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Abstract We characterize bounded simply connected planar W 1,p-extension domains for 1 < p < 2 as those
bounded simply connected domains Ω ⊂ R2 for which any two points z1, z2 ∈ R2 \ Ω can be connected with a
curve γ ⊂ R2 \ Ω satisfying ∫

γ
dist(z, ∂Ω)1−pds(z) ⩽ C(Ω, p)|z1 − z2|2−p.

By combining earlier results, we obtain the following duality result: a Jordan domain Ω ⊂ R2 is a W 1,p-extension
domain, 1 < p < ∞ if and only if the complementary domain R2 \ Ω is a W 1,p/(p−1)-extension domain.
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1 Introduction

In this paper, we study those planar domains Ω ⊂ R2 for which there exists an extension operator
E : W 1,p(Ω)→W 1,p(R2). Here, the Sobolev space W 1,p, 1 ⩽ p ⩽∞, is

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω,R2)},

where ∇u denotes the distributional gradient of u. The usual norm in W 1,p(Ω) is

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

More precisely, E : W 1,p(Ω)→W 1,p(R2) is an extension operator if there exists a constant C ⩾ 1 so that
for every u ∈W 1,p(Ω), we have

‖Eu‖W 1,p(R2) ⩽ C‖u‖W 1,p(Ω)

and Eu|Ω = u. Notice that we are not assuming the operator E to be linear. However, for p > 1,

there also always exists a linear extension operator provided that there exists an extension operator
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(see [16, 38]). Finally, a domain Ω ⊂ R2 is called a W 1,p-extension domain if there exists an extension
operator E : W 1,p(Ω) → W 1,p(R2). For example, each Lipschitz domain is a W 1,p-extension domain for
each 1 ⩽ p ⩽∞ by the results of Calderón [6] and Stein [40]. However, as proven by Jones [23], the class
of extension domains is much larger. The boundary of a W 1,p-extension domain can be of full Hausdorff
dimension and it can include fractal parts.

In this paper, we prefer to use the homogeneous seminorm ‖u‖L1,p(Ω) = ‖∇u‖Lp(Ω). This makes no
difference because we only consider domains Ω with a bounded (and hence compact) boundary; for such
domains, one has a bounded (linear) extension operator for the homogeneous seminorms if and only if
there is one for the non-homogeneous ones (see [21]). In what follows, the norm of the extension operator
is usually with respect to the homogeneous seminorms.

The main result of our paper is the following geometric characterization of simply connected bounded
planar W 1,p-extension domains.
Theorem 1.1. Let 1 < p < 2 and let Ω ⊂ R2 be a bounded simply connected domain. Then Ω is a
W 1,p-extension domain if and only if for all z1, z2 ∈ R2 \ Ω, there exists a curve γ ⊂ R2 \ Ω joining z1
and z2 such that ∫

γ

dist(z, ∂Ω)1−pds(z) ⩽ C(Ω, p)|z1 − z2|2−p. (1.1)

Both the necessity and sufficiency in Theorem 1.1 are new. Notice that the curve γ above is allowed to
touch the boundary of Ω even if the points in question lie outside the closure of Ω. This is crucial: there
exist bounded simply connected W 1,p-extension domains for which R2 \Ω has multiple components (see,
e.g., [7, 25]).

When combined with earlier results, Theorem 1.1 essentially completes the search for a geometric
characterization of bounded simply connected planar W 1,p-extension domains. The unbounded case
requires extra technical work and it will be discussed elsewhere.

The condition (1.1) on the complement in Theorem 1.1 appears also in the characterization of W 1,q-
extension domains when 2 < q < ∞. For such domains, a characterization using the condition (1.1) in
the domain itself with the Hölder dual exponent q/(q − 1) of q was proved in [39, Theorem 1.2] (see also
earlier partial results in [5, 26]).
Theorem 1.2 (See [39]). Let 2 < q < ∞ and let Ω be a bounded simply connected planar domain.
Then Ω is a W 1,q -extension domain if and only if for all z1, z2 ∈ Ω, there exists a rectifiable curve γ ⊂ Ω

joining z1 and z2 such that ∫
γ

dist(z, ∂Ω)
1

1−q ds(z) ⩽ C(Ω, q)|z1 − z2|
q−2
q−1 . (1.2)

The above two theorems leave out the case p = 2. This is settled by earlier results [13–15,23], according
to which a bounded simply connected domain is a W 1,2-extension domain if and only if it is a quasidisk
(equivalently, a uniform Jordan domain). Thus, Ω is a bounded simply connected W 1,2-extension domain
if and only if Ω is a uniform (bounded) Jordan domain which in turn is true if and only if Ω is a Jordan
domain and R2 \ Ω is uniform or, equivalently, if and only if Ω is bounded and simply connected with
R2 \ Ω a W 1,2-extension domain.

By combining (the proof of) our characterization in Theorem 1.1 with Shvartsman’s characterization
stated in Theorem 1.2, we verify the following duality result between the extendability of Sobolev functions
from a Jordan domain and from its complementary domain in Subsection 4.7.
Corollary 1.3. Let 1 < p, q <∞ be Hölder dual exponents and let Ω ⊂ R2 be a Jordan domain. Then
Ω is a W 1,p-extension domain if and only if R2 \ Ω̄ is a W 1,q-extension domain.

Corollary 1.3 was hinted by the example in [28] (see also [32,37]) that exhibits such a duality.
Corollary 1.4. Let Ω ⊂ R2 be a bounded, simply connected W 1,p-extension domain, where 1 < p ⩽ 2.

Then there is q > p so that Ω is a W 1,s-extension domain for all 1 < s < q.

The case 1 < p < 2 follows from Theorem 1.1 together with the fact that (1.1) implies the analogous
inequality for all 1 < s < p + ϵ. The case of smaller s is essentially just Hölder’s inequality (see [30]),
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while the improvement to larger exponents follows from Lemma 2.3 that relies on ideas in the proof of
[39, Proposition 2.6]. Again, the case p = 2 of Corollary 1.4 was already known to hold: one then has
extendability for all 1 < s <∞.

By combining Corollary 1.4 with results from [26,39], we obtain an open-ended property.
Corollary 1.5. Let Ω ⊂ R2 be a bounded, simply connected W 1,p-extension domain, where 1 < p <∞.
Then the set of all 1 < s <∞ for which Ω is a W 1,s-extension domain is an open interval.

Actually, the open interval above can only be one of 1 < s < ∞, 1 < s < q with q ⩽ 2, or q < s < ∞
with q ⩾ 2.

Let us comment on some earlier partial results related to Theorem 1.1. First of all, bounded simply
connected W 1,p-extension domains are John domains when 1 ⩽ p < 2 (see, e.g., [25, Theorem 6.4],
[14, Theorem 3.4], [33, Theorem 4.5] and the references therein). The definition of a John domain is
given in Definition 2.18 below. However, there exist John domains that fail to be extension domains
and, even after Theorem 1.1, there is no interior geometric characterization available for this range of
exponents. Secondly, in [27], it was shown that the complement of a bounded simply connected W 1,1-
extension domain is quasiconvex. This was obtained as a corollary to a characterization of bounded simply
connected BV -extension domains. Recall that a set E ⊂ R2 is called quasiconvex if there exists a constant
C ⩾ 1 such that any pair of points z1, z2 ∈ E can be connected to each other with a rectifiable curve
γ ⊂ E whose length satisfies le(γ) ⩽ C|z1− z2|. In [27], it was conjectured that the quasiconvexity of the
complement holds for every bounded simply connected W 1,p-extension planar domain when 1 < p < 2.
This conjecture follows from Theorem 1.1 (see Lemma 2.2), but again, quasiconvexity is a weaker condition
than our geometric characterization.

Next, we describe the idea of the proof as follows. We show the necessity of (1.1) in Section 3 by
first verifying this condition under the additional requirement that the domain in question is a Jordan
domain. This additional assumption together with the extension property allows us to construct suitable
test functions that are employed to verify (1.1) (see Lemma 3.3). These are motivated by the function
u(x, y) = y

x on Ω = {(x, y) : 0 < y < x, 0 < x < 1}. In the complex notation, we have |∇u(z)| ⩽ C|z|−1;

a variant of this property (see (3.2)) holds for the function ϕ constructed in the proof of Lemma 3.3.
The curve γ in (1.1) in the case of a Jordan domain is given as the image under the exterior Riemann
mapping function of a uniform curve (in the sense of Definition 2.27) that we construct by hand in the
exterior of the unit disk (see Figure 3). For readers who are familiar with conformal geometry, it might
be helpful to think of the constructed curve in the exterior of the unit disk as almost a quasihyperbolic
geodesic for which many useful geometric properties are preserved under conformal maps.

The general case is then handled via an approximation argument, for which we fill Ω by an increasing
sequence of Jordan W 1,p-extension domains with control on the norms of the respective extension
operators (see Theorem 3.9). These domains Ωn are the images of B(0, 1 − 1

n ), n = 1, 2, . . . , under
the Riemann mapping function from the unit disk onto the domain Ω. To prove the uniform W 1,p-
extension property, we employ a variant of the technique used by Jones [23] to construct extensions from
Ωn to Ω. The main differences with the setting in [23] are that we only extend to an annular region and
that the uniformity of the domain considered by Jones is with respect to the Euclidean metric, while in
our case, it is with respect to the inner metric of the domain.

For sufficiency, we again first deal with the Jordan case and then use a compactness argument to pass
to a limit. This is done in Section 4. The crucial point in the proof is the introduction of a new version
of the Whitney extension technique in the case of Jordan domains. The extension operator is defined in
Subsection 4.3. In order to build this extension, we assign a Whitney square of Ω to each complementary
Whitney square of size at most the size of Ω. In [23], Jones chose a square of the comparable diameter,
and the uniformity gives that each Whitney square of Ω gets assigned to at most uniformly finitely many
Whitney squares of the exterior. Roughly speaking, this gives a bi-Lipschitz correspondence between
Whitney squares. In our case, this kind of correspondence cannot be expected. To overcome this problem,
we pick a Whitney square whose shadow along hyperbolic rays has the diameter comparable to that of the
shadow of the complementary square. In a sense, we reflect with respect to harmonic measure. Hence,
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the diameter of a “reflected” square can be much larger than the diameter of the original one and we
cannot uniformly bound the number of exterior squares that correspond to a single Whitney square of Ω.
Nevertheless, (1.1) allows us to eventually establish appropriate bounds on our extension. Towards this,
roughly speaking, we establish estimates on the many-to-one map from the collection of the exterior
Whitney squares to Whitney squares of Ω (see Lemma 4.13). This is obtained through a delicate analysis
of the locations and sizes of those complementary squares that share a “reflected” square.

The reader familiar with Sobolev extensions may wonder why do we not simply employ the existing
extension operators such as those in [17, 38]. This is because we have not been able to directly show
that these operators work under our assumptions. However, once we know by our main theorem that
the domains are extension domains, we conclude that also these extension operators work under our
assumptions.

The rest of this paper is organized as follows. In Section 2, we introduce notation and initial results.
Theorem 1.1 gets proven in Sections 3 and 4. Finally, Corollary 1.3 is proven at the very end of this
paper in Section 5.

2 Preliminaries

Let us fix some notation. When we make estimates, we often write the constants as positive real numbers
C(·) with the parentheses including all the parameters which the constant depends on; we just simply
write C if it is absolute. The constant C(·) may vary between appearances, even within a chain of
inequalities. By a ≲ b, we mean that a ⩽ Cb for some constant C ⩾ 2. Then a ∼ b means that both
a ≲ b and b ≲ a hold. If we need to stress the dependence of the respective constant C only on data A,
we write a ≲A b and a∼Ab, respectively. The Euclidean distance between two sets A, B ⊂ R2 is denoted
by dist(A, B). By D, we always mean the open unit disk in R2 and by S1 its boundary. The interior of a
set A is denoted by A◦ and the closure by A. Given a measurable set A of strictly positive area |A| and
a function u ∈ L1(A), we write

uA = –
∫

A

udz =
1

|A|

∫
A

udz.

2.1 Curves and integrals over curves

Let us next define the curves and line integrals that we use throughout this paper. A continuous map
γ : I → R2 is called a curve when I is a (possibly unbounded) interval. When there is no danger of
confusion, we sometimes refer also to the image γ(I) ⊂ R2 by γ. Recall that the derivative γ′(t) exists for
almost every t ∈ I for a locally Lipschitz γ. Then the Euclidean length of such a curve can be defined by

le(γ) =

∫
I

|γ′(t)|dt.

In general,

le(γ) = sup

{ k∑
j=1

|γ(tj+1)− γ(tj)|
}
,

where the supremum runs over all k ⩾ 1 and all t1 < t2 < · · · < tk+1 ∈ I. If le(γ) < ∞, which is the
case for the Lipschitz curves defined on compact intervals, we call the curve γ rectifiable. In this case,
after a reparametrization, we may assume that γ : [0, 1]→ R2 and that |γ′(t)| = le(γ) almost everywhere.
We call such a parametrization a constant speed parametrization. Alternatively, we may parametrize the
curve γ by arc-length. In this way, we obtain γ̃ : [0, le(γ)] → R2 with |γ̃′(t)| = 1 almost everywhere. A
change of variable argument shows that reparametrization does not change the length of the curve. From
now on, when using the term rectifiable curve, by default, we assume the constant speed parametrization
on [0, 1], unless otherwise stated.
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Notice that we are not requiring our curves to be injective. However, if E ⊂ Rn is a continuum with
H1(E) <∞, then for any x, y ∈ E, there exists an injective curve γx,y : [0, 1]→ E with γ(0) = x, γ(1) = y

and le(γx,y) ⩽ H1(E) (see [8, Lemma 3.12]).
The line integral of a measurable function f : R2 → R along a rectifiable curve γ is defined as∫

γ

f(z)ds(z) =

∫ 1

0

f(γ(t))|γ′(t)|dt =
∫ 1

0

f(γ(t)) le(γ)dt,

whenever the integral on the right-hand side exists. Alternatively, for the arc-length parametrization γ̃

for γ, we have ∫
γ

f(z)ds(z) =

∫ le(γ)

0

f(γ̃(t))dt.

We equip [0,∞] with the topology whose basis consists of restrictions of open sets of R to [0,∞)

together with all the intervals (M,∞] with M > 0. A function f : R2 → [0,∞] is then continuous at
x0 ∈ R2 where f(x0) =∞, if for every M > 0, there exists ε > 0 for which f(x) > M for all x ∈ B(x0, ε).
The continuity of f at each x0 where f(x0) <∞ has the usual meaning.

By the Arzelá-Ascoli lemma, we have the following result.
Lemma 2.1. Let γi : [0, 1] → R2, i ∈ N be a collection of rectifiable curves so that

⋃
i γi([0, 1]) is

bounded and supi le(γi) < ∞. Then there exist a sequence ij ↗ ∞ and a rectifiable curve γ∞ so that
γij (t)→ γ∞(t) for all t ∈ [0, 1] when j →∞. Moreover, for any continuous function f : R2 → [0,∞], we
have ∫

γ∞

f(z)ds(z) ⩽ lim inf
j→∞

∫
γij

f(z)ds(z).

In particular,
le(γ∞) ⩽ lim inf

j→∞
le(γij ).

If γ1, γ2 : [0, 1] → R2 are two non-constant rectifiable curves with γ1(1) = γ2(0), we define their
concatenation γ1 ∗ γ2 by

γ1 ∗ γ2(t) =


γ1

(
t
le(γ1) + le(γ2)

le(γ1)

)
, if 0 ⩽ t ⩽ le(γ1)

le(γ1) + le(γ2)
,

γ2

(
t
le(γ1) + le(γ2)

le(γ2)
− le(γ1)

le(γ2)

)
, if le(γ1)

le(γ1) + le(γ2)
< t ⩽ 1.

For a curve γ, we define the reversed curve by ←−γ by setting ←−γ (t) = γ(1 − t). Because of possible
noninjectivity, a restriction of a curve to a subcurve between x, y ∈ γ can be defined in many ways. We
use the first times in the parameter space, where we hit x and y, i.e., the restriction γ[x, y] is defined as

γ[x, y](t) = γ((1− t)tx + tty),

where tx = inf{t ∈ [0, 1] : γ(t) = x} and ty = inf{t ∈ [0, 1] : γ(t) = y}. Notice that with this definition,
we have γ[x, y](0) = x and γ[x, y](1) = y, and the subcurve might go in the reversed direction along γ.
For x, y ∈ R2, we also use the notation [x, y] : [0, 1] → R2 : t 7→ (1 − t)x + ty to denote the line segment
from x to y.

Let Ω ⊂ R2 be a domain and x, y ∈ Ω. We say that a curve γ : [0, 1] → R2 joins x and y in Ω, if
γ(0) = x, γ(1) = y and γ([0, 1]) ⊂ Ω∪{x, y}. We then define the inner distance with respect to Ω between
x, y ∈ Ω by setting

distΩ(x, y) = inf
γ⊂Ω

le(γ),

where the infimum runs over all the curves joining x and y in Ω. We postpone the proof of the fact
that distΩ is a distance on Jordan domains to Lemma 2.16. Note that any pair x, y ∈ Ω is rectifiably
joinable in Ω, but the inner distance from x ∈ Ω to a point y ∈ ∂Ω might well be infinite. If distΩ(x, y)
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<∞, we say that x and y are rectifiably joinable in Ω. The inner diameter diamΩ(E) of a set E ⊂ Ω is
then defined to be the supremum of distΩ(x, y) over pairs of points x, y ∈ E and

BΩ(z, r) = {y ∈ Ω | distΩ(z, y) < r}

denotes the open ball in Ω with respect to the inner distance.

2.2 Curve condition

We begin by recording a consequence of (1.1) that essentially follows from [39, Lemma 2.1] (see also the
proof of [11, Theorem 2.15] and [30]). Since the results of [39, Lemma 2.1] are stated for curves contained
in open sets, we check below that the arguments work in our setting.
Lemma 2.2. Let 1 < p < 2, Ω ⊂ R2 be a bounded simply connected domain, and z1, z2 ∈ R2 \ Ω.

(1) If
max{dist(z1, ∂Ω), dist(z2, ∂Ω)} ⩽ 2|z1 − z2|, (2.1)

and γ ⊂ R2 \ Ω is a curve joining z1 and z2 so that∫
γ

dist(z, ∂Ω)1−pds(z) ⩽ C1|z1 − z2|2−p,

then we have
le(γ) ⩽ C(p, C1)|z1 − z2|.

