保持相似形。其可以由以下指数函数来表达

$$C(r) \propto r^a$$
 (2)

式中,C(r) 表示基于尺度 r 的邻域内量或场; a 为奇异性指数。此处,C(r) 可以表示元素的平均面含量。如以元素平均密度 $\rho(r)$ 代替 C(r),则式 (2) 改写为

$$\rho(r) \propto r^{a-2} \tag{3}$$

不同的地质作用具有不同的自相似性,对应不同的奇异性指数。当 a=2 时, ρ (r) 为常数,此时表示元素平均密度为常数,与度量尺度无关,对应没有奇异性的区域,为背景场。当 $a\neq 2$ 时,为异常场。

数据处理中,应用窗口法[11]。从测区原始氡值分布图上任意点开始,选定窗口形态(圆形或正方形),半径 r 依次递增,对外进行窗口滑动,对每个窗口中氡值计算平均值 ρ (r)。然后对 ρ (r) -r 取双对数,用最小二乘法对 $\lg r - \lg \rho$ (r) 进行线性关系拟合,所得直线斜率即为对(a-2)的估计。从而由其结果是否为零得出该点所在场。

2 实例分析

以山西某公司场地采空区地面氡值为例进行数据处理。图1为探测区实测氡值分布直方图及正态分布图。由图可得出,测区氡值数据属于偏态分布,数据重心明显左偏。传统统计方法使用受到局限,应用含量-面积法对其进行数据处理。

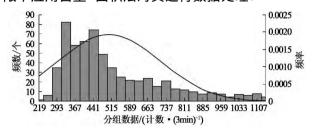


图 1 探测区氡值分布直方图及正态分布

2.1 含量-面积法

采用该方法对测区实测氡值进行数据分析,如表1所示。

表 1 含量-面积法基础数据统计

分组数据 r/ (计数・ (3min) ⁻¹)	面积 N (r) (≥r) /m²	$\lg r$	lgN (r)				
200	56767. 54	2. 301030	4. 754100				
250	56741.88	2. 397940	4. 753904				
300	55742.07	2. 477121	4. 746183				
350	46072. 23	2. 544068	4. 663439				
400	34646. 28	2. 602060	4. 539657				
450	30739.61	2. 653213	4. 487698				
500	26881.63	2. 698970	4. 429456				
550	21472.67	2. 740363	4. 331886				
600	16193.45	2. 778151	4. 209340				
650	11693.50	2. 812913	4. 067944				
700	7588. 07	2. 845098	3.880132				
750	5008.30	2. 875061	3. 699691				
800	3326. 64	2. 903090	3. 522007				
850	2017. 07	2. 929419	3. 304721				
900	1004.06	2. 954243	3. 001761				
950	437. 397	2. 977724	2. 640876				
1000	119.064	3. 000000	2. 075780				

应用最小二乘法对 $\lg r - \lg N(r)$ 进行线性关系最优化拟合,见图 2。

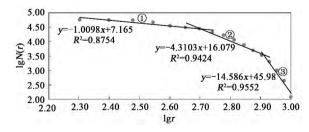


图 2 N(r) + 双对数拟合图

图 2 中,最终拟合得①,②,③3 条直线,3 条直线斜率不同,即分维数不同,反映了具有不同

计算其交点对应 r 值,可得采空区氡值异常下限为 502 个计数 / (3min),确定采空区中陷落柱的氡值异常下限为 813 个计数 / (3min),由此确定采空区范围,见图 3 (探测区为 18-26 测线,1-63 测点区域)。与该区域利用地震勘探、瞬变电磁法等综合物探方法所得采空区范围(图中线条圈定区域)相比,基本吻合(采空区域之间的连通性将在下节进行论述)。从而验证了含量-面积法运用于低放射区氡值数据处理的可行性。而基于传统统计方法确定的异常下限为 814~918 个计数 / (3min),很明显,其划定的采空区范围只是探测区的相对高放射区域。在低放射区域,煤矿采空区氡值的高异常区域一般只发生于局部,如伴随有陷落柱的区域。而这一结果又与由含量-面积法所确定的地质构造或陷落柱区域相吻合。