(2) If
max{dist(z1, ∂Ω), dist(z2, ∂Ω)} > 2|z1 − z2|, (2.2)

then the line segment [z1, z2] ⊂ R2 \ Ω joining z1 and z2 satisfies∫
[z1,z2]

dist(z, ∂Ω)1−pds(z) ⩽ C(p)|z1 − z2|2−p.

Especially, if the curve condition (1.1) holds, then R2 \Ω is quasiconvex with a constant depending only
on p and C1.

Proof. Let us first verify the part (1). We claim that

γ ⊂ B(z1, c|z1 − z2|) \ Ω (2.3)

with c = ((2 − p)(C1 + 1) + 32−p)1/(2−p) − 2. If (2.3) holds, then for any z ∈ γ, according to (2.1), we
have

dist(z, ∂Ω) ⩽ dist(z1, ∂Ω) + c|z1 − z| ⩽ (2 + c)|z1 − z2|,

and by 1 < p < 2,

(2 + c)1−p|z1 − z2|1−p le(γ) ⩽
∫
γ

dist(z, ∂Ω)1−pds(z) ⩽ C1|z1 − z2|2−p.

Hence,
le(γ) ⩽ C(p, C1)|z1 − z2|,

and we conclude that we only need to establish (2.3).
Let us verify (2.3). By the curve condition on γ, the triangle inequality and (2.1),

C1|z1 − z2|2−p ⩾
∫
γ

dist(z, ∂Ω)1−pds(z)

⩾
∫
γ

(dist(z1, ∂Ω) + |z − z1|)1−pds(z)
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⩾
∫
γ

(2|z1 − z2|+ |z − z1|)1−pds(z). (2.4)

Suppose that γ ⊂ R2 \ Ω is not contained in B(z1, c|z1 − z2|) \ Ω. Then by restricting the curve to the
part contained in the disk B(z1, c|z1 − z2|), we further have∫

γ

(2|z1 − z2|+ |z − z1|)1−pds(z) ⩾
∫ c|z1−z2|

|z1−z2|
(2|z1 − z2|+ t)1−pdt

=
|z1 − z2|2−p

2− p
((c+ 2)2−p − 32−p). (2.5)

By combining (2.4) and (2.5), we arrive at

1

2− p
((c+ 2)2−p − 32−p) ⩽ C1,

which is impossible for our choice of c. Thus, we conclude (2.3), and we have proven the part (1) of our
claim.

Towards (2), clearly (2.2) implies [z1, z2] ⊂ R2 \ Ω. With possibly changing the roles of z1 and z2, we
may assume that

dist(z1, ∂Ω) > 2|z1 − z2|.

Thus, we have∫
[z1,z2]

dist(z, ∂Ω)1−p ds(z) ⩽ |z1 − z2|2p−1dist(z1, ∂Ω)
1−p ⩽ C(p)|z1 − z2|2−p,

where we used the facts that 1 < p < 2, and that by (2.2) together with the triangle inequality, we have
that for each z ∈ [z1, z2],

dist(z, ∂Ω) ⩾ dist(z1, ∂Ω)− |z1 − z| ⩾ dist(z1, ∂Ω)− |z1 − z2| ⩾
1

2
dist(z1, ∂Ω).

This gives the claim of the second part.

We establish the following self-improving property of (1.1) via ideas from the proof of [39,
Proposition 2.6].
Lemma 2.3. Let Ω ⊂ R2 be a bounded simply connected domain for which (1.1) holds for R2 \ Ω.
Then there exists ϵ > 0 that depends only on p and the constant C1 = C(Ω, p) in (1.1) so that for every
1 < p̂ < p+ ϵ and all z1, z2 ∈ R2 \ Ω, there exists a curve γ ⊂ R2 \ Ω joining z1 and z2 such that∫

γ

dist(z, ∂Ω)1−p̂ds(z) ⩽ C(p, C1)|z1 − z2|2−p̂.

Proof. We begin by showing that under the assumption of the lemma, for any pair of points z1, z2 ∈
R2 \ Ω, there exists a rectifiable curve γ ⊂ R2 \ Ω joining them with le(γ) ⩽ C|z1 − z2| such that for all
w1, w2 ∈ γ, any subcurve γ[w1, w2] ⊂ γ joining w1 and w2 satisfies∫

γ[w1,w2]

dist(z, ∂Ω)1−p ds(z) ⩽ c|w1 − w2|2−p, (2.6)

where the constants C andc depend only on p and C1. In the case where z1 and z2 satisfy (2.2), we claim
that we may take γ = [z1, z2], the line segment joining z1 to z2. Towards this, we may clearly assume
that

dist(z1, ∂Ω) > 2|z1 − z2|.

Then since every subcurve of our line segment γ is still a line segment, we have∫
[w1,w2]

dist(z, ∂Ω)1−p ds(z) ⩽ C(p)|w1 − w2|dist(z1, ∂Ω)1−p
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⩽ C(p)|w1 − w2||z1 − z2|1−p ⩽ C(p)|w1 − w2|2−p,

where we used the facts that 1 < p < 2, and that by (2.2) with the triangle inequality, we have that for
each z ∈ [z1, z2],

dist(z, ∂Ω) ⩾ dist(z1, ∂Ω)− |z1 − z| ⩾ dist(z1, ∂Ω)− |z1 − z2| ⩾
1

2
dist(z1, ∂Ω).

Thus, (2.6) holds whenever (2.2) holds.
We are left with the case where (2.2) fails. Then (2.1) holds. We claim that there exists a curve

γ ⊂ R2 \ Ω that joins z1 and z2 and minimizes the integral in (1.1).
Let γj be a sequence of curves joining z1 and z2 such that∫

γj

dist(z, ∂Ω)1−pds(z) ⩽ cj |z1 − z2|2−p,

where cj ⩽ C1 converge to the infimum c of such constants cj for the pair z1, z2. Then this condition
ensures that

le(γj) ⩽ C|z1 − z2|

for all j by Lemma 2.2(1). Therefore, by Lemma 2.1, there exist a sequence ji →∞ and a limit curve γ
so that γji(t)→ γ(t) for all t as i→∞ and∫

γ

dist(z, ∂Ω)1−pds(z) ⩽ lim inf
i→∞

∫
γji

dist(z, ∂Ω)1−pds(z) ⩽ c|z1 − z2|2−p. (2.7)

Now, fix z1, z2 ∈ R2 \Ω satisfying (2.1), and let γ ⊂ R2 \Ω be a minimizer for the integral in (1.1) for
z1 and z2. We claim that any subcurve γ[w1, w2] of γ is also a minimizer for w1 and w2. Otherwise, let
γ′[w1, w2] be a minimizer for w1 and w2. Because of symmetry, we may assume that γ passes z1, w1, w2

and z2 in this order. Then by the linearity of the integral, we have∫
γ

dist(z, ∂Ω)1−pds(z) =

(∫
γ[z1,w1]

+

∫
γ[w1,w2]

+

∫
γ[w2,z2]

)
dist(z, ∂Ω)1−pds(z)

>

(∫
γ[z1,w1]

+

∫
γ′[w1,w2]

+

∫
γ[w2,z2]

)
dist(z, ∂Ω)1−pds(z)

=

∫
γ′
dist(z, ∂Ω)1−pds(z),

where
γ′ = γ[z1, w1] ∗ γ′[w1, w2] ∗ γ[w2, z2]

joins z1 and z2. This contradicts the minimality assumption on γ. Thus, our claim follows, and hence
(2.6) also holds for points satisfying (2.1).

To conclude, for any pair of points z1, z2 ∈ R2 \ Ω, there exists a rectifiable curve γ ⊂ R2 \ Ω joining
them with le(γ) ⩽ C|z1−z2| so that (2.6) holds. In other words, the curve γ satisfies the so-called “strong
α-hyperbolicity” in [39, Definition 2.4] with α = 2−p. Thus, we can use the proof of [39, Proposition 2.6]
to conclude the lemma. For the sake of completeness, let us give the details of this argument.

We first show that whenever a curve γ satisfies (2.6) and w1, w2 ∈ γ, we have

1

le(γ[w1, w2])

∫
γ[w1,w2]

dist(z, ∂Ω)1−pds(z) ⩽ C(p, c) min
z∈γ[w1,w2]

dist(z, ∂Ω)1−p. (2.8)

We have two cases. If
max

z∈γ[w1,w2]
dist(z, ∂Ω) < 2 le(γ[w1, w2]),

then as 1 < p < 2,
min

z∈γ[w1,w2]
dist(z, ∂Ω)1−p > 21−p le(γ[w1, w2])

1−p.
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Therefore, ∫
γ[w1,w2]

dist(z, ∂Ω)1−pds(z) ⩽ c|w1 − w2|2−p ⩽ c le(γ[w1, w2]) le(γ[w1, w2])
1−p

⩽ C(p, c) le(γ[w1, w2]) min
z∈γ[w1,w2]

dist(z, ∂Ω)1−p,

and (2.8) follows. If
max

z∈γ[w1,w2]
dist(z, ∂Ω) ⩾ 2 le(γ[w1, w2]),

then by the triangle inequality,

max
z∈γ[w1,w2]

dist(z, ∂Ω) ⩽ min
z∈γ[w1,w2]

dist(z, ∂Ω) + le(γ[w1, w2])

⩽ min
z∈γ[w1,w2]

dist(z, ∂Ω) +
1

2
max

z∈γ[w1,w2]
dist(z, ∂Ω).

Thus,
min

z∈γ[w1,w2]
dist(z, ∂Ω) ⩽ max

z∈γ[w1,w2]
dist(z, ∂Ω) ⩽ 2 min

z∈γ[w1,w2]
dist(z, ∂Ω),

and (2.8) again follows from (2.6).
Now let us complete the proof by relying on le(γ) ⩽ C|z1 − z2|, (2.6) and (2.8). Parametrize γ by

arc-length, γ : [0, le(γ)]→ R2 \ Ω. Then (2.8) gives the estimate

1

|t2 − t1|

∫ t2

t1

dist(γ(t), ∂Ω)1−pdt ⩽ C(p, c) min
t∈[t1,t2]

dist(γ(t), ∂Ω)1−p

for all 0 ⩽ t1 < t2 ⩽ le(γ). This implies that ω(t) = dist(γ(t), ∂Ω)1−p is a Muckenhoupt A1-weight on
[0, le(γ)]. By the reverse Hölder’s inequality (see, e.g., [18, 15.3]), there exists β > 1 that depends only
on C(p, c) such that (

1

le(γ)

∫ le(γ)

0

ω(t)βdt

) 1
β

⩽ C(p, c)
1

le(γ)

∫ le(γ)

0

ω(t)dt.

This estimate together with (2.6) and the fact that |z1 − z2| ⩽ le(γ) ⩽ C|z1 − z2| implies the claim.

We close this subsection with the following technical existence result that will be employed in Section 4.
Lemma 2.4. Let 1

2 < R < 1 and 1 < p̂ < 2. There are an absolute constant δ > 0 and a
constant C(p̂) that depend only on p̂ so that the following holds. Let w1 ∈ D \ B(0, R) and w1 6= w2

∈ B(z1, δ(1− |w1|)) \B(0, R). Then there is a curve γ ⊂ B(w1, (1− |w1|)/2) \B(0, R) joining w2 to w1

so that ∫
γ

dist(z, ∂B(0, R) ∪ ∂B(w1, (1− |w1|)/2))1−p̂ds(z) ⩽ C(p̂)|w1 − w2|2−p̂.

Proof. We prove the claim with δ = 1/30. Fix R,w1 and w2 as in our assumptions. If w2 lies on the
radial segment through w1, then we may clearly choose γ to be the radial segment between the points w2

and w1. Otherwise, consider the additional points ξj = (|w1|+ |w2 − w1|) wj

|wj | , j = 1, 2. We let γj be the
radial segment from wj to ξj for j = 1, 2 and let γ3 be the shorter arc on the circle S(0, |w1|+ |w2−w1|)
from ξ1 to ξ2. We can estimate the lengths of these curves by

le(γ2) = |w2 − ξ2| = |w1| − |w2|+ |w2 − w1| ⩽ 2|w1 − w1|

and
le(γ3) ⩽ π|ξ1 − ξ2| ⩽ 2π|w1 − w2|

since w1, w2, ξ1, ξ2 ∈ D \B(0, 12 ). We define γ as the concatenation γ = γ1 ∗ γ3 ∗←−γ 2. Then

le(γ) ⩽ le(γ1) + le(γ2) + le(γ3) ⩽ |w2 − w1|+ 2|w2 − w1|+ 2π|w2 − w1| < 10|w2 − w1|. (2.9)
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Moreover, clearly γ ∩ B(0, R) = ∅. Since γ3 ⊂ S(0, |w1| + |w2 − w1|) and |w1| > R, we have
dist(γ3, ∂B(0, R)) ⩾ |w2 − w1|. Furthermore,

dist(γ, ∂B(w1, (1− |w1|)/2)) ⩾ (1− |w1|)/2− 10|w2 − w1| ⩾ 5|w2 − w1|

by (2.9) since w1 ∈ γ and z2 ∈ B(z1, (1− |w1|)/30. This together with (2.9) yields∫
γ

dist(z, ∂B(0, R) ∪ ∂B(w1, (1− |w1|)/2))1−p̂ds(z)

⩽
∫
γ1

dist(z, ∂B(0, R))1−p̂ds(z) +

∫
γ2

dist(z, ∂B(0, R))1−p̂ds+ 20|w2 − w1|1−p̂.

The claim follows by integrating since γ1 and γ2 are radial segments and both are of the length no more
than 2|w2 − w1|.

2.3 Hyperbolic metric

Recall that the hyperbolic distance between z1, z2 ∈ D is defined to be

disth(z1, z2) = inf
γ

∫
γ

2

1− |z|2
ds(z),

where the infimum is taken over all rectifiable curves γ joining z1 to z2 in D. Notice that the density above
is comparable to 1

1−|z| = dist(z, ∂D)−1. The infimum is achieved by a unique curve joining z1 and z2 that
we call the (geodesic) hyperbolic segment between z1 and z2. It is an arc of a (generalized) circle that
intersects the unit circle orthogonally. Especially, if the hyperbolic segment contains the origin, then it
is a Euclidean segment. Conversely, each Euclidean segment that contains the origin and is contained in
D is a hyperbolic segment. It is not obvious from the definition that the hyperbolic distance is preserved
under conformal self maps of the disk, but this is indeed the case and follows from the fact that conformal
self maps of the disk are Möbius transformations of D onto itself.

The hyperbolic distance in a simply connected domain is defined via a conformal map. Precisely, given
a simply connected domain Ω, we pick a conformal map φ : D→ Ω and define, for x, y ∈ Ω,

disth(x, y) = disth(φ
−1(x), φ−1(y)).

This is independent of the choice of φ since φ is unique modulo composition with a Möbius transformation
that maps D onto D. Equivalently,

disth(x, y) = inf
γ

∫
γ

2|g′(z)|
1− |g(z)|2

ds(z),

where g = φ−1 and the infimum is taken over all rectifiable curves that join x to y in Ω. Hyperbolic
segments in Ω are then both minimizers of this integral and images of hyperbolic segments in the unit
disk. Even though the hyperbolic metric is defined via conformal maps, one can estimate it without
knowing the map in question. For this, one uses the following Koebe distortion theorem.
Lemma 2.5 (See [1, Theorem 2.10.6]). Suppose that φ is conformal in a domain Ω ⫋ C with φ(Ω) =
Ω′ ⫋ C. Let z0 ∈ Ω. Then

1

4
|φ′(z0)|dist(z0, ∂Ω) ⩽ dist(φ(z0), ∂Ω

′) ⩽ |φ′(z0)|dist(z0, ∂Ω).

By the Koebe distortion theorem, the density in the definition of the hyperbolic distance is comparable
to dist(z, ∂Ω)−1 with absolute constants. For example, in the upper half-plane H, the hyperbolic metric
has the density y−1 at the point (x, y) ∈ H, and the hyperbolic geodesics are circular arcs perpendicular
to the real axis (contained in half-circles with the center on the real axis) and segments of vertical lines
ending at the real axis. See [1, Chapter 2] for more information on the hyperbolic metric.



Koskela P et al. Sci China Math October 2025 Vol. 68 No. 10 2357

We also need the hyperbolic distance in the complement of the closed unit disk and in complementary
Jordan domains. Towards this, we recall that the hyperbolic distance in the punctured disk D \ {0} is
defined via the density ρ(z) = 1

|z| log(1/|z|) and this time taking the infimum over curves in D\{0}. For the
exterior of the closed unit disk, we transform this density and the hyperbolic distance via the (conformal)
Möbius transformation φ(z) = 1

z . Then the density of the hyperbolic distance is still controlled from above
by an absolute constant multiple of 1

|z|−1 = dist(z, ∂D)−1 (and also from below when z ∈ B(0, 10)).
Recall that a Jordan curve divides the plane into two domains, the boundary of each of which equals

this curve; we refer to the bounded one as a Jordan domain Ω. Then the Jordan domain Ω is conformally
equivalent to the unit disk and the corresponding unbounded domain Ω̃ = R2\Ω is conformally equivalent
to R2 \ D. We define the hyperbolic distance and the corresponding density in Ω̃ via the conformal map
and our hyperbolic distance and density in the exterior of the closed unit disk. This does not depend
on the choice of the conformal map in question since any two conformal maps from the exterior domain
of the unit circle onto our Jordan domain can only differ by a precomposition with a rotation. This
follows since the composition of the inverse of the second map with the first one would be a conformal
self map of the exterior domain of the unit circle. Each such map is a rotation. This can be seen by
pre- and postcomposing with the Möbius transformation φ(z) = 1

z so as to obtain a conformal self map
of the punctured disk, noticing that the origin is a removable singularity and mapped to the origin by
the extension. Thus, we obtain a conformal self map of the unit disk that maps 0 to 0. Such maps are
rotations.

Given a Jordan domain Ω and a conformal map φ : D→ Ω or φ : R2 \D→ R2 \Ω, our map φ extends
homeomorphically up to the boundary by the Carathéodory-Osgood theorem [34, Theorem 4.9, p. 445].
Then the hyperbolic ray in Ω, ending at z ∈ ∂Ω, is the image under φ of the radial ray from the origin
to φ−1(z), or in R2 \ Ω, is the image under φ of the radial half-line starting from φ−1(z). Most of the
hyperbolic rays in a Jordan domain Ω have finite length in the sense that

le(φ([0, w))) <∞ for a.e. w ∈ S1 = ∂D. (2.10)

This follows since∫ 2π

0

∫ 1

0

r|φ′(reiθ)|drdθ =
∫
D
|φ′(z)| ⩽ π1/2

(∫
D
|φ′(z)|2

)1/2

= π1/2

(∫
D
Jφ(z)

)1/2

by Hölder’s inequality and the Cauchy-Riemann equations; the integral of Jφ over D is the area of Ω and
hence finite and |φ′(z)| is bounded in B(0, 1/2) since φ is smooth.

The following lemma provides us with estimates on the oscillation of |φ′(z)| in terms of the hyperbolic
metric.
Lemma 2.6 (See [1, Theorem 2.10.8]). Suppose that φ is conformal in U, where U is the unit disk D
or U = R2 \ D, and let z, w ∈ U. Then

exp (−3disth(z, w))|φ′(w)| ⩽ |φ′(z)| ⩽ exp (3disth(z, w))|φ′(w)|.

We also record the following estimates, referred to as the Gehring-Hayman inequalities, e.g., in [35,
Theorem 4.20, p. 88]. They show the significance of hyperbolic segments.
Lemma 2.7 (See [10]). Let φ : D→ Ω be a conformal map. Given a pair of points x, y ∈ D, denoting
the corresponding hyperbolic segment in D by Γx,y, and by γx,y any curve connecting x and y in D, we
have

le(φ(Γx,y)) ⩽ C le(φ(γx,y))

and
diam(φ(Γx,y)) ⩽ Cdiam(φ(γx,y)),

where C is an absolute constant.
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We close this subsection with the following lemma that employs hyperbolic segments. In general, the
internal distance between two boundary points of a Jordan domain can well be infinite. However, such
points cannot be obtained as Euclidean limits of sequences of points with uniformly bounded internal
distances.
Lemma 2.8. Let Ω be a Jordan domain and xj , yj ∈ Ω, j ∈ N be points so that xj → x ∈ Ω and
yj → y ∈ Ω with y 6= x. Then

le(Γx,y) ⩽ C lim inf
j→∞

distΩ(xj , yj)

for the hyperbolic segment Γx,y between x and y in Ω, where C is an absolute constant. Especially, if
distΩ(xj , yj) ⩽M <∞ for all j, then distΩ(x, y) ⩽ CM.

Proof. Let xj , yj ∈ Ω be points so that xj → x ∈ Ω and yj → y ∈ Ω with y 6= x. We may assume that
xj 6= yj . Pick rectifiable curves γj joining xj to yj in Ω so that

le(γj) ⩽ 2distΩ(xj , yj). (2.11)

Fix a conformal map φ : D→ Ω. By the Carathéodory-Osgood theorem, we may extend φ homeomorphi-
cally up to the boundary. We refer also to this extension by φ. Write zj = φ−1(xj) and wj = φ−1(yj).

By Lemma 2.7, we conclude that
le(φ(Γj)) ⩽ C le(γj) (2.12)

for the hyperbolic segment Γj := Γzj ,wj
between zj and wj in D with an absolute constant C. Since

φ is uniformly continuous, xj 6= yj and limj→∞ xj = x 6= y = limj→∞ yj , there exists δ > 0 so that
|zj−wj | ⩾ δ for every j ⩾ 1. Because each Γj is a hyperbolic segment and hence an arc of a (generalized)
circle that intersects the unit circle orthogonally, we deduce from this the existence of a δ′ > 0 and points
ξj ∈ Γj so that |ξj | ⩾ 1− δ′ for all j ⩾ 1. Define

Tj(z) =
z − ξj
1 + ξjz

,

where ξj is the complex conjugate of ξj . Then Tj is a conformal (Möbius) self map of D and maps ξj to
the origin. Now, Tj ◦Γj is a hyperbolic segment that contains 0 and hence a Euclidean line segment. On
the other hand, a subsequence of the points ξj converges to some ξ with |ξ| ⩾ 1− δ′ and a subsequence
of the corresponding Tj ◦ Γj converges to some curve α by Lemma 2.1. Clearly, α is a Euclidean line
segment that contains the origin and hence also a hyperbolic segment. Define

T (z) =
z − ξ
1 + ξz

.

Then T is a conformal self map of the disk and hence T−1 ◦ α is a hyperbolic segment between φ−1(x)

and φ−1(y). Consequently, Γ := φ ◦ T−1 ◦ α is a hyperbolic segment in Ω with endpoints x and y.

We are left to estimate the length of Γ. By switching to a subsequence in the beginning of our proof,
we may assume by (2.11) and (2.12) that

lim inf
j→∞

le(φ(Γj)) ⩽ 2C lim inf
j→∞

distΩ(xj , yj).

Since φ is uniformly continuous, the above subsequence Tj ◦ Γj converges to α, and T−1
j converges to

T−1, we have that φ ◦ Γj converges to φ ◦ T−1 ◦ α = Γ. Hence, we may deduce from Lemma 2.1 that

le(Γ) ⩽ 2C lim inf
j→∞

distΩ(xj , yj).

This completes the proof.
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2.4 Whitney-type set

A dyadic square in R2 refers to any set

[mi2
−k, (mi + 1)2−k]× [mj2

−k, (mj + 1)2−k],

where mi,mj , k ∈ Z. We denote by ℓ(Q) the side length of the given square Q. The barycenter of a set
A ⊂ R2 with positive and finite Lebesgue-measure will be denoted by xA, and for c > 0, the dilation of
A by factor c will be denoted by

cA = {c(x− xA) + xA : x ∈ A}.

We use these concepts in particular for dyadic squares Q.
Recall that any open set in R2, different from the entire R2, admits a Whitney decomposition (see,

e.g., [40, Chapter VI]).
Lemma 2.9 (Whitney decomposition). For any open set U 6= R2, there exists a collection W =

{Qj}j∈N of countably many closed dyadic squares such that
(i) U =

⋃
j∈NQj and (Qk)

◦ ∩ (Qj)
◦ = ∅ for all j, k ∈ N with j 6= k;

(ii) ℓ(Qk) ⩽ dist(Qk, ∂U) ⩽ 4
√
2ℓ(Qk) for all k ∈ N;

(iii) 1
4ℓ(Qk) ⩽ ℓ(Qj) ⩽ 4ℓ(Qk) whenever k, j ∈ N and Qk ∩Qj 6= ∅.

The above squares Qj are called Whitney squares of U. We also need the following more general concept
since the image of a Whitney square under a conformal map needs not be a Whitney square.
Definition 2.10. A bounded connected set A ⊂ U 6= R2 is said to be of λ-Whitney type in U (with
constant λ ⩾ 1) if the following hold:

(i) There exists a disk with radius 1
λdiam(A) contained in A.

(ii) 1
λdiam(A) ⩽ dist(A, ∂U) ⩽ λdiam(A).

For example, the Whitney squares in Lemma 2.9 are 4
√
2-Whitney-type sets. Conversely, each λ-

Whitney-type set A ⊂ U intersects at most N(λ) Whitney squares of U . By Lemma 2.9(ii) and
Definition 2.10(ii), we have

Q ⊂ B(x,C(λ)dist(x, ∂U))

with C(λ) =
√
2(λ+ 1) + λ for any x ∈ A and any Whitney square Q of U that intersects A, and that

ℓ(Q) ⩾ (5
√
2)−1dist(A, ∂U)

for any such Q.

Observe that for a λ-Whitney-type set A in U and any x ∈ A, by the triangle inequality and
Definition 2.10(ii), we have

dist(A, ∂U) ⩽ dist(x, ∂U) ⩽ (1 + λ)dist(A, ∂U). (2.13)

Thus, if a pair A1, A2 of λ-Whitney-type sets has non-empty intersection, then

diam(A1) ∼ diam(A2) (2.14)

with the constant depending only on λ.
In terms of hyperbolic metric, Whitney-type sets have a uniformly bounded diameter in the following

sense.
Lemma 2.11. Let Ω be a Jordan (or exterior Jordan) domain in R2 and A ⊂ Ω be a λ-Whitney-type
set with λ ⩾ 1. Then

disth(x, y) ⩽ C(λ) (2.15)

for all x, y ∈ A.
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Proof. Let x, y ∈ A be fixed. Let r = 1
10dist(A, ∂Ω) and consider the cover {B(z, r)}z∈A of the

set A. By the 5r-covering lemma, there exists a pairwise disjoint subcollection {B(zi, r)}Ni=1 so that
A ⊂

⋃N
i=1B(zi, 5r). For every i, we have

B(zi, r) ⊂ B(x, diam(A) + r) ⊂ B(x, 11r).

Hence, since B(zi, r) are pairwise disjoint, we have N ⩽ (11λ)2. By the fact that A is connected, there
exists a sequence {i(k)}Mk=1 with M ⩽ N so that x ∈ B(zi(1), 5r), y ∈ B(zi(M), 5r) and B(zi(k), 5r)

∩B(zi(k+1), 5r) 6= ∅ for all k = 1, . . . ,M − 1. Then the curve

γ = [x, zi(1)] ∗ [zi(1), zi(2)] ∗ · · · ∗ [zi(M−1), zi(M)] ∗ [zi(M), y]

satisfies le(γ) ⩽ 10(N + 2)r and dist(γ, ∂Ω) ⩾ dist(A, ∂Ω)− 5r = 5r.
Since the density of the hyperbolic metric is bounded from above by dist(z, ∂Ω)−1 up to a multiplicative

constant, we have

disth(x, y) ⩽ C

∫
γ

dist(z, ∂Ω)−1ds(z) ⩽ C le(γ)dist(γ, ∂Ω)−1 ⩽ 2C(N + 2),

concluding the proof.
Given a λ-Whitney-type set A ⊂ D, one has disth(z, w) ⩽ C(λ) for all z, w ∈ A by (2.15). Hence,

Lemma 2.6 implies |φ′(z)| ∼ |φ′(w)| with a constant depending only on λ. By this (applied to suitable
disks) in combination with Lemma 2.5, one can prove that the images of Whitney squares of a simply
connected domain Ω under a conformal map of Ω onto Ω′ get mapped to Whitney-type sets. Following
the idea from [9, Theorem 11], we see that a more general version of this can be proven with the help
of Lemma 2.5 and [41, Theorem 18.1]. Since we use it later on, let us recall that [41, Theorem 18.1]
gives the following: there exists a universal increasing (continuous) function Θ: (0, 1) → R such that
limx→0+ Θ(x) = 0, limx→1− Θ(x) =∞ and for every conformal map φ : Ω→ Ω′ with domains Ω,Ω′ ⫋ R2

and each point x ∈ Ω, we have
|φ(x)− φ(y)|
dist(φ(x), ∂Ω′)

⩽ Θ

(
|x− y|

dist(x, ∂Ω)

)
(2.16)

for every y with 0 < |x− y| < dist(x, ∂Ω).

Lemma 2.12. Suppose that φ : Ω → Ω′ is conformal, where Ω,Ω′ ⫋ R2 are domains and A ⊂ Ω is a
λ1-Whitney-type set. Then φ(A) ⊂ Ω′ is a λ2-Whitney-type set with λ2 = λ2(λ1).

Our next estimate shows that a conformal map from the unit disk (or from the exterior domain of the
disk) onto a simply connected domain (to an exterior domain) is Cλ-bi-Lipschitz modulo a scaling factor
on each λ-Whitney-type set.
Lemma 2.13. Let φ : U → Ω be conformal, where U = D or U = R2 \ D. If A ⊂ U is of λ-Whitney
type and z0, z1, z2 ∈ A, then

C−1
λ |φ

′(z0)||z2 − z1| ⩽ |φ(z2)− φ(z1)| ⩽ Cλ|φ′(z0)||z2 − z1|,

where Cλ depends only on λ.

Proof. Fix z0, z1, z2 ∈ A, where A ⊂ U is of λ-Whitney type. As in the proof of Lemma 2.11,
let r = 1

10dist(A, ∂U). Then disth(z, z1) ⩽ C for an absolute constant when z2 ∈ B(z1, 5r). Hence,
Lemma 2.6 gives us the estimate

|φ(z2)− φ(z1)| ⩽ exp(C)|φ′(z1)||z2 − z1| (2.17)

if z2 ∈ B(z1, 5r). Let us assume that z2 /∈ B(z1, 5r). Then |z2 − z1| ⩾ 5r. Let γ be the curve from the
proof of Lemma 2.11 for the pair z1, z2. Then le(γ) ⩽ (11λ)2r and disth(z, z1) ⩽ 2C(2 + (11λ)2) =: C1

for each z ∈ γ. Hence, Lemma 2.6 gives

|φ(z2)− φ(z1)| ⩽
∫
γ

|φ′(z)|ds(z) ⩽ exp(C1)|φ′(z1)| le(γ) ⩽
1

5
(11λ2) exp(C1)|φ′(z1)||z2 − z1|. (2.18)
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By combining (2.17) and (2.18), we see that Lemma 2.11 together with Lemma 2.6 allows us to further
deduce that

|φ(z2)− φ(z1)| ⩽ C(λ)|φ′(z1)||z2 − z1| ⩽ C ′(λ)|φ′(z0)||z2 − z1|.

Towards the opposite inequality, notice first that disth(ŵ, ẑ) ⩽ C with an absolute constant whenever
ẑ ∈ Ω and ŵ ∈ B(ẑ, dist(ẑ, ∂Ω)/2). This holds since the density of the hyperbolic distance in this disk is
bounded from above by a fixed multiple of dist(ẑ, ∂Ω)−1. Especially, disth(φ−1(ξ̂), φ−1(ẑ)) ⩽ C for each
ξ̂ ∈ B(ẑ, dist(ẑ, ∂Ω)/2). By Lemma 2.6, we conclude that

|φ′(φ−1(ẑ))| ⩽ C3|φ′(φ−1(ξ̂))| (2.19)

for all ξ̂ ∈ B(ẑ, ∂Ω)/2). Since φ−1(ξ̂) = 1
φ′(φ−1(ξ̂))

, from (2.19), we deduce the estimate

|(φ−1)′(ξ̂)| ⩽ C3|(φ−1)′(ẑ)|. (2.20)

Let I be the Euclidean line segment between ẑ ∈ φ(A) and given ŵ ∈ B(ẑ, dist(ẑ, ∂Ω)/2). Then I ⊂
B(ẑ, dist(ẑ, ∂Ω)/2). By integrating the estimate (2.20) over I, we conclude that

|φ−1(ŵ)− φ−1(ẑ)| ⩽
∫
I

|(φ−1)′(ξ̂)|ds(ξ̂) ⩽ C3|(φ−1)′(ẑ)||ŵ − ẑ| ⩽ C1|φ′(φ−1(ẑ))|−1|ŵ − ẑ|. (2.21)

Especially, if ŵ, ẑ ∈ φ(A) satisfy

|ŵ − ẑ| ⩽ 1

2
max{dist(ẑ, ∂Ω), dist(ŵ, ∂Ω)}, (2.22)

then by (2.21), Lemmas 2.6 and 2.11, we get

|φ−1(ŵ)− φ−1(ẑ)| ⩽ C3 max{|φ′(φ−1(ξ̂))|−1 : ξ̂ ∈ φ(A)}|ŵ − ẑ| ⩽ C1(λ)C3|φ′(z0)|−1|ŵ − ẑ|.

We are left to consider the case where (2.22) fails. By Lemma 2.12, we know that φ(A) is of C4(λ)-
Whitney type. Hence,

diamφ(A) ⩽ C5(λ)dist(φ(A), ∂Ω) ⩽ C5dist(ẑ, ∂Ω) (2.23)

for each ẑ ∈ A. If (2.22) fails, then dist(ẑ, ∂Ω) ⩽ 2|ŵ − ẑ| and we conclude that

diam(φ(A)) ⩽ 2C5(λ)|ŵ − ẑ|

and further that

|φ−1(ŵ)− φ−1(ẑ)| ⩽ diam(A) = diam(A)|ŵ − ẑ|−1|ŵ − ẑ|
⩽ 2C5(λ)diam(A)diam(φ(A))−1|ŵ − ẑ|.

It only remains to be noticed that |φ′(z0)| is comparable to dist(φ(z0), ∂Ω)/dist(z0, ∂U) with absolute
constants by Lemma 2.5, that C5(λ)dist(φ(z0), ∂Ω) ⩾ diam(φ(A)) by (2.23) and that diam(A) ⩽
C6(λ)dist(z0, ∂U) since A is of λ-Whitney type in U with z0 ∈ A.

2.5 Conformal capacity

Let Ω ⊂ R2 be a domain. For a given pair of disjoint continua E,F ⊂ Ω, define the conformal capacity
between E and F in Ω as

Cap(E,F,Ω) = inf{‖∇u‖2L2(Ω) : u ∈ ∆(E,F,Ω)},

where ∆(E,F,Ω) denotes the class of all u ∈ W 1,2
loc (Ω) ∩ C(Ω ∪ E ∪ F ) that satisfy u = 1 on E, and

u = 0 on F . We remark that in general, one has to be careful when defining the capacity of continua that
are allowed to intersect the boundary of the domain. However, for our purposes, the definition above is
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enough, so we can avoid considering the prime-end compactification of Ω and the more subtle definitions
of capacity. The conformal capacity is by definition increasing both with respect to the sets E and F

and with respect to Ω. We refer to this by the monotonicity of conformal capacity. Also notice that
Cap(E,F,Ω) = Cap(F,E,Ω), as seen by switching a given test function u to v = 1− u.

Let us introduce the properties of conformal capacity, which will be used in the rest of the paper
(see, e.g., [41, Chapter 1] for more properties). We remark that even though [41] (as well as some other
references below) states estimates for “modulus”, “modulus” is equivalent with conformal capacity in our
setting below (see, e.g., [20, Theorem 2.6] and [36, Proposition 10.2, p. 54]).
Lemma 2.14. The conformal capacity is conformally invariant, i.e., for domains Ω and Ω′ in R2, a
conformal (onto) map φ : Ω→ Ω′ and disjoint continua E and F in Ω, we have

Cap(φ(E), φ(F ),Ω′) = Cap(E,F,Ω). (2.24)

Moreover, if φ has a homeomorphic extension, still denoted by φ, φ : Ω→ Ω′, then (2.24) also holds for
disjoint continua in Ω. Especially, this is the case if both Ω and Ω′ are Jordan.