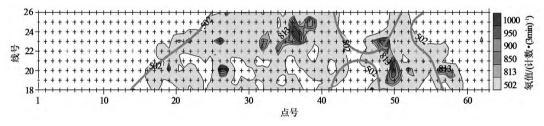


图 3 含量-面积法与其他物探方法所得采空区对比

2.2 奇异性分析

对比其他物探方法所划定的采空区范围,为了 对测区内应用含量-面积法所圈定的采空区域之间 的连通性做进一步检验,利用奇异性分析法的局部 灵敏性,对该采空区遗漏区测点做奇异性分析。

为了提高所测数据的使用率,从而保证计算结果的准确性,选取测线 22 为检验线(检测点依次选取测点 5 号、8 号、11 号…,45 号测点附近检验点加密)。在此, ρ (r) 表示基于尺度 r 的邻域内氡含量的平均值,计算窗口采用正方形,以检测点为中心,半边长 r 分别为 $15\mathrm{m}$, $25\mathrm{m}$, $35\mathrm{m}$, $45\mathrm{m}$ 。(图 3 中测点点号、线号间距均为 $10\mathrm{m}$)。其计算结果见表 2 。

当奇异性指数 a=2 时, ρ (r) 变化不大,约等于常数,对应区域为背景场。当 $a\neq 2$ 时,则对应异常场。与含量-面积法所得结果进行对比,结果见表 3。

分析对照结果,检测结果基本吻合。除个别试验点之外,拟合相关系数 $R \ge 0.8631$,可见, $\lg r = \lg \rho(r)$ 指数关系成立,奇异性指数估计可靠。试验点 22-23,22-38, $\rho(r) \ne$ 常数,首先排除其存在于背景场的可能。另外,氡的运移受裂隙控制,碎岩的裂隙程度直接影响了地表积聚氡气浓度

表 2 奇异性分析基础数据统计

/3min

点号 -	r/m				
	15	25	35	45	
22-5	364	366	368	360	
22-8	363	361	357	356	
22-11	357	356	360	360	
22-14	387	384	395	391	
22-17	453	463	464	451	
22-20	556	548	519	490	
22-23	564	535	570	558	
22-26	640	613	589	572	
22-29	559	582	625	616	
22-32	637	640	615	610	
22-35	706	670	664	643	
22-38	619	644	664	636	
22-41	612	608	570	560	
22-44	449	487	490	508	
22-45	437	485	484	513	
22-47	708	565	521	522	
22-50	662	647	623	570	
22-53	607	583	575	554	
22-56	559	519	493	476	
22-59	421	425	426	419	

的大小。对于采空区内个别岩石碎裂程度相对较低的地方,反映在氡值等值线图上时则会表现为局部低值。图 3 中,试验点 22-23,22-38 均位于采空区内背景场与异常场交界处,岩石碎裂程度较其他

表 3 奇异性分析结果对照

测点 ρ (r)	a-2	拟合相关 系数 R		检测点所在区域		
			·奇异性	含量-	是否 相符	
			分析法	面积法		
22-5	≈常数	≈0	-	背景场	背景场	是
22-8	≈常数	≈0	-	背景场	背景场	是
22-11	≈常数	≈0	-	背景场	背景场	是
22-14	≈常数	≈0	-	背景场	背景场	是
22-17	≈常数	≈0	-	背景场	背景场	是
22-20	≠常数	-0. 1119	0. 9241	异常场	异常场	是
22-23	≠常数	0.0032	0.0539	非背景场	异常场	-
22-26	≠常数	-0. 1018	0. 9961	异常场	异常场	是
22-29	≠常数	0. 1018	0. 9357	异常场	异常场	是
22-32	≠常数	-0.0430	0.8631	异常场	异常场	是
22-35	≠常数	-0.0800	0. 9783	异常场	异常场	是
22-38	≠常数	0. 0381	0.6158	异常场	异常场	是
22-41	≠常数	-0.0872	0. 9204	异常场	异常场	是
22-44	≠常数	0. 1050	0. 9638	异常场	背景场	否
22-45	≠常数	0. 1340	0. 9082	异常场	背景场	否
22-47	≠常数	-0. 2902	0. 9507	异常场	异常场	是
22-50	≠常数	-0. 1253	0.9017	异常场	异常场	是
22-53	≠常数	-0.0789	0. 9810	异常场	异常场	是
22-56	≠常数	-0. 1465	1.0000	异常场	异常场	是
22-59	≈常数	≈0	_	背景场	背景场	是