In what follows, whenever we mention the conformal invariance of conformal capacity, we always refer
to the above lemma.

We have the following estimate for the conformal capacity in the unit disk D (and in its exterior domain
R2 \ D). Let E and F be disjoint continua in D. Then

Cap(E,F,D) ⩾ c log

(
1 +

min{diam(E), diam(F )}
dist(E,F )

)
, (2.25)

where c > 0 is a universal constant. Moreover, the analogous inequality holds for E,F ⊂ R2\D. For these
results, see [42, Lemma 7.38] that gives (2.25) for the entire plane instead of D, and see [12, Remark 2.12]
and [20, Theorems 2.6 and 2.8] that allow us to deduce the desired estimates from the global one.

We call a domain A ⊂ R2 a ring domain if its complement has exactly two components and at least
one of the components is compact. If the exterior components of A are U0 and U1, then we write
A = R(U0, U1). It follows from topology that also ∂A has two components, V0 = U0∩A and V1 = U1∩A.
If U0, V0 and V1 are compact, we have

Cap(V0, V1, A) = Cap(U0, V1, A ∪ U0); (2.26)

indeed, “⩽” directly follows from the definition and “⩾” follows by extending each u ∈ ∆(V0, V1, A) as
constant 1 to U0 \ V0 (see also [41, Theorem 11.3] and its proof). Furthermore, we have the following
estimate for the capacity of the boundary components of a ring domain.
Lemma 2.15. Let A = R(U0, U1) ⊂ R2 be a ring domain with U1 unbounded. Assume that V0 = U0∩A
and V1 = U1∩A are compact. There exist two universal increasing functions ϕi : (0,∞)→ (0,∞), i = 1, 2

so that limt→0+ ϕi(t) = 0 and limt→∞ ϕi(t) =∞, and so that

ϕ1

(
diam(U0)

dist(U0, U1)

)
⩽ Cap(V0, V1, A) ⩽ ϕ2

(
diam(U0)

dist(U0, U1)

)
. (2.27)

We need the fact that the inner distance satisfies the triangle inequality [4, Lemma 2.3].
Lemma 2.16. Let Ω be a Jordan domain and z1, z2, z3 ∈ Ω be three distinct points. Then

distΩ(z1, z3) ⩽ distΩ(z1, z2) + distΩ(z2, z3).

We record the following estimate, which states a kind of converse to (2.25). It builds on [29, Lemma 2.2].
(Recall from Subsection 2.1 that diamΩ and BΩ(z, r) refer to the diameter and ball in the inner distance
with respect to Ω.)
Lemma 2.17. Let Ω be a domain and E,F ⊂ Ω be a pair of disjoint continua. Then if Cap(E,F,Ω) ⩾
δ0 > 0, we have

min{diamΩ(E), diamΩ(F )} ≳ distΩ(E,F ), (2.28)
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where the constant depends only on δ0. Especially,

min{diamΩ(E), diamΩ(F )} ≳ dist(E,F ),

and if Ω = R2,
min{diam(E), diam(F )} ≳ dist(E,F ). (2.29)

If we further assume that Ω is Jordan, then (2.28) also holds if E ⊂ Ω and F ⊂ Ω are disjoint continua
with Cap(E,F,Ω) ⩾ δ0.
Proof. Step 1. We begin with the case where E,F ⊂ Ω. By switching E and F , we may assume
that diamΩ(E) ⩽ diamΩ(F ). We may also assume that 2diamΩ(E) ⩽ distΩ(E,F ); otherwise, the claim
holds trivially. Fix z ∈ E, and write distΩ(E,F )

diamΩ(E) =M . We define

u(x) =


1, if distΩ(x, z) ⩽ diamΩ(E),

0, if distΩ(x, z) ⩾ distΩ(E,F ),

log(distΩ(E,F ))− log(distΩ(x, z))

log(M)
, otherwise.

Then u is locally Lipschitz and

|∇u(x)| ⩽ (logM)−1distΩ(x, z)
−1

for all x ∈ Ω with diamΩ(E) ⩽ distΩ(x, z) ⩽ distΩ(E,F ), and |∇u(x)| = 0 elsewhere. Write

R = BΩ(z, distΩ(E,F )) \BΩ(z, diamΩ(E)),

and for i ⩾ 1,
Ai = BΩ(z, 2

idiamΩ(E)) \BΩ(z, 2
i−1diamΩ(E)),

where BΩ(z, r) is the disk centered at z with radius r with respect to the inner distance. The assumption
Cap(E,F,Ω) ⩾ δ0 > 0 and a direct calculation via our dyadic annular decomposition with respect to the
inner distance give

δ0 ⩽
∫
Ω

|∇u|2dx ⩽ (logM)−2

∫
R

distΩ(x, z)
−2dx

⩽ (logM)−2
∞∑
i=1

∫
R∩Ai

22−2idiamΩ(E)−2dx

⩽ 2(logM)−2

[logM ]+1∑
i=1

4π

≲ (logM)−2 logM ≲ (logM)
−1
,

where [logM ] denotes the integer part of logM , and in the third inequality we used the fact that
BΩ(z, r) ⊂ B(z, r). Hence, M ⩽ C(δ0), which means that distΩ(E,F ) ≲ diamΩ(E).
Step 2. We continue with the case where at least one of the sets E and F intersects ∂Ω. We cannot
directly use a test-function defined like the function u from the previous step since it would not necessarily
be continuous in Ω ∪ E ∪ F.

To begin, let φ : D → Ω be a homeomorphism, conformal in D, given by the Riemann mapping and
Carathéodory-Osgood theorems. Since

Cap(E,F,R2) ⩾ Cap(E,F,Ω) ⩾ δ0

by monotonicity, we conclude by (2.29), which is given by Step 1, that neither E nor F is a singleton.
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Suppose that E ⊂ ∂Ω. Then φ−1(E) is a closed nondegenerate arc contained in the unit circle and
hence (2.10) provides us with w ∈ φ−1(E) for which le(φ([0, w])) <∞. We choose 0 < tE < 1 so that

diamΩ(φ([tEw,w]) ∪ E) ⩽ 2diamΩ(E)

and
distΩ(φ([tEw,w]) ∪ E,F ) ⩾

1

2
distΩ(E,F ).

Set E′ := φ([tEw,w]) ∪ E = φ([tEw,w] ∪ φ−1(E)). Then E′ is compact and connected. Notice that E′

intersects Ω and E ⊂ E′.

If E intersects Ω, we simply let E′ = E. We construct F ′ in an analogous manner, considering now
the internal distance to E′. Then E′, F ′ ⊂ Ω are continua,

diamΩ(E
′) ⩽ 2diamΩ(E), diamΩ(F

′) ⩽ 2diamΩ(F )

and
distΩ(E,F ) ⩽ 4distΩ(E

′, F ′).

Moreover, E ⊂ E′ and F ⊂ F ′, and hence monotonicity of capacity together with our capacity assumption
ensures that

Cap(E′, F,′ Ω) ⩾ δ0.

Hence, it suffices to prove (2.28) for E′ and F ′ instead of E and F. For simplicity of notation, we refer
to E′ and F ′ by E and F in what follows.

By switching the roles of E and F if necessary, we show that

CdiamΩ(E) ⩾ distΩ(E,F ) (2.30)

for some constant that may depend only on δ0. At this point, it is perhaps worth pointing out that the
right-hand side is finite since both E and F intersect Ω.

Towards (2.30), we first pick z0 ∈ E∩Ω and choose a new conformal map ψ : Ω→ D so that ψ(z0) = 0.

This can be done by post-composing φ−1 with a suitable conformal self (Möbius) map of the disk. Given
j ⩾ 1, we define Ej = ψ−1((1 − 1

j )ψ(E)) and Fj = ψ−1((1 − 1
j )ψ(F )). Here, tA for a subset of the unit

disk is the image of A under the map f(z) = tz. Then Ej , Fj ⊂ Ω are disjoint continua. By conformal
invariance and monotonicity,

Cap(Ej , Fj ,Ω) = Cap(ψ(Ej), ψ(Fj),D) ⩾ Cap

(
ψ(Ej), ψ(Fj), B

(
0, 1− 1

j

))
. (2.31)

Notice that ψ(Ej) = (1− 1
j )ψ(E) and ψ(Fj) = (1− 1

j )ψ(F ) are the images of ψ(E) and ψ(F ), respectively,
under the conformal map f(z) = (1− 1

j )z, and B(0, 1− 1
j ) is the image of the unit disk under this map.

Hence, conformal invariance gives

Cap

(
ψ(Ej), ψ(Fj), B

(
0, 1− 1

j

))
= Cap(ψ(E), ψ(F ),D) = Cap(E,F,Ω). (2.32)

By combining (2.31) and (2.32), we conclude from our capacity assumption on E and F that

Cap(Ej , Fj ,Ω) ⩾ δ0

for all j ⩾ 1. Hence, we are allowed to infer from Step 1 that

distΩ(Ej , Fj) ⩽ CdiamΩ(Ej) (2.33)

with C = C(δ0) and all j ⩾ 1.
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We proceed with a limiting process that relies on (2.33). First, notice that 0 ∈ ψ(Ej) for all j. Hence,
by Lemma 2.16, there exists zj in Ej so that diamΩ(Ej) ⩽ 3distΩ(ψ

−1(0), zj). Thus,

diamΩ(Ej) ⩽ 3 le(ψ−1([0, ψ(zj)])), (2.34)

where [0, ψ(zj)] is the radial segment between the points 0 and ψ(zj). Since ψ(Ej) = (1 − 1
j )ψ(E), the

point ξj = (1− 1
j )

−1ψ(zj) belongs to ψ(E). Since also 0 ∈ ψ(E), we deduce that

diamΩ(E) ⩾ distΩ(ψ
−1(0), ψ−1(ξj)).

By Lemma 2.7, we conclude that

le(ψ−1([0, ξj ])) ⩽ C1diamΩ(E) (2.35)

with an absolute constant C1. By the definition of ξj , we have [0, ψ(zj)] ⊂ [0, ξj ], and hence (2.34)
together with (2.35) gives the uniform estimate

diamΩ(Ej) ⩽ 3C1diamΩ(E). (2.36)

Next, (2.33) and Lemma 2.7 provide us with points xj ∈ Ej , yj ∈ Fj and corresponding hyperbolic
segments Γj between xj and yj in Ω so that

le(Γj) ⩽ C2diamΩ(Ej), (2.37)

where C2 depends only on δ0. Since Ω is a Jordan domain, it is especially bounded, and hence by switching
to a subsequence if necessary, we may assume that xj → x and yj → y, where x, y ∈ Ω. This together
with (2.36) and (2.37) allows us to employ Lemma 2.8 so as to conclude that

distΩ(x, y) ⩽ C3diamΩ(E).

By construction, ψ(xj) ∈ (1− 1
j )E and ψ(yj) ∈ (1− 1

j )F , and since ψ is homeomorphic up to the boundary,
we deduce that x ∈ E and y ∈ F. Thus, we have established (2.30) and the proof is complete.

2.6 John domains

Let us recall the definition of a John domain.
Definition 2.18 (John domain). An open bounded subset Ω ⊂ R2 is called a John domain provided
that it satisfies the following condition: there exist a distinguished point x0 ∈ Ω and a constant J > 0

such that for every x ∈ Ω, there is a rectifiable curve γ joining x and x0 in Ω and satisfying

dist(y,R2 \ Ω) ⩾ J le(γ[x, y])

for all y ∈ γ. Such a curve γ is called a J-John curve, J is called a John constant, and we refer to a John
domain with a John constant J by a J-John domain and to x0 by a John center of Ω.

We continue with results related to John domains. For the convenience of the reader, we refer to [33]
whenever possible, even when the result in question has a longer history.

As an example, every disk is a 1-John domain with the center as the John center and radial segments
as John curves. In fact, one can always choose hyperbolic segments for the John curves in the simply
connected situation.
Lemma 2.19 (See [33, Theorem 5.4]). If Ω is a simply connected J-John domain, then hyperbolic
segments from the John center x0 to points in Ω are J ′-John curves, where J ′ depends only on J .
Remark 2.20. Actually, also the hyperbolic segment Γ connecting x0 and y ∈ ∂Ω is a J ′-John curve
for a simply connected planar J-John domain Ω with the base point x0. This follows from the preceding
lemma and the definition of a hyperbolic segment: the hyperbolic segment between x0 and a point x on
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this segment is the part of Γ between x0 and x. Consequently, any two points x, y ∈ Ω are rectifiably
joinable and the diameter of a simply connected John domain with respect to the inner distance is finite.

For further reference, let us record the following consequence that deals with integrals as in (1.1). Let
1 < p < 2.

Parameterizing Γ via arc-length, the John condition and integration gives∫
Γ

dist(z, ∂Ω)1−pds(z) ⩽ (J ′)1−p le(γ)2−p ⩽ C(p, J ′)dist(x0, ∂Ω)
2−p.

We move towards explaining the role of John domains in our work.
Definition 2.21. A set E is of bounded turning if there is a constant C such that any pair of points
z1 and z2 can be joined by a curve γ ⊂ E whose diameter satisfies diam(γ) ⩽ C|z1 − z2|. We then say
that E is of C-bounded turning.

Recall that quasiconvexity was defined analogously but with the length instead of the diameter. Hence,
being of bounded turning is a weaker condition than being quasiconvex.
Lemma 2.22 (See [33, Theorem 4.5]). Let Ω be a bounded simply connected planar domain. Then Ω

is John if and only if R2 \Ω is of bounded turning. This equivalence is quantitative in the sense that the
John constant and the constant in bounded turning depend only on each other.

By Lemma 2.2, the complement of a bounded simply connected domain whose complement satisfies
(1.1) is C ′-quasiconvex and hence also of C ′-bounded turning with a constant that depends only on
the exponent p and the constant C in (1.1). Hence, we obtain the following important corollary to the
preceding lemma.
Corollary 2.23. Let Ω be a bounded simply connected domain whose complement satisfies (1.1). Then
Ω is J-John with a constant J that depends only on the exponent p and the constant C in (1.1).

We need the fact that the boundaries of bounded simply connected John domains are of area zero.
Lemma 2.24. If Ω is a bounded simply connected planar John domain, then the Lebesgue area of ∂Ω
is zero.

Conformal maps from the unit disk onto a John domain behave nicely with respect to the inner distance.
In order to state this quantitatively, we need a definition.

We say that a homeomorphism φ : D→ Ω is quasisymmetric with respect to the inner distance if there
is a homeomorphism η : [0,∞)→ [0,∞) so that

|z − x| ⩽ t|y − x| implies distΩ(φ(z), φ(x)) ⩽ η(t)distΩ(φ(y), φ(x)) (2.38)

for each triple z, x and y of points in D.
It follows from the definition that the inverse of a quasisymmetric map is also quasisymmetric, i.e.,

distΩ(z, x) ⩽ tdistΩ(y, x) implies |φ−1(z)− φ−1(x)| ⩽ η(1/t)−1|φ−1(y)− φ−1(x)|

when z, x, y ∈ Ω.

Roughly speaking, the definition means that the homeomorphism φ maps round objects to essentially
round objects (with respect to the inner distance). The following result will be an important technical
tool for us.
Lemma 2.25 (See [33, Theorem 7.2]). Let Ω ⊂ R2 be a simply connected domain and φ : D → Ω be
a conformal map. Then Ω is John if and only if φ is quasisymmetric with respect to the inner distance.
This statement is quantitative in the sense that the John constant and the function η in quasisymmetry
depend only on each other and on diam(Ω)/dist(φ(0), ∂Ω).

Remark 2.26. Notice that quasisymmetry is a strong version of uniform continuity of the conformal
map from the unit disk onto Ω equipped with the inner distance. Hence, the quasisymmetry condition
extends up to the boundary: one is allowed to use (2.38), when correctly interpreted, for triples of points
in D. For example, when Ω is a slit disk, every other point of the slit than the tip corresponds to two
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different points with respect to the completion of Ω in the inner metric. In what follows, we only use the
quasisymmetry condition up to the boundary in situations, where Ω is a Jordan John domain where this
is not an issue. However, we will later employ the fact that a conformal map from the unit disk onto
a bounded simply connected John domain extends continuously to ∂D, with respect to the Euclidean
distances. This follows since quasisymmetry of a quasisymmetric map from the unit disk implies uniform
continuity with respect to the Euclidean distances.

Recall that hyperbolic segments in the unit disk are arcs of (generalized) circles perpendicular to the
unit circle. Hence, they are essentially the shortest connecting curves and stay “optimally away from the
boundary”. The following definition gives an analog of this property.
Definition 2.27 (Inner uniform domain). A domain Ω is called inner uniform if there exists a positive
constant ϵ0 such that for any pair of points x, y ∈ Ω, there exists a rectifiable curve γ ⊂ Ω joining x and y
and satisfying

le(γ) ⩽ 1

ϵ0
distΩ(x, y) and dist(z, ∂Ω) ⩾ ϵ0 min{le(γ[x, z]), le(γ[z, y])} for all z ∈ γ. (2.39)

Since a conformal map of the unit disk onto a John domain is quasisymmetric, the definition of
hyperbolic segments and Lemma 2.7 suggest that each bounded simply connected John domain should
be inner uniform. This is indeed the case.
Lemma 2.28 (See [33, Theorem 2.29 and Example 2.18(2)]). Let Ω be a bounded simply connected J-
John domain. Then Ω is inner uniform with an associated constant ϵ0 that depends only on J. Moreover,
the curves in the definition may be chosen to be hyperbolic segments.

We continue by relating the inner and Euclidean diameters of boundary arcs of a Jordan John domain.
Lemma 2.29. Let Ω be a Jordan J-John domain and γ ⊂ ∂Ω be a subarc containing its endpoints.
Then we have

diam(γ) ⩽ diamΩ(γ) ⩽ Cdiam(γ),

where C depends only on J.

Proof. We only need to show that diamΩ(γ) ⩽ Cdiam(γ) since the first inequality is trivial. Pick
x, y ∈ γ such that diamΩ(γ) ⩽ 2distΩ(x, y). By the definition of the inner distance, the hyperbolic
segment Γ joining x and y satisfies distΩ(x, y) ⩽ le(Γ). Let z be the midpoint (in the sense of the length)
of Γ. Then since Ω is a John domain and Γ is a hyperbolic segment, by applying Lemma 2.28 to pairs of
points on γ converging to the endpoints of γ, we deduce that

le(Γ) ⩽ C(J)dist(z, ∂Ω).

Hence, we have
diamΩ(γ) ⩽ C(J)dist(z, ∂Ω). (2.40)

Fix a conformal map φ : D → Ω. Since Ω is Jordan, φ extends to a homeomorphism (still denoted
φ) of D onto Ω. Let B be the closed disk of radius 1

8 |1 − φ
−1(z)|, tangent to the circular arc φ−1(Γ)

at φ−1(z), and contained in the Jordan domain enclosed by φ−1(Γ) and φ−1(γ); recall that φ−1(Γ) is
a hyperbolic segment in D and hence a circle that meets the unit circle orthogonally at two endpoints
of the arc φ−1(γ) of the unit circle. Since B is a 3-Whitney-type set, by Lemma 2.12, Q′ = φ(B) is a
λ′-Whitney-type set. Here, λ′ is an absolute constant. Let α be the radial projection of B to ∂D. Then
α ⊂ φ−1(γ) and diam(B) = 1

4 |1− φ
−1(z)| ⩽ diam(α). Hence,

diam(φ−1(γ)) ⩾ diam(B) ⩾ 1

4
dist(B,α) ⩾ 1

4
dist(B,φ−1(γ)).

Consequently, by (2.25),
Cap(B,φ−1(γ),D) ⩾ δ > 0
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for an absolute constant δ. By the conformal invariance of capacity and monotonicity,

δ ⩽ Cap(Q′, γ,Ω) ⩽ Cap(Q′, γ,R2),

which with Lemma 2.17 implies
dist(Q′, γ) ⩽ C(δ)diam(γ). (2.41)

Since Q′ is of λ′-Whitney type and z ∈ Q′, we conclude via (2.13) and (2.41) that

dist(z, ∂Ω) ∼ diam(Q′) ≲ dist(Q′, γ) ≲ diam(γ),

where all the constants are absolute. This together with (2.40) gives

diamΩ(γ) ≲ dist(z, ∂Ω) ≲ diam(γ)

with constants depending only on J as desired.

Based on the above lemma, one would expect ∂Ω to be compact with respect to the inner metric for
each Jordan John domain. This is indeed the case by [4, Remark 3.14] (see also [19]).

We close this subsection with a subinvariance property.
Lemma 2.30 (See [22, Theorem 1]). Let Ω ⊂ R2 be a simply connected domain and φ : D → Ω be a
conformal map. Suppose that Ω is J-John with the John center φ(0). Then φ maps every J ′-John domain
G ⊂ D with the John center z0 to a c(J, J ′)-John domain G′ = φ(G) with the John center φ(z0).

2.7 Conformal geometry of the exterior domain

Let us fix our notation for this subsection. Let Ω ⊂ R2 be a Jordan domain and a homeomorphism
φ : R2 \ D→ R2 \ Ω be conformal in R2 \ D. For z1 ∈ ∂Ω, define

A(z1, k) := {x ∈ R2 \ D | 2k−1 < |x− φ−1(z1)| ⩽ 2k} (2.42)

for k ∈ Z. Furthermore, let Γ(z1) ⊂ R2 \ Ω be the hyperbolic ray corresponding to z1, and set

Γk := φ(A(z1, k)) ∩ Γ(z1).

We call φ({x ∈ R2 \D | 2k−1 = |x− φ−1(z1)|}) the inner boundary of φ(A(z1, k)) and φ({x ∈ R2 \D |
2k = |x− φ−1(z1)|}) the outer boundary of φ(A(z1, k)). See Figure 1 for an illustration of our notation.

The following technical lemma is a version of a step in the proof of an analog of [3, Lemma 2.7].
Lemma 2.31. With the notation introduced in the beginning of this subsection, let z2 ∈ Γ(z1), and let
γ ⊂ R2 \ Ω be any curve connecting z1 and z2. Let k ∈ Z be such that 2k ⩽ |φ−1(z1) − φ−1(z2)| and let
γk be any subcurve of γ in φ(A(z1, k)) joining the inner boundary and the outer boundary of φ(A(z1, k)).
Then

le(Γk) ∼ dist(Γk, ∂Ω) ∼ diam(Γk) (2.43)

and
le(γk) ≳ le(Γk).

Here, all the constants are absolute and especially independent of Ω and the choice of φ, z1, γ, z2 and k.
Proof. The fact that le(Γk) ∼ dist(Γk, ∂Ω) ∼ diam(Γk) immediately follows from Lemmas 2.12 and 2.13
since by definition, φ−1(Γk) is contained in a 2-Whitney-type disk in R2 \ D.

Hence, we only need to prove that le(γk) ≳ le(Γk). Observe that since γk by definition joins the inner
and outer boundaries of φ(A(z1, k)), we have

le(φ−1(γk)) ⩾ diam(φ−1(γk)) ⩾ diam(φ−1(Γk)) = le(φ−1(Γk)) = dist(φ−1(Γk), ∂D). (2.44)

We next argue by case study.
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ϕ−1(z1)
ϕ−1(z2)

A(z1, 0)

D

ϕ−1(Γ)

ϕ−1(γ)

ϕ−1(Γ0)

ϕ−1(γ0)

Figure 1 (Color online) An illustration of the annular parts φ−1(Γk) and φ−1(γk) for k = 0, which are considered in
Lemma 2.31

Case 1. dist(φ−1(γk), φ
−1(Γk)) <

1
3dist(φ

−1(Γk), ∂D). Write r = dist(φ−1(Γk), ∂D) = 2k−1 and
pick w ∈ φ−1(Γk) so that dist(w,φ−1(γk)) <

r
3 . Then B(w, r2 ) contains a subcurve α of φ−1(γk) of the

length at least r/6. Since φ−1(Γk) ∪ α is contained in the 3-Whitney-type set B(w, r2 ) ∪ φ
−1(Γk) and

6 le(α) ⩾ le(φ−1(Γk)), Lemma 2.13 gives

le(γk) ⩾ le(φ(α)) =

∫
α

|φ′(z)|ds(z) ⩾ 1

C
le(α)|φ′(w)|

⩾ 1

C
le(φ−1(Γk))|φ′(w)| ⩾ 1

C

∫
φ−1(Γk)

|φ′(z)|ds(z) = 1

C
le(Γk)

for an absolute constant C.
Case 2. dist(φ−1(γk), φ

−1(Γk)) ⩾ 1
3dist(φ

−1(Γk), ∂D). Let α′ ⊂ R2 \ Ω be a curve that joins γk and
Γk. Since φ−1(Γk) is contained in a (2-Whitney-type) disk B, φ−1(α′) contains a subcurve α ⊂ 3

2B of
the length at least 1

6dist(φ
−1(Γk), ∂D). Since 3

2B is of 6-Whitney type, we may again apply Lemma 2.13
to conclude that

le(α′) ⩾ le(φ(α)) ⩾ 1

C
le(Γk)

with an absolute constant. Hence,

CdistΩ(γk,Γk) ⩾ diam(Γk). (2.45)

Next, by (2.25) for the exterior of the unit disk, (2.44), the fact that

dist(φ−1(γk), φ
−1(Γk)) ⩽ 2dist(φ−1(Γk), ∂D)

and the monotonicity of the capacity, we obtain

c log

(
3

2

)
⩽ Cap(φ−1(γk), φ

−1(Γk),R2 \ D) = Cap(γk,Γk,R2 \ Ω) ⩽ Cap(γk,Γk,R2).

Hence, by (2.45) and Lemma 2.17 for R2, we conclude that

le(γk) ⩾ diam(γk) ≳ dist(γk,Γk) ≳ diam(Γk) ∼ le(Γk)

with absolute constants.

We record another technical result (see [35, Corollary 4.18] and [3, Proof of Theorem 3.1, p. 645]).
Lemma 2.32. Let Ω and φ be as in the beginning of this subsection and 0 < σ ⩽ 1. Let z0 ∈ R2 \ D
and let I be an arc of ∂D with

le(I) ⩾ σ(|z0| − 1)
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and
dist(I, z0) ⩽

|z0| − 1

σ
.

Then there is a rectifiable curve α ⊂ R2 \ D joining z0 to I so that

le(φ(α)) ⩽ C(σ)dist(φ(z0), ∂Ω),

where C(σ) is independent of φ, z0,Ω.
Proof. Notice first that it is enough to prove the claim for a subarc of I. Let w ∈ I be such that
|w−z0| ⩽ 2dist(I, z0). Then by taking a subarc of I that contains w, we may assume that le(I) ⩽ |z0|−1,
that I is closed and that dist(I, z0) ⩽ 2 |z0|−1

σ . Define It = {tξ : ξ ∈ I} for all 1 < t ⩽ |z0|. Then It is also
a continuum and le(It) ⩾ le(I). According to (2.25) (for R2 \D), the assumptions on I and the conformal
invariance of capacity, we have the estimate

0 < δ(σ) ⩽ Cap(I|z0|, It,R
2 \ D) = Cap(φ(I|z0|), φ(It),R

2 \ Ω) (2.46)

for all 1 < t < |z0|. Then, by Lemma 2.17, we conclude that

distR2\Ω(φ(I|z0|), φ(It)) ⩽ C(σ)diamR2\Ω(φ(I|z0|)) ⩽ C(σ) le(φ(I|z0|)).

Hence, we can connect I|z0| to It with a curve βt for which le(φ(βt)) ⩽ C(σ) le(φ(I|z0|)).
By Lemma 2.1, there exists a sequence ti ↘ 1 so that φ◦βti converges to a rectifiable curve β̂ ⊂ R2 \Ω

joining φ(I) to φ(I|z0|) with

le(β̂) ⩽ lim inf
i→∞

le(φ(βti)) ⩽ C(σ) le(φ(I|z0|)).

Next, take J to be a shortest closed subarc of ∂B(0, |z0|) containing both I|z0| and z0. Then

le(J) ⩽ le(I|z0|) + πdist(z0, I|z0|) ⩽ |z0| le(I) + π|z0 − w|+ πdist(w, I|z0|)

⩽ |z0|min((|z0| − 1), 2π) + 2π
|z0| − 1

σ
+ π(|z0| − 1)

⩽ C(σ)(|z0| − 1) = C(σ)dist(z0,D).

Since J is contained in a λ(σ)-Whitney-type set B = J ∪B(z0,
|z0|−1

2 ), by Lemmas 2.13 and 2.12,

le(φ(I|z0|)) ⩽ le(φ(J)) ⩽ C(σ)diam(φ(B)) ⩽ C(σ)dist(φ(B), ∂Ω).

Now, take z ∈ I|z0| ∩ φ−1(β̂) and define α = φ−1(β̂) ∗ J [z, z0]. Then α connects I to z0 in R2 \ D and

le(φ(α)) ⩽ le(β̂) + le(φ(J)) ⩽ C(σ) le(φ(I|z0|)) + le(φ(J))

⩽ C(σ)dist(φ(B), ∂Ω) ⩽ C(σ)dist(φ(z0), ∂Ω).

This completes the proof.

3 Proof of necessity

In this section, we prove that a bounded simply connected planar W 1,p-extension domain with 1 < p < 2

necessarily has the property that any two points z1, z2 ∈ R2 \Ω can be connected with a curve γ ⊂ R2 \Ω
satisfying ∫

γ

dist(z, ∂Ω)1−pds(z) ⩽ C(‖E‖, p)|z1 − z2|2−p.

We first consider the case where Ω is additionally assumed to be Jordan. Under this assumption, we
usually denote the complementary domain of Ω by Ω̃.
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Theorem 3.1. Let 1 < p < 2 and let Ω be a Jordan domain. Suppose that there exists an extension
operator E : W 1,p(Ω)→W 1,p(R2). Then, given z1, z2 ∈ Ω̃ ∪ ∂Ω, there is a curve γ ⊂ Ω̃ ∪ ∂Ω so that∫

γ

dist(z, ∂Ω)1−pds(z) ⩽ C(‖E‖, p)|z1 − z2|2−p, (3.1)

where C(‖E‖, p) depends only on p and the norm of the extension operator.
After this, based on inner uniformity (see Definition 2.27 below), we prove that if Ω is a bounded

simply connected W 1,p-extension domain, then for n ⩾ 2, the Jordan domains Ωn = φ(B(0, 1 − 1
n )) are

also W 1,p-extension domains with extension operator norms depending only on p and the norm of the
extension operator for Ω. Here, φ : D→ Ω is a suitable conformal map. Finally, by a limiting argument,
we obtain the result in the general case.

Actually, we remark that when z1, z2 ∈ Ω̃, one can require that the curve γ in Theorem 3.1 is contained
in Ω̃. For this, see Remark 3.7.

3.1 Necessity in the Jordan case

In this subsection, we prove Theorem 3.1. Recall that the existence of our extension operator guarantees
that Ω is a John domain with a constant J depending only on p and the norm of E (see, e.g., [25,
Theorem 6.4], [14, Theorem 3.4], [33, Theorem 4.5] and the references therein). In what follows, J refers
to this constant. Because of technical issues, we first consider the case z1, z2 ∈ ∂Ω̃ = ∂Ω with z2 6= z1.

Since Ω is Jordan, ∂Ω \ {z1, z2} consists of two open arcs P1 and P2. Without loss of generality, we
assume that diam(P1) ⩽ diam(P2). For the following four lemmas, let Ω, z1, z2, P1 and P2 be fixed.

We need the following general lower bound on the Sobolev norm.
Lemma 3.2. Let Q be a square with sides parallel to the coordinate axes and fix 1 ⩽ p < 2. Let
u ∈W 1,1(Q) be absolutely continuous on almost all lines parallel to the coordinate axes. Write

A0 = {x ∈ Q | u(x) ⩽ 0} and A1 = {x ∈ Q | u(x) ⩾ 1}.

Suppose further that
max{H 1(π1(A0)),H

1(π2(A0))} ⩾ δℓ(Q)

and
max{H 1(π1(A1)),H

1(π2(A1))} ⩾ δℓ(Q)

for some δ > 0, where H 1 is the 1-dimensional Hausdorff measure, and πi stands for the projection to
the xi-axis for each i = 1, 2. Then

ℓ(Q)2−p ⩽ C(δ, p)

∫
Q

|∇u|pdx.

Proof. We may assume that ∫
Q

|∇u|pdx <∞;

otherwise the claim is trivial.
Suppose first that H 1(π1(A0)) ⩾ δℓ(Q) and H 1(π1(A1)) ⩾ δℓ(Q). If for H 1-almost every x1 ∈

π1(A0), there exists some x2 ∈ π2(Q) such that u(x1, x2) ⩾ 1
3 , then by our absolute continuity assumption

and Hölder’s inequality,

1

3
⩽

∫
π2(Q)

|∇u(x1, t)|dt ⩽ ℓ(Q)
p−1
p

(∫
π2(Q)

|∇u(x1, t)|pdt
) 1

p

for H 1-almost every x1 ∈ π1(A0), and our claim follows from Fubini’s theorem that∫
Q

|∇u|pdx ⩾
∫
π1(A0)

∫
π2(Q)

|∇u(x1, t)|pdtdx1 ⩾ H1(π1(A0))
1

3p
ℓ(Q)1−p ⩾ δ

3p
ℓ(Q)2−p.
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Similarly, the claim holds if for H 1-almost every x1 ∈ π1(A1), there exists x2 ∈ π2(Q) such that
u(x1, x2) ⩽ 2

3 . If both of the above two conditions fail, we find x1 ∈ π1(A0) and x̂1 ∈ π1(A1) such that
for all x2 ∈ π2(Q), u(x1, x2) ⩽ 1

3 and u(x̂1, x2) ⩾ 2
3 . Then by absolute continuity and Hölder’s inequality,

for H 1-almost every x2 ∈ π2(Q), we have

1

3
⩽ u(x̂1, x2)− u(x1, x2) ⩽

∫
π1(Q)

|∇u(t, x2)|dt ⩽ ℓ(Q)
p−1
p

(∫
π1(Q)

|∇u(t, x2)|pdt
) 1

p

,

and we again conclude by Fubini’s theorem that∫
Q

|∇u|pdx ⩾
∫
π2(Q)

∫
π1(Q)

|∇u(t, x2)|pdtdx2 ⩾ H1(π2(Q))
1

3p
ℓ(Q)1−p ⩾ 1

3p
ℓ(Q)2−p.

If H 1(π2(A0)) ⩾ δℓ(Q) and H 1(π2(A1)) ⩾ δℓ(Q), the argument for the previous case gives the
asserted estimate after switching the roles of the coordinates x1 and x2. We are left with the cases where

H 1(π1(A0)) ⩾ δℓ(Q) and H 1(π2(A1)) ⩾ δℓ(Q)

and
H 1(π2(A0)) ⩾ δℓ(Q) and H 1(π1(A1)) ⩾ δℓ(Q).

By symmetry, it suffices to consider the first one. As above, if for H 1-almost every x1 ∈ π1(A0), there
exists some x2 ∈ π2(Q) such that u(x1, x2) ⩾ 1

3 , then we get∫
Q

|∇u|pdx ⩾ δ

3p
ℓ(Q)2−p.

Similarly, if for H 1-almost every x2 ∈ π2(A1), there exists some x1 ∈ π2(Q) such that u(x1, x2) ⩽ 1
3 ,

then we get ∫
Q

|∇u|pdx ⩾ δ

3p
ℓ(Q)2−p.

Thus, the only case remaining is the one in which there exist x1 ∈ π1(A0) and x2 ∈ π2(A1) such that
for all t ∈ π2(Q) and s ∈ π1(Q), u(x1, t) ⩽ 1

3 and u(s, x2) ⩾ 2
3 , and so that u is absolutely continuous

along these two line segments. This is impossible as these segments intersect.

We continue with the existence of suitable test functions. Recall that the curves P1 and P2 are open.
Lemma 3.3. Let c1 ⩾ 1 and 1 < p < 2. With the above notation, there exists a function Φ ∈W 1,p(Ω)

such that for any 0 < ϵ < 1
9 , we have Φ ⩾ 1 − ϵ in some neighborhood of P1 ∩ B(z1, c1|z2 − z1|), Φ ⩽ ϵ

in some neighborhood of P2 ∩ B(z1, c1|z2 − z1|), and ‖∇Φ‖pLp(Ω) ⩽ C(p, c1, J)|z1 − z2|2−p. Here, the
neighborhoods are defined with respect to the topology of Ω.
Proof. Let x0 ∈ Ω be a distinguished point as in Definition 2.18. Denote by γ1 the hyperbolic segment
from x0 to z1 and by γ2 the hyperbolic segment from x0 to z2. By Lemma 2.19(4), the curves γ1 and γ2
are John curves. We define γ0 = γ1 ∪ γ2. The existence of John curves is actually only guaranteed by the
definition for points inside the domain, but the general case follows easily from this (see Remark 2.20).
Let φ : D → Ω be a homeomorphism, which is conformal inside and satisfies φ(0) = x0. Then it is
clear that the preimages of γ1 and γ2 under φ are radial line segments, and φ−1(P1 ∪ γ0) is a Jordan
curve. Hence, P1 ∪ γ0 is also Jordan as φ is a homeomorphism. It follows that P1 ∪ γ0 bounds a Jordan
subdomain Ω1 ⊂ Ω.