地方复杂,氡向上迁移受到影响,地表所测氡值较 真实值误差较大,而奇异性分析拟合过程对测量数 据准确度要求较高,故拟合相关指数较低。特别是 试验点 22-44,22-45 经奇异性分析均为异常场, 从而表明,图 3 中由含量-面积法所确定的采空区 域是连通的。该结论与探测区其他综合物探所测的 采空区范围吻合,从而证明了奇异性分析法的局部 灵敏性在处理氡值数据时具有明显优势。

3 结论

- (1) 传统统计方法在早期处理高放射性区域 异常数据时是一种较有效的方法,而在低放射性区 域,其应用则具有一定的局限性。
- (2) 应用含量-面积法圈定氡值异常区域,相较传统统计方法,能有效强化弱异常信息,简单易

行,但仍存在局部遗漏。而奇异性分析法对异常数值反映敏感,但数据处理过程较为繁琐。结合二者优势,首先运用含量-面积法对整体实验区数据进行分析、采空区划定,然后对边界部分进行奇异性分析。结果表明,试验结果较为理想。

(3) 在低放射区探测地下采空区的过程中, 采用测氡法是可行的,其所得采空区范围与对该区进行的其他物探方法综合解译成果基本相符。

[参考文献]

- [1] 杨 华,刘鸿福.测氡在煤矿采空区的应用 [J].山西煤矿,2002,23(2):37-40.
- [2] 冉 云,刘鸿福. 氡气测量在煤矿采空区探测中的应用效果分析[J]. 工程地质计算机应用,2009(3): 18-21.
- [3] 刘鸿福. 氡及其子体运移规律的实验研究 [J]. 太原理工大学学报,1998,29(2):109-117.
- [4] 方 方, 贾文懿. 杯法测氡原理及应用 [J]. 物探与化探, 1998, 22 (3): 191-198.
- [5] 贾文懿,方 方,周蓉生,等. 氡及其子体向上运移的内因与团簇现象[J].成都理工学院学报,1999,26(2):74-78
- [6] 李长江,麻土华. 矿产勘查中的分形、混沌与 ANN [M]. 北京: 地质出版社,1999.
- [7] MANDELBROTBB. Statistical self-similarity and fractional dimension [J] . Science , 1967 (155): 636-638.
- [8] 潘 彤,马梅生,轩友成,等.分形理论在地学中的应用 [J].青海地质,1996(2):60-64,72.
- [9] 朱晓华,王 建,陆 娟.关于地学中分形理论应用的思考 [J].南京师大学报(自然科学版),2001,24(3):93-98.
- [10] 成秋明. 多重分形与地质统计学方法用于勘察地球化学异常空间结构和奇异性分析 [J]. 地球科学—中国地质学学报, 2001, 26(2): 161-166.
- [11] 成秋明. 空间模式的广义自相似性与矿产资源评价 [J]. 地球科学—中国地质学学报,2004,29(6): 733-743.
- [12] 唐岱茂,刘鸿福,段鸿杰,等. 氡气测量用于地表探测岩溶陷落柱的位置与范围 [J]. 核技术,1999,22 (4):223-227. [责任编辑:施红霞]

(上接46页)

控制和保护灵敏可靠,故障率低,满足了现代化矿井安全、高产高效综采(放)工作面的供电要求,为工作面的顺利推进提供了可靠的电气设备保证,取得了很好的应用效果。

[参考文献]

- [1] 李占平. 我国煤矿井下综采工作面供电系统的现状和发展趋势研究 [J]. 煤炭工程,2012(8): 85-87.
- [2] 陶学仪,尚药世.现代化矿井安全高效综采工作面供电技术

[J] . 煤炭学报, 2010 (11): 1930-1934.

- [3] 晋鹏飞,吴利学.煤矿综采工作面负荷中心的选型与应用 [J].煤矿机电,2013(4):120-121.
- [4] 庞士宝,吴征鹏. 博太科负荷中心在顾桥矿的应用及改进 [J]. 科技信息,2011(8):777-779.
- [5] 郑丽君 . 3. 3kV 矿用智能型负荷控制中心的研究 [D] . 太原: 太原理工大学 , 2006.
- [6] 顾永辉,范廷瓒,等. 煤矿电工手册 第二分册: 矿井供电(下) [M]. 北京: 煤炭工业出版社,1996.
- [7] 李子华,卢孟学,邵明星.英国 CHP33 负荷中心的应用及示例分析 [J].山东煤炭科技,2007 (2): 38-39.

[责任编辑: 周景林]