Define a function ϕ : Ω→ R by setting

ϕ(x) = max

{
inf

γ(x,P2)

∫
γ(x,P2)

1

|ẑ − z1|
ds(ẑ), inf

γ(x,P2)

∫
γ(x,P2)

1

|ẑ − z2|
ds(ẑ)

}
for x ∈ Ω, where the infima are taken over all the rectifiable curves γ(x, P2) ⊂ Ω joining x to P2.
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Since Ω is a Jordan domain, γ0, P1 and P2 are pairwise disjoint. By the John condition, we have
dist(w, ∂Ω) ⩾ J |w − z1| for every w ∈ γ1. Therefore, for w ∈ γ1, we get

ϕ(w) ⩾ inf
γ(w,P2)

∫
γ(w,P2)

1

|ẑ − z1|
ds(ẑ) ⩾ dist(w, ∂Ω)

dist(w, ∂Ω) + |w − z1|
⩾ J

J + 1
=: c0,

where we have used the fact that γ(w,P2) necessarily exits B(w, dist(w, ∂Ω)) and that for points ẑ ∈
B(w, dist(w, ∂Ω)), we have by the triangle inequality that

|ẑ − z1| ⩽ |ẑ − w|+ |w − z1| ⩽ dist(w, ∂Ω) + |w − z1|.

The same estimate follows similarly for w ∈ γ2. Hence, for any point w ∈ Ω1, we have ϕ(w) ⩾ c0 as Ω1

is Jordan and P2 is outside Ω1; any curve γ(w,P2) ⊂ Ω must cross γ0 by the Jordan curve theorem (see
Figure 2).

Fix 0 < ϵ < 1
9 . We claim that we have ϕ ⩽ ϵ in some neighborhood of P2. Indeed, for any x ∈ P2, there

is the radius Rx > 0 such that B(x, 2Rx) ∩ P1 = ∅. Let 0 < rx ⩽ Rx. Then for any y ∈ B(x, rx) ∩ Ω,
there is a point z ∈ P2 ∪ {z1, z2} such that |y− z| = dist(y, P2) = dist(y, ∂Ω) ⩽ rx while dist(y, P1) ⩾ Rx

via the triangle inequality. By choosing rx sufficiently small, we conclude, via letting γ(w,P2) be the line
segment joining y and z in the definition of ϕ, that

ϕ(y) ⩽ rxR
−1
x ⩽ ϵ.

Hence, by taking the union of B(x, rx) ∩Ω over x ∈ P2, we obtain a neighborhood of P2 in which ϕ ⩽ ϵ.
Recall that c1 ⩾ 1. We define a cut-off function by setting

α(z) =


1, if |z − z1| < c1|z1 − z2|,

log2
2c1|z1 − z2|
|z − z1|

, if c1|z1 − z2| ⩽ |z − z1| ⩽ 2c1|z1 − z2|,

0, otherwise

for z ∈ Ω. Using this cut-off function, we define

Φ(z) = α(z)min

{
1

c0
ϕ(z), 1

}
when z ∈ Ω. We also define Φ(x) = 1 for x ∈ P1 ∩ B(z1, c1|z1 − z2|), and Φ(x) = 0 when x ∈ P2. Then
by the properties of ϕ, we know that for any 0 < ϵ < 1

9 , Φ ⩾ 1 − ϵ in some neighborhood of the set
P1 ∩B(z1, c1|z1 − z2|), and Φ ⩽ ϵ in some neighborhood of P2 ∩B(z1, c1|z1 − z2|).

x0

z1

z2

γ1

γ2

Ω1

P1

P2

xrx

Rx

wy

γ(w,P2)

Figure 2 (Color online) The function ϕ is seen to have large value in Ω1 by observing that any curve γ(w,P2) connecting
a point w ∈ Ω1 to P2 in Ω must intersect γ0 = γ1 ∪ γ2. In order to see that ϕ has small value near P2, one observes that ϕ
near x ∈ P2 can be estimated by integrating 1

Rx
along a curve with the length at most rx ⩽ ϵRx
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We claim that ϕ is locally Lipschitz in Ω with

|∇ϕ(z)| ⩽ 3

2
max{|z − z1|−1

, |z − z2|−1} (3.2)

for almost every z ∈ Ω. Indeed, for any y ∈ B(z, 3−1dist(z, ∂Ω)), we have that by the definition of ϕ and
the fact that z1, z2 ∈ ∂Ω,

|ϕ(y)− ϕ(z)| ⩽ max

{∫
[y,z]

|ẑ − z1|−1ds(ẑ),

∫
[y,z]

|ẑ − z2|−1ds(ẑ)

}
⩽ 3

2
max{|z − z1|−1

, |z − z2|−1}|y − z|,

where [y, z] is the line segment joining y and z. Thus, our claim follows. Furthermore, by applying the
Leibniz rule, we obtain

‖∇Φ‖pLp(Ω) ≲ ‖∇α‖
p
Lp(Ω) + ‖∇ϕ‖

p
Lp(Ω∩B(z1,2c1|z1−z2|))

≲
∫
B(z1,2c1|z1−z2|)\B(z1,|z1−z2|)

|ẑ − z1|−p
dẑ +

∫
B(z1,2c1|z1−z2|)

|ẑ − z1|−p
+ |ẑ − z2|−p

dẑ

⩽ C(p, c1, J)|z1 − z2|2−p,

by calculating in polar coordinates with 1 < p < 2. Thus, Φ ∈W 1,p(Ω) with the desired properties since
‖Φ‖L∞(Ω) ⩽ 1 and Ω is bounded.

Let φ̃ : R2 \ D → R2 \ Ω be a conformal map. Since Ω is Jordan, φ̃ extends homeomorphically up to
the boundary by the Carathéodory-Osgood theorem. We refer to this extension also by φ̃. For our fixed
z1, z2 ∈ ∂Ω̃, let Γk be the hyperbolic ray starting at φ̃−1(zk), where k = 1, 2. Pick yk ∈ Γk with

|φ̃−1(zk)− yk| = |φ̃−1(z2)− φ̃−1(z1)|,

and let αc be a shorter one of the two circular arcs from y1 to y2. Define

α = [φ̃−1(z1), y1] ∗ αc ∗ [y2, φ̃−1(z2)] and γ = φ̃(α) (3.3)

(see Figure 3). We establish the curve condition (3.1) for γ. The reason for using γ instead of the
corresponding hyperbolic segment is partially that this is technically easier.

Let W̃ be a Whitney decomposition of Ω̃ given by Lemma 2.9 and set

W̃γ = {Q̃i ∈ W̃ | Q̃i ∩ γ 6= ∅}.

α

γ

D
Ω

z1

z2

ϕ̃

Figure 3 (Color online) The curve γ is obtained as the image of the curve α under the conformal map φ̃ : R2 \D → R2 \Ω.
In the illustration, the Whitney squares in W̃γ are highlighted
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We index the squares in Wγ according to the side length: Q̃i1, . . . , Q̃ini are those with the side length 2i

when i ∈ Z, if there are such squares. Notice that since ∂Ω̃ is bounded, each ni is necessarily finite.
We start with a simple observation on the Whitney squares that intersect the circular part of the

curve α.
Lemma 3.4. The number of squares Q̃ij ∈ W̃ for which φ−1(Q̃ij) ∩ α[y1, y2] 6= ∅ is bounded from
above by a universal constant.
Proof. By Lemma 2.12, we have that φ̃−1(Q̃i,j) is a λ-Whitney-type set with a universal constant λ.
If φ−1(Q̃ij) ∩ α[y1, y2] 6= ∅, we have

|φ̃−1(z2)− φ̃−1(z1)| = dist(∂D, α[y1, y2])

⩽ dist(∂D, φ̃−1(Q̃ij)) + diam(φ̃−1(Q̃ij))

⩽ (λ+ 1)diam(φ̃−1(Q̃ij)),

so φ−1(Q̃ij) contains a disk of radius 1
λ(λ+1) |φ̃

−1(z2)− φ̃−1(z1)|. Since for different Q̃ij , these disks are
disjoint, and

dist(φ̃−1(z1), φ̃
−1(Q̃ij)) ⩽ diam(α) ⩽ 3|φ̃−1(z2)− φ̃−1(z1)|,

the claim follows.

Lemma 3.5. For the curve γ defined in (3.3) and each Whitney square Q̃ ∈ W̃γ , we have Q̃ ⊂
B(z1, C|z1 − z2|), where C = C(J) is independent of z1, z2 and φ̃.
Proof. Since Ω is John, by Lemma 2.22, the set R2 \ Ω is of C(J)-bounded turning, where C(J)

depends only on J . Thus, there is a (closed) curve β ⊂ R2 \ Ω that joins z1 and z2 and so that
β ⊂ B(z1, C(J)|z1 − z2|).

Now, if Q̃ ∩ β 6= ∅, we have

Q̃ ⊂ B(z1, C(J)|z1 − z2|+ diam(Q̃)) ⊂ B(z1, (C(J) +
√
2C(J))|z1 − z2|),

as z1 ∈ ∂Ω.
Suppose then that Q̃ ∩ β = ∅. We have

diam(φ̃−1(β)) ⩾ |φ̃−1(z1)− φ̃−1(z2)| (3.4)

since z1, z2 ∈ φ̃−1(β). Next, φ̃−1(Q̃) is a λ-Whitney-type set by Lemma 2.12 with a universal constant λ
and φ̃−1(Q̃) ∩ α 6= ∅. Hence, the definition of α (α is an inner uniform curve for the exterior domain of
the unit disk) gives

dist(φ̃−1(Q̃), φ̃−1(β)) ⩽ min{dist(φ̃−1(Q̃), φ̃−1(z1)), dist(φ̃
−1(Q̃), φ̃−1(z2))}

⩽ Cdiam(φ̃−1(Q̃)) ⩽ C|φ̃−1(z1)− φ̃−1(z2)|.

This together with (3.4) shows that

Cmin{diam(φ̃−1(Q̃)), diam(φ̃−1(β))} ⩾ dist(φ̃−1(Q̃), φ−1(β)).

Then the version of (2.25) for R2 \ D and conformal invariance of capacity give

0 < δ(C) ⩽ Cap(φ̃−1(Q̃), φ̃−1(β),R2 \ D) = Cap(Q̃, β, Ω̃) ⩽ Cap(Q̃, β,R2),

where in the last inequality, we used the monotonicity of capacity.
Hence, Lemma 2.17 shows that dist(Q̃, β) ⩽ Cdiam(β), and since z1 ∈ β and diam(β) ⩽ C(J)|z1− z2|,

we conclude that

Q̃ ⊂ B(z1, dist(z1, Q̃) + diam(Q̃)) ⊂ B(z1, (1 +
√
2)dist(z1, Q̃))

⊂ B(z1, (1 +
√
2)(diam(β) + dist(β, Q̃)))

⊂ B(z1, Cdiam(β)) ⊂ B(z1, C(J)|z1 − z2|).

This completes the proof.
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We apply the preceding four lemmas to prove the following estimate for W̃γ . Recall that ni stands for
the number (if any) of Q̃ij ∈ W̃γ of the side length 2i and ‖E‖ stands for the norm of the homogeneous
extension operator.
Lemma 3.6. We have ∑

i

ni2
i(2−p) ⩽ C(‖E‖, p)|z1 − z2|2−p.

Proof. We claim that there exists a constant c0 such that for every Q̃ij ∈ W̃γ ,

c0Q̃ij ∩ P1 6= ∅ 6= c0Q̃ij ∩ P2. (3.5)

Towards this, suppose first that φ̃−1(Qij) ∩ [φ̃−1(zk), yk] 6= ∅ for k = 1 or for k = 2, where the points
yk ∈ α are from the definition of α and γ. Pick z0 ∈ φ̃−1(Q̃ij)∩ [φ̃−1(zk), yk]. Then le(φ̃−1(Pk)) ⩾ |z0|−1

and dist(φ−1(Pk), z0) ⩽ |z0 − φ̃−1(zk)| ⩽ |z0| − 1 for k = 1, 2. Hence, Lemma 2.32, applied to both
φ̃−1(P1) and φ̃−1(P2), gives a curve α′ connecting P1 and P2 and passing through z0 such that

le(φ̃(α′)) ⩽ C0dist(φ̃(z0), ∂Ω̃).

Since Q̃ij is a Whitney square, it follows that φ̃(α′) ⊂ c′0Q̃ij , where c′0 = c′0(C0) ⩾ 1, and we conclude
(3.5) for our Q̃ij .

We are left with the case where Q̃ij only intersects the image of the circular part of α. By Lemma 3.4,
there are only uniformly finitely many such Q̃ij , so there exists a constant c′′0 such that

ℓ(Q̃′) ⩽ c′′0ℓ(Q̃ij) and dist(Q̃ij , Q̃
′) ⩽ c′′0ℓ(Q̃ij)

for each such Q̃ij and some Q̃′ from our first case. By setting c0 = c′0c
′′
0 , we obtain (3.5) also in this case.

Next, Lemma 3.5 allows us to infer that

2c0Q̃ij ⊂ B(z1, 2c0C|z1 − z2|) (3.6)

for each Q̃ij ∈ W̃γ . Here, C = C(J) = C(p, ‖E‖).
Let Φ be defined as in Lemma 3.3 for the choice c1 = 2c0C, where c0C is from (3.6). Let s = 1+p

2 .
Then 1 < s < p.

Since Ω is a W 1,p-extension domain, we have EΦ ∈W 1,p(R2), where E is the corresponding extension
operator. Therefore, denoting the Hardy-Littlewood maximal operator by M and using the boundedness
of M : Lp/s(R2)→ Lp/s(R2) applied to the function |∇EΦ|s, we obtain

∑
i

ni∑
j=1

|Q̃ij |1−
p
s

(∫
2c0Q̃ij

|∇EΦ(x)|sdx
) p

s

⩽ C(c0, p)
∑
i

ni∑
j=1

|Q̃ij |
(

–
∫

2c0Q̃ij

|∇EΦ(x)|sdx
) p

s

⩽ C(c0, p)
∑
i

ni∑
j=1

∫
Q̃ij

|M(|∇EΦ|s)(x)|
p
s dx

⩽ C(c0, p)

∫
Ω̃

|M(|∇EΦ|s)(x)|
p
s dx

⩽ C(c0, p)

∫
R2

|∇EΦ(x)|pdx

⩽ C(c0, ‖E‖, p)
∫
Ω

|∇Φ(x)|pdx ⩽ C(c0, c1, ‖E‖, p)|z1 − z2|2−p. (3.7)

Notice that for any Q̃ij ∈ W̃γ ,

diam(γ1) ∼c0 ℓ(Q̃ij) ∼c0 diam(γ2)
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for subcurves γ1 ⊂ 2c0Q̃ij of P1 and γ2 ⊂ 2c0Q̃ij of P2 by (3.5), (3.6) and the definition of c1. Then
by Lemma 3.2 (with p = s there) applied to a representative of EΦ that is absolutely continuous on
almost every line segment parallel to the coordinate axes, relying on the values of Φ on P1 and P2 from
Lemma 3.3, we have

ℓ(2c0Q̃i,j)
2 p

s−p ⩽ C(c0, p)

(∫
2c0Q̃ij

|∇EΦ(x)|sdx
) p

s

,

which, by summing over all the squares Q̃ij , gives the estimate

C(c0, p)
∑
i

ni∑
j=1

|2c0Q̃ij |1−
p
s

(∫
2c0Q̃ij

|∇EΦ(x)|sdx
) p

s

⩾
∑
i

ni2
i(2−p).

Therefore, (3.7) yields the asserted inequality.

Proof of Theorem 3.1. We establish the result via a case study.
Case 1. z1, z2 ∈ ∂Ω. Let γ be the curve constructed in (3.3) for the pair z1, z2. Then φ̃−1(γ) = α.

Since each Q̃ij ∈ W̃γ is a Whitney square, its diameter is comparable to dist(Q̃ij , ∂Ω), which means for
the points w ∈ γ ∩ Q̃ij that

dist(w, ∂Ω) ∼ diam(Q̃ij) (3.8)

with absolute constants.
Since α consists of two line segments and a circular arc, we have

H1(φ−1(Q̃ij) ∩ α) ⩽ (2 + π)diam(φ−1(Q̃ij)),

and by Lemma 2.12, the set φ̃−1(Q̃ij) is of λ-Whitney type with an absolute constant λ. Thus, by
Lemma 2.13, we get

H1(Q̃ij ∩ γ) ⩽ Cℓ(Q̃ij) (3.9)

for some absolute constant C.
By combining the claim of Lemma 3.6 with (3.8) and (3.9), we arrive at∫

γ

dist(z, ∂Ω)1−pds ⩽
∑

Q̃ij∈W̃γ

∫
γ∩Q̃ij

dist(z, ∂Ω)1−pds

⩽ C(p)
∑

Q̃ij∈W̃γ

dist(Q̃ij , ∂Ω)
2−p ⩽ C(‖E‖, p)|z1 − z2|2−p.

Hence, we have proven the existence of the desired curve when z1, z2 ∈ ∂Ω.
Case 2. z1, z2 ∈ Ω̃∪∂Ω and at least one of the points belongs to Ω̃. By swapping z1 and z2, if needed,
we may assume that z2 ∈ Ω̃ and dist(z1, ∂Ω) ⩽ dist(z2, ∂Ω).

Suppose first that
|z1 − z2| ⩽ dist(z2, ∂Ω). (3.10)

Then we may choose γ to be the line segment [z1, z2] between z1 and z2, and the curve condition (3.1) is
satisfied as 1 < p < 2:∫

[z1,z2]

dist(z, ∂Ω)1−pds(z) ⩽
∫
[z1,z2]

dist(z, ∂B(z2, dist(z2, ∂Ω)))
1−pds ⩽ C(p)|z1 − z2|2−p. (3.11)

Assume now that (3.10) fails. Choose z3, z4 ∈ ∂Ω so that

|zi − zi+2| = dist(zi, ∂Ω)

for i = 1, 2. Then
|z1 − z3|+ |z2 − z4| < 2|z1 − z2|
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and
|z3 − z4| ⩽ 3|z1 − z2|. (3.12)

Let γ′ be the curve connecting z3 and z4 obtained from Case 1, and define γ = [z1, z3]∗γ′ ∗ [z4, z2]. Then,
by (3.11) for [z1, z3] and [z4, z2], Case 1 and (3.12), we get∫

γ

dist(z, ∂Ω)1−pds(z) ⩽ C(‖E‖, p)(|z1 − z3|2−p + |z3 − z4|2−p + |z4 − z2|2−p)

⩽ C(‖E‖, p)|z1 − z2|2−p,

concluding the proof also in this case.

Remark 3.7. Let z1, z2 ∈ Ω̃. Even though the curve joining z1 and z2 which we constructed in the
proof above may touch the boundary ∂Ω, it can be modified so as to be contained in Ω̃.

To begin, we may again assume that

dist(z1, ∂Ω) ⩽ dist(z2, ∂Ω)

and (3.10) fails. Consider the points z3, z4 ∈ ∂Ω from the proof above and let wi = φ̃−1(zi) for i = 3, 4.

Since φ̃ is continuous up to the boundary and (3.12) holds, we find ϵ > 0 so that

|φ̃(w)− φ̃(w′)| < 4|z1 − z2|

whenever w,w′ ∈ ∂D satisfy |w−w3|+ |w′−w4| < ϵ. Recall that the curve γ in the above proof in Case 1
is the image of the curve α that consists of two radial segments and a circular arc (see Figure 4). Suppose
that w3 6= w4. Then we may choose w and w′ as above so that the corresponding curve α between w

and w′ intersects the preimages of the line segments between z1 and z3 and between z2 and z4. This
allows us to reroute our curve so that it does not intersect the boundary. The case of w3 = w4 is similar;
choose w and w′ from “different sides” of w3.

Remark 3.8. The inequality in Lemma 3.6 is actually equivalent to (3.1) for our γ. One of the
directions was shown above. For the other direction, we first note that each Whitney square has at most
20 neighboring squares, which tells us that we can distribute the squares in W̃γ into no more than 21
subcollections {W̃k}21k=1 so that each of them consists of pairwise disjoint squares. Then for any two
distinct Q̃i, Q̃j ∈ W̃k, by Lemma 2.9, we have

11

10
Q̃i ∩

11

10
Q̃j = ∅.

Notice that for each Q̃ij ∈ W̃γ , by definition, we have

H1

(
11

10
Q̃ij ∩ γ

)
⩾ 1

10
ℓ(Q̃ij).

Thus, by applying the estimate

ℓ(Q̃ij) ⩽ dist(Q̃ij , ∂Ω) ⩽ 4
√
2ℓ(Q̃ij),

we have

∑
Q̃ij∈W̃γ

dist(Q̃ij , ∂Ω)
2−p ⩽ C(p)

21∑
k=1

∑
Q̃ij∈W̃k

∫
γ∩Q̃ij

dist(z, ∂Ω)1−pds

⩽ C(p)

∫
γ

dist(z, ∂Ω)1−pds ⩽ C(‖E‖, p)|z1 − z2|2−p,

which gives the other direction.
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(a) (b)

Figure 4 (Color online) The curve constructed in Theorem 3.1 can be modified so as to travel inside Ω̃ by perturbing
slightly the starting point and the endpoint of the intermediate curve φ̃(α) and by disregarding the unnecessary parts of
the concatenated curves. In (a), we have the case where the selected points z3 and z4 differ, and in (b), we have the case
where they agree

3.2 Inner extension

We prove the following inner extension theorem in this subsection.
Theorem 3.9. Let φ : D→ Ω be a conformal map, where Ω ⊂ R2 is a simply connected John domain
with John constant J . Suppose that φ(0) is the distinguished point in the definition of a John domain.
Set Ωϵ = φ(B(0, 1 − ϵ)) for 0 < ϵ ⩽ 1

2 and let 1 < p < ∞. Then there exists an extension operator
Eϵ : W

1,p(Ωϵ)→W 1,p(Ω) such that ‖Eϵ‖ ⩽ C(p, J).

Fix ϵ, and notice that Ωϵ is a Jordan domain. Let Ω′
ϵ = R2 \Ωϵ and Ω̃ϵ = Ω′

ϵ∩Ω. Let φ be a conformal
map as in Theorem 3.9, with φ(0) a John center of Ω. This map will be fixed through this subsection.
By Lemma 2.30, φ is η-quasisymmetric with respect to the inner distance, where η depends only on J.

Moreover, by Remark 2.26, we may extend φ continuously to the boundary ∂D; we denote the extended
map still by φ.

We are going to modify the method of Jones from [23] to prove Theorem 3.9. We construct a suitable
cover for Ω̃ϵ inside Ω and an associated partition of unity. Towards this, recall that Ω is John and by
Lemma 2.30, so is Ωϵ, with a constant depending only on J. Thus, by Lemma 2.28, we have that Ωϵ is
inner uniform and we may use hyperbolic segments of Ωϵ as curves referred to in the definition of inner
uniformity, with constant ϵ0 depending only on J.

Fix k0 ∈ N with 2−k0−1 < ϵ ⩽ 2−k0 . We begin by constructing a decomposition of the preimage
A = D \ B(0, 1− ϵ), of Ω̃ϵ under φ, and then obtain a decomposition of Ω̃ϵ with the help of the map φ

(see Figure 5).
For k ∈ N, let

Ak = B(0, 1− ϵ+ 2−kϵ) \B(0, 1− ϵ+ 2−k−1ϵ).

For each k ⩾ 0, the collection of the 2k+k0 radial rays is obtained by dividing the polar angle 2π evenly
and starting with the zero angle subdivides Ak into closed (with respect to D) sets. Run this process for
all k ∈ N. We refer to these closed sets by Q̃i. They satisfy the version

1

λ
diam(Q̃i) ⩽ dist(Q̃i, ∂(B(0, 1− ϵ))) ⩽ λdiam(Q̃i) (3.13)

of Definition 2.10(i) with λ = 16π.
Set S̃i = φ(Q̃i) and let W̃ = {S̃i}. We claim that each S̃i is a λ-Whitney-type set with respect to the

inner distance of Ω and ∂Ωϵ in the following sense.
Lemma 3.10. There exists a constant 0 < c = c(J) < 1 such that

BΩ(wi, cdiamΩ(S̃i)) ⊂ S̃i (3.14)
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for some wi ∈ S̃i,

cdiamΩ(S̃i) ⩽ distΩ(S̃i, ∂Ωϵ) ⩽
1

c
diamΩ(S̃i) (3.15)

and
cdiamΩ(S̃i) ⩽ diamΩ(S̃j) ⩽

1

c
diamΩ(S̃i) (3.16)

whenever S̃i ∩ S̃j 6= ∅. Here, BΩ(x, r) denotes the open disk centered at x with radius r with respect to the
inner distance.
Proof. Let S̃i be fixed. By the construction of Q̃i = φ−1(S̃i), there is a disk B(z0, c0diam(Q̃i))

contained in Q̃i for some absolute constant c0 ⩽ 1. Let z1 be an arbitrary point on the boundary of
B(z0, c0diam(Q̃i)) and let z2 ∈ Q̃i be such that

distΩ(φ(z2), φ(z0)) ⩾
1

3
diamΩ(S̃i); (3.17)

the existence of such a point follows from the triangle inequality. Then

|z2 − z1| ⩽ c−1
0 |z1 − z0|

and hence (3.17) together with quasisymmetry gives

diamΩ(S̃i) ⩽ 3distΩ(φ(z2), φ(z0)) ⩽ 3η(c−1
0 )distΩ(φ(z1), φ(z0)). (3.18)

By the arbitrariness of z1 and the fact that φ is a homeomorphism, we conclude (3.14) for a constant
c = c(η) = c(J).

Towards (3.15), first choose points z3 ∈ ∂B(0, 1− ϵ) and z4 ∈ Q̃i such that

distΩ(φ(z4), φ(z3)) ⩽ 2distΩ(S̃i, ∂Ωϵ). (3.19)

Let z ∈ Q̃i be such that
diam(Q̃i) ⩽ 2|z4 − z|. (3.20)

By (3.13),
|z4 − z| ⩽ diam(Q̃i) ∼ dist(Q̃i, ∂B(0, 1− ϵ)) ≲ |z4 − z3| (3.21)

with absolute constants. Now (3.21), quasisymmetry of φ and (3.19) give

distΩ(φ(z4), φ(z)) ⩽ C(η)distΩ(φ(z3), φ(z4)) ⩽ C(η)distΩ(S̃i, ∂Ωϵ). (3.22)

Let z0 be as in the first paragraph of the proof. By the triangle inequality, |z − z0| ⩾ 1
4diam(Q̃i) or

|z4 − z0| ⩾ 1
4diam(Q̃i). Assume that the latter inequality holds; the other case is handled analogously.

Clearly, |z4 − z0| ⩽ diam(Q̃i) ⩽ 2|z4 − z| by (3.20). Hence, quasisymmetry gives

distΩ(φ(z4), φ(z0)) ⩽ η(2)distΩ(φ(z4), φ(z)). (3.23)

Let us argue as in the first paragraph of the proof with the help of the point z2 ∈ Q̃i. Our assumption
that |z4 − z0| ⩾ 1

4diam(Q̃i) ⩾ 1
4 |z2 − z0| together with quasisymmetry further gives

diamΩ(S̃i) ⩽ 3distΩ(φ(z2), φ(z0)) ⩽ 3η(4)distΩ(φ(z4), φ(z0)). (3.24)

We obtain the lower bound of the distance in (3.15) by combining (3.22)–(3.24).
Towards the upper bound in (3.15), pick points z5 ∈ ∂B(0, 1− ϵ) and z6 ∈ Q̃i such that

|z5 − z6| = dist(Q̃i, ∂B(0, 1− ϵ)).

Let z0 and c0 be as in the first paragraph of our proof. Then (3.13) gives

|z5 − z6| ⩽ c−1
0 λ|z0 − z6|,
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and by quasisymmetry,

distΩ(S̃i, ∂Ωϵ) ⩽ distΩ(φ(z5), φ(z6)) ⩽ η(c−1
0 λ)distΩ(φ(z6), φ(z0)) ⩽ η(c−1

0 λ)diamΩ(S̃i),

as desired.
We are left to prove (3.16). Since S̃i ∩ S̃j 6= ∅, both distΩ(S̃j , ∂Ωϵ) ⩽ distΩ(S̃i, ∂Ωϵ) + diamΩ(S̃i) and

the analogous inequality with the roles of i and j reversed hold. Hence, (3.16) follows from (3.15).

Given S̃i ∈ W̃ and M > 1 that will be selected soon, define

Ũi :=

{
x ∈ Ω

∣∣∣∣distΩ(x, S̃i) <
1

M
diamΩ(S̃i)

}
.

We claim that we can choose M > 1 depending only on J such that these sets Ũi have uniformly finite
overlaps. Notice that Ũi ⊂ Ω̃ whenever M ⩾ 2/c for the constant c in (3.15).
Lemma 3.11. If S̃i ∩ S̃j = ∅, then

max{diamΩ(S̃i), diamΩ(S̃j)} ⩽ C(J)distΩ(S̃i, S̃j). (3.25)

Especially, for M ⩾ 2C(J) in the definition of the sets Ũi, we have

1 ⩽
∑
i

χŨi
(x) ⩽ 9 (3.26)

for every x ∈ Ω̃ϵ, where χŨi
is the characteristic function of Ũi.

Proof. First, observe that Q̃i ∩ Q̃j = ∅ gives

dist(Q̃i, Q̃j) ⩾ Cmax{diam(Q̃i), diam(Q̃j)},

where the constant is absolute. We apply quasisymmetry to show that S̃i ∩ S̃j = ∅ implies

distΩ(S̃i, S̃j) ≳ max{diamΩ(S̃i), diamΩ(S̃j)},

where the constant depends only on the John constant (see also [29, Formula (3.5)] for a version of this).
Towards this, choose w1 ∈ S̃i and w2 ∈ S̃j such that

distΩ(w1, w2) ⩽ 2distΩ(S̃i, S̃j), (3.27)

and let w3 ∈ S̃i be an arbitrary point. Then since

|φ−1(w1)− φ−1(w2)| ⩾ dist(Q̃i, Q̃j) ≳ diam(Q̃i) ⩾ |φ−1(w1)− φ−1(w3)|

with an absolute constant, the quasisymmetry of φ applied to φ−1(w1), φ
−1(w2) and φ−1(w3) gives

distΩ(w1, w2) ≳ distΩ(w1, w3).

Thus, by the arbitrariness of w3, (3.27) shows that

distΩ(S̃i, S̃j) ≳ diamΩ(S̃i).

By replacing w3 ∈ S̃i with w3 ∈ S̃j and diam(Q̃i) with diam(Q̃j) above, respectively, we analogously
obtain the inequality

distΩ(S̃i, S̃j) ≳ diamΩ(S̃j),

and (3.25) follows.
Regarding (3.26), the lower bound is trivial since W̃ forms a cover of Ω̃ϵ. Since each S̃i has at most 8

neighboring sets, we obtain the upper bound in (3.26) from (3.25).
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ϕ

Ω̃ǫ

Ωǫ Si

Sj

S̃i

S̃j

Figure 5 (Color online) In the inner extension, the annular region Ω̃ϵ is divided into Whitney-type sets that are obtained
by mapping a Whitney-type decomposition of the annulus inside the disk conformally. For the inner part Ωϵ, we use a
standard Whitney decomposition. Two pairs of sets (S̃i, Si) and (S̃j , Sj) are highlighted

We now fix M = max{2C(J), 2/c}, where the constant C(J) is from (3.25) and c is from (3.15). Given
S̃i ∈ W̃ , set

ψi(x) = max{1− 2MdiamΩ(S̃i)
−1distΩ(x, S̃i), 0}

for x ∈ Ω. Then ψi is locally Lipschitz with bounded and relatively closed support in Ω, |∇ψi| ⩽
C(J)diamΩ(S̃i)

−1 and ψi(x) = 1 for any x ∈ S̃i. Moreover, the support of ψi is contained in Ũi. Define

ϕj(x) =
ψj(x)∑
i ψi(x)

for x ∈ Ω̃ϵ. Then our collection of the functions ϕj is a partition of unity in Ω̃ϵ :
∑
ϕj(x) = 1 in Ω̃ϵ.

By (3.26), the functions ϕj are locally Lipschitz and have supports in Uj , and

|∇ϕj | ⩽ C(J)diamΩ(S̃j)
−1. (3.28)

In order to construct our extension operator, we associate each S̃i ∈ W̃ with a suitable square Q ∈W,
where W = {Q1, Q2, . . . } is a fixed Whitney decomposition of Ωϵ (see Figure 5).
Lemma 3.12. Given S̃i ∈ W̃ , there is Q ∈W such that

diam(Q) = diamΩ(Q) ∼J distΩ(S̃i, Q) ∼J diamΩ(S̃i). (3.29)

Proof. To see that a Whitney square of the desired size can be chosen, trace back towards φ(0) along
any hyperbolic ray of Ω that intersects S̃i and let Q be a first Whitney square of Ωϵ intersecting this
hyperbolic ray such that

dist(φ−1(Q), φ−1(S̃i)) ⩾
1

9λ
diam(φ−1(S̃i)), (3.30)

where λ is an absolute constant given by Lemma 2.12 so that φ−1(Q) is of λ-Whitney type with respect
to B(0, 1 − ϵ). We show the existence of such a square via Definition 2.10 and the assumption that
0 < ϵ ⩽ 1

2 . Towards this, if such a square does not exist, then

dist(φ−1(Q), φ−1(S̃i))

diam(φ−1(S̃i))
<

1

9λ

for all the Whitney squares Q intersecting our fixed hyperbolic ray. However, the diameter of φ−1(S̃i) =

Q̃i is at most 2, while a λ-Whitney-type set in B(0, 1 − ϵ) containing the origin has the distance to
∂B(0, 1− ϵ) at least 1

4λ since ϵ ⩽ 1
2 and λ ⩾ 1. Therefore, we have

1

8λ
⩽ dist(φ−1(Q), φ−1(S̃i))

diam(φ−1(S̃i))
<

1

9λ
,



Koskela P et al. Sci China Math October 2025 Vol. 68 No. 10 2383

which leads to a contradiction. Then the facts that Q is a first square satisfying (3.30), φ−1(Q) is of
λ-Whitney type, φ−1(S̃i) = Q̃i satisfies (3.13) and distΩ(φ

−1(Q), φ−1(S̃i)) is comparable to the length
of the segment of our hyperbolic ray between φ−1(Q) and φ−1(S̃i) allow us to deduce that

diam(φ−1(S̃i)) ∼ dist(φ−1(Q), φ−1(S̃i)) ∼ diam(φ−1(S)). (3.31)

Next, we apply the quasisymmetry of φ with respect to the inner distance to establish (3.29). First of
all, choose x1 ∈ S̃i and x2 ∈ Q such that

distΩ(Q, S̃i) ⩽ distΩ(x1, x2) ⩽ 2distΩ(Q, S̃i), (3.32)

and let x3 ∈ S̃i be an arbitrary point. Since x1, x3 ∈ S̃i and x2 ∈ Q, (3.31) implies that

|φ−1(x1)− φ−1(x2)| ⩾ dist(φ−1(Q), φ−1(S̃i)) ⩾ C−1|φ−1(x1)− φ−1(x3)|

with an absolute constant C, and hence the quasisymmetry of φ gives

distΩ(x1, x3) ⩽ C(J)distΩ(x1, x2).

Thus, (3.32) gives
diamΩ(S̃i) ⩽ C(J)distΩ(Q, S̃i) (3.33)

according to the arbitrariness of x3. For the other direction, choose x4 ∈ φ−1(S̃i), and x5 ∈ φ−1(Q) such
that

dist(φ−1(Q), φ−1(S̃i)) ⩽ |x4 − x5| ⩽ 2dist(φ−1(Q), φ−1(S̃i)).

Pick x6 ∈ φ−1(S̃i) such that
diam(φ−1(S̃i)) ⩽ 2|x6 − x4|;

the existence of such a point follows from the triangle inequality. By (3.31),

|x6 − x4| ⩾
1

2
diam(φ−1(S̃i)) ⩾ C−1dist(φ−1(Q), φ−1(S̃i)) ⩾ C−1|x5 − x4|.

Then the quasisymmetry of φ gives

diamΩ(S̃i) ⩾ distΩ(φ(x6), φ(x4)) ⩾ η(C)−1distΩ(φ(x5), φ(x4)) ⩾ η(C)−1distΩ(Q, S̃i),

which together with (3.33) gives the last equivalence in (3.29). The second equivalence follows by an
analogous argument by changing the roles of S̃i and Q, and the first equality is obvious.

We now use Lemma 3.12 to pick for each S̃i ∈ W̃ a square Q ∈ W. By Lemma 3.12, the collection
of those Q that satisfy (3.29) is a nonempty subcollection of W. Recalling that W = {Q1, Q2, . . . }, we
simply pick the one of them that has the smallest index amongst those that belong to our subcollection.
For simplicity of notation, we refer to this Q associated with S̃i by Si.

Then, by (3.29), we know that the inner distance between S̃i and Si with respect to Ω is no more than
a constant times diamΩ(S̃i). By the triangle inequality and (3.16), it follows that

distΩ(Si, Sj) ≲ diamΩ(S̃i)

if S̃i ∩ S̃j 6= ∅. Given S̃i and S̃j with S̃i ∩ S̃j 6= ∅, we consider the hyperbolic segment Γ in Ω joining
the barycenters xSi

and xSj
of Si and Sj , respectively. From Lemma 2.7 and (3.29), we conclude that

the Euclidean length of the hyperbolic segment Γ is no more than constant times diamΩ(S̃i). Since
Ωϵ = φ(B(0, 1 − ϵ)) and Si, Sj ⊂ Ωϵ, it follows that the hyperbolic segment Γ joining xSi

and xSj
is

contained in Ωϵ. We use Lemma 2.7 a second time to conclude that the Euclidean length of a hyperbolic
segment Γi,j joining xSi and xSj that is hyperbolic with respect to Ωϵ is also bounded from above by a
constant times diamΩ(S̃i) :

le(Γi,j) ≲ diamΩ(S̃i). (3.34)
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Let us define G(S̃i, S̃j) to be the union of all squares in our fixed Whitney decomposition W of Ωϵ that
intersect this fixed geodesic Γi,j .

Next, we show that the inner uniformity of Ωϵ allows us to conclude that there are uniformly finitely
many Whitney squares in every G(S̃i, S̃j) with S̃i∩ S̃j 6= ∅. This is a counterpart of [23, Lemma 2.8] with
a similar proof.
Lemma 3.13. Let i, j be such that S̃i ∩ S̃j 6= ∅. Then

#{Sk ∈W | Sk ∈ G(S̃i, S̃j)} ⩽ C(J), (3.35)

where # denotes the counting measure.
Proof. Since diam(Si) ≲ diamΩ(S̃i) by (3.29) and the curve Γi,j intersects the Whitney square Si, we
conclude by (3.34) that the diameter of each Whitney square of Ωϵ that intersects Γi,j is bounded from
above by a fixed multiple of diamΩ(S̃i).

On the other hand, by (3.29) with (3.16),

diamΩ(Si) ∼ diamΩ(S̃i) ∼ diamΩ(S̃j) ∼ diamΩ(Sj). (3.36)

Hence, the second condition of (2.39) together with (3.36) tells us that

dist(Q, ∂Ωϵ) ≳ diamΩ(S̃i)

if Q ∩ Γ 6= ∅.
Thus, the diameters of Q ∈ W with Q ∩ Γ 6= ∅ are bounded from below and from above by fixed

multiples of diamΩ(S̃i), and hence (3.35) follows as le(Γi,j) ≲ diamΩ(S̃i).

Given u ∈ L1(Ωϵ), set
ai = –

∫
Si

u(x)dx =
1

|Si|

∫
Si

u(x)dx,

where Si ∈ W is the square associated with S̃i ∈ W̃ . Recall our partition of unity consisting of the
functions ϕi, see the discussion before (3.28). Define

Eϵu(x) =
∑
i

aiϕi(x), x ∈ Ω̃ϵ (3.37)

for any given function u ∈W 1,p(Ωϵ), which is Lipschitz in Ωϵ, and set Eϵu(x) = u(x) when x ∈ Ωϵ.
Lemma 3.14. Let Eϵ be given by (3.37). Given S̃ ∈ W̃ , we have the estimate

‖∇(Eϵu(x))‖pLp(S̃)
≲

∑
S̃k∩S̃ ̸=∅

∫
G(S̃,S̃k)

|∇u(x)|pdx (3.38)

with a constant that depends only on p and J.
Proof. Fix S̃ ∈ W̃ and set a = –

∫
S
u(x)dx. Then

∇Eϵu(x) = ∇(Eϵu(x)− a) = ∇
(∑

i

ϕi(x)(ai − a)
)

in S̃. By (3.35), G(S̃, S̃k) consists of no more than C(J) squares and the side lengths of all of them are
comparable to diamΩ(S) modulo a multiplicative constant that depends only on J. Hence, (3.28), (3.29)
and the Poincaré inequality (see, e.g., [23, Lemma 3.1] for the use of the Poincaré inequality) applied to
the chain G(S̃, S̃k) of squares give

‖∇(Eϵu(x))‖pLp(S̃)
≲

∫
S̃

∑
S̃k∩S̃ ̸=∅

|ak − a|p|∇ϕk(x)|pdx
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≲
∑

S̃k∩S̃ ̸=∅

|ak − a|p(diamΩ(S))
2−p

≲
∑

S̃k∩S̃ ̸=∅

(diamΩ(S))
2−p(diamΩ(S))

p−2

∫
G(S̃,S̃k)

|∇u(x)|pdx

≲
∑

S̃k∩S̃ ̸=∅

∫
G(S̃,S̃k)

|∇u(x)|pdx. (3.39)

This completes the proof.

We are now ready to prove our norm estimate.
Lemma 3.15. Let Eϵ be given by (3.37). We have

‖Eϵu‖pLp(Ω̃ϵ)
+ ‖∇(Eϵu)‖pLp(Ω̃ϵ)

≲ ‖u‖pLp(Ωϵ)
+ ‖∇u‖pLp(Ωϵ)

with a constant depending only on p and J.
Proof. We begin by estimating the overlaps of G(S̃k, S̃i). Towards this, for a fixed Si, we first bound
the number of distinct S̃ for which Si is associated with S̃.

To begin with, (3.29) implies that for a fixed Si ∈W and for every S̃ ∈ W̃ associated with it, we have

distΩ(S̃, Si) ≲ diamΩ(Si). (3.40)

We claim that there are no more than N(J) sets S̃ ∈ W̃ associated with a fixed Si ∈ W . Towards this,
first note that for any x ∈ Ω and 0 < r < diam(Ω), the hyperbolic segment Γ of Ω joining x to a point
y ∈ ∂BΩ(x, r) satisfies

r = distΩ(x, y) ⩽ le(BΩ(x, r) ∩ Γ).

Let z ∈ Γ be such that le(Γ[x, z]) = r
2 . Then since, by Lemma 2.28, hyperbolic segments of Ω satisfy

(2.39) with a constant 0 < ϵ0 = ϵ0(J) < 1, we have

B

(
z,

1

2
ϵ0r

)
⊂ BΩ(x, r).

Thus,
C(J)r2 ⩽ |BΩ(x, r)| ⩽ πr2, (3.41)

where the upper bound comes from
BΩ(x, r) ⊂ B(x, r).

By (3.14), each S̃ associated with a fixed Si contains a Euclidean disk of radius comparable to diamΩ(S̃),
which in turn, by (3.29), is comparable to distΩ(S̃, Si) and to diamΩ(Si). Hence, the number of such S̃

is no more than a constant N(J).
Since S̃i has no more than 8 neighbors and the number of the sets S̃ associated with any S ∈W is no

more than N(J), by (3.29), (3.41) and (3.35), we conclude that∑
S̃i∈W̃

∑
S̃i∩S̃k ̸=∅

χG(S̃k,S̃i)
(x) ≲ 1 (3.42)

for all x; notice that (3.35) with (3.29) and (3.41) implies that each Whitney square is contained in at
most uniformly finitely many chains. Inequality (3.42) is the counterpart of [23, (3.2), p. 80].

Now Lemma 3.14 together with (3.42) gives

‖∇(Eϵu)‖pLp(Ω̃ϵ)
=

∑
S̃i∈W̃

‖∇(Eϵu)‖pLp(S̃i)

≲
∑

S̃i∈W̃

∑
S̃k∩S̃i ̸=∅

∫
G(S̃i,S̃k)

|∇u(x)|pdx
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=

∫
Ωϵ

∑
S̃i∈W̃

∑
S̃k∩S̃i ̸=∅

χG(S̃k,S̃i)
(x)|∇u(x)|pdx

≲ ‖∇u‖pLp(Ωϵ)

with the constant depending only on p and J .
We are left to estimate the integral of |Eu|p over Ω̃ϵ. By the definition of Eu, we have∫

S̃i

|Eu|pdx ≲
∑

S̃i∩S̃k ̸=∅

∫
Sk

|u|pdx

and the desired bound follows via (3.42).
Finally, we prove Theorem 3.9.

Proof of Theorem 3.9. Let Eϵ be given by (3.37). Let us first show that the above procedure gives us
an extension of our Lipschitz function u to a function Eϵu in W 1,p(Ω) with the desired norm bound.
Towards this, we claim that Eϵu is locally Lipschitz in Ω.

According to our construction, Eϵu is smooth in Ω̃ϵ. Hence, to show the local Lipschitz continuity, we
only need to consider the case where z1 ∈ Ωϵ and z2 ∈ Ω̃ϵ with

B(z2, 2|z1 − z2|) ⊂ Ω.

Suppose that z2 ∈ S̃ for some S̃ ∈ W̃ . Then by (3.29) and the Lipschitz continuity of u, we have

|Eϵu(z2)− u(z1)| ⩽
∑

S̃k∩S̃ ̸=∅

ϕk(z2)|ak − u(z1)|

≲
∑

S̃k∩S̃ ̸=∅

ϕk(z2)(dist(z1, Sk) + diam(Sk))

≲
∑

S̃k∩S̃ ̸=∅

ϕk(z2)(|z1 − z2|+ diamΩ(S̃k)) ≲ |z1 − z2|,

where in the last inequality we applied the facts that for S̃k ∩ S̃ 6= ∅, it holds that

diamΩ(S̃k) ∼ distΩ(S,Ωϵ) ∼ distΩ(z2,Ωϵ) ⩽ |z1 − z2|.

Therefore, we obtain the local Lipschitz continuity of Eϵu.
Recall that ∂Ωϵ has Lebesgue measure zero by Lemma 2.24. Hence, Lemma 3.15 and the local Lipschitz

continuity of Eϵu give that Eu ∈W 1,p(Ω) with

‖u‖Lp(Ω) + ‖∇(Eϵu)‖Lp(Ω) ⩽ C(J, p)(‖u‖Lp(Ωϵ) + ‖∇u‖Lp(Ωϵ)).

Consequently, Eϵ is a bounded linear operator from W 1,p(Ωϵ) ∩ Lip(Ωϵ) to W 1,p(Ω). Next, W 1,p(Ωϵ)

∩ Lip(Ωϵ) is dense in W 1,p(Ωϵ) for 1 < p < 2: even C∞(R2) is dense in W 1,p(G) for 1 < p < ∞ if G is
a planar Jordan domain [31]. This allows us to extend Eϵ (uniquely) to a bounded linear operator from
W 1,p(Ωϵ) to W 1,p(Ω). Thus, the claim of Theorem 3.9 follows.

3.3 Proof of the general case

In this subsection, we prove the necessity of (1.1) in the general case where Ω is a bounded simply
connected W 1,p-extension domain.

First of all, Ω is necessarily J-John, where the constant J depends only on p and the norm of the
extension operator ‖E‖ for Ω (see, e.g., [14, Theorem 3.4]). Fix z1, z2 ∈ R2 \Ω. Let Ωn = φ(B(0, 1− 1

n ))

for n ⩾ 2, where φ : D → Ω is a conformal map with φ(0) the John center of Ω. Let Ω̃n be the
complementary domain of Ωn. Then

∞⋂
n=4

Ω̃n = R2 \ Ω.
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By Theorem 3.9, we know that each Ωn is a W 1,p-extension domain with the norm of the operator
depending only on p, J and ‖E‖. Hence, by Theorem 3.1, there is a curve γn ⊂ Ω̃n ∪ ∂Ωn connecting z1
and z2 so that ∫

γn

dist(z, ∂Ωn)
1−pds ⩽ C(J, ‖E‖, p)|z1 − z2|2−p. (3.43)

We now proceed as in the proof of Lemma 2.1 to find a limit curve satisfying (1.1). Unlike in Lemma 2.1,
here our integrand is not fixed. For this reason, we repeat the argument with a small modification.

Notice that we may assume that le(γn) ⩽ C(J, ‖E‖, p)|z1 − z2| =: M by Lemma 2.2, and thus also
γn ⊂ B(z1,M). Therefore, by Lemma 2.1, a subsequence, not relabeled, converges uniformly to a
limiting curve γ. We use the constant speed parametrization from [0, 1] for each γn, and by taking a
further subsequence if necessary, assume that le(γn)→ l as n→∞.

Since φ is continuous up to the boundary (see Remark 2.26), we have that Ωn converges to Ω (in the
Hausdorff distance with respect to the Euclidean metric). Thus, for any t ∈ [0, 1], we have

dist(γ(t), ∂Ω) = lim
n→∞

dist(γ(t), ∂Ωn). (3.44)

By the (uniform) convergence of γn to γ, we also have

lim
n→∞

|γ(t)− γn(t)| = 0. (3.45)

Now, (3.44) together with (3.45) gives

dist(γ(t), ∂Ω)1−p = lim
n→∞

dist(γn(t), ∂Ωn)
1−p.

Combined with Fatou’s Lemma and (3.43), this yields∫
γ

dist(z, ∂Ω)1−pds(z) =

∫ 1

0

dist(γ(t), ∂Ω)1−p|γ′(t)|dt ⩽
∫ 1

0

dist(γ(t), ∂Ω)1−pldt

=

∫ 1

0

lim
n→∞

dist(γn(t), ∂Ωn)
1−p|(γ′n(t))|dt

⩽ lim inf
n→∞

∫ 1

0

dist(γn(t), ∂Ωn)
1−p|(γ′n(t))|dt

= lim inf
n→∞

∫
γn

dist(z, ∂Ωn)
1−pds(z)

⩽ C(J, ‖E‖, p)|z1 − z2|2−p.

We have completed the proof of the general case.

4 Proof of sufficiency

In this section, we prove the sufficiency of the condition (1.1) in Theorem 1.1, but begin with an auxiliary
version. Namely, let 1 < p < p̂ < 2 and suppose that Ω is a Jordan domain with the property that there
exists a constant C such that for every pair of points z1, z2 ∈ R2 \Ω, one can find a curve γ joining them
in R2 \ Ω with ∫

γ

dist(z, ∂Ω)1−p̂ds(z) ⩽ C|z1 − z2|2−p̂. (4.1)

We claim that Ω is a W 1,p-extension domain. Write Ω̃ for the complementary domain of Ω.
Theorem 4.1. Let 1 < p < p̂ < 2 and let Ω ⊂ R2 be a bounded Jordan domain. Suppose that for all
z1, z2 ∈ Ω̃, there exists a curve γ ⊂ Ω̃ joining z1 and z2 such that (4.1) holds. Then Ω is a W 1,p-extension
domain and the norm of the extension operator depends only on p, p̂ and the constant C in (4.1).
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The proof of Theorem 4.1 is given in several steps. In the first step, in the following subsection, we
show that (4.1) also holds for initial arcs of hyperbolic rays Γ ⊂ Ω̃, up to a multiplicative constant.
In the second subsection, we introduce shadows of sets and use them to assign a collection of Whitney
squares of the domain Ω to each such Whitney square Q̃ of its complementary domain Ω̃ that satisfies
ℓ(Q̃) ⩽ 3diam(Ω). In the third subsection, we use these Whitney squares to construct our extension
operator. The fourth subsection gives a basic estimate that we use to control the extension. The fifth
subsection deals with the construction of additional intermediate squares and estimates for them. The
sixth subsection completes the proof.

Eventually, in the final subsection of this section, we prove Theorem 1.1 via Theorem 4.1 and an
approximation and compactness argument. For this, it is crucial that the norm of the extension operator
in Theorem 4.1 depends only on p, p̂ and C in the inequality (4.1) and that a uniform version of (4.1)
for some p̂ > p and for all of our approximating Jordan domains follows from (1.1) by Lemma 2.3 (see
Lemma 4.16 below).

Since we rely on compactness arguments, we do not obtain an explicit form for the extension operator
for Theorem 1.1. On the other hand, once we know that Ω is indeed a W 1,p-extension domain, an explicit
extension operator (a version of the Whitney extension operator) can be given [16,17,38]. We do not see
a way to directly show that this kind of concrete procedure works under our assumptions.

4.1 Transferring the condition to hyperbolic rays

According to the Riemann mapping theorem, there is a conformal map φ̃ : R2 \ D→ Ω̃. We refer to this
fixed map through Subsection 4.6 by φ̃. Since ∂Ω is a Jordan curve, the Carathéodory-Osgood theorem
allows us to extend φ̃ continuously to the boundary of D as a homeomorphism. We denote the extension
still by φ̃. Recall the definition of a hyperbolic ray from Subsection 2.3.
Lemma 4.2. Assume that (4.1) holds for Ω̃ for a bounded Jordan domain Ω. Let z1 ∈ ∂Ω and [z2, z3]

be an arc of the hyperbolic ray Γ ⊂ Ω̃ corresponding to z1. Then∫
[z2,z3]

dist(z, ∂Ω)1−p̂ds(z) ⩽ C ′|z2 − z3|2−p̂, (4.2)

where C ′ depends only on p̂ and the constant C in (4.1).
Proof. By symmetry, we may assume that z3 is after z2 on Γ when one moves towards infinity. Suppose
first that z2 6= z1. Let γ be a curve from (4.1) for the pair z2, z3. We use the notation from Subsection 2.7;
especially, we let γk be a subcurve of γ that joins the inner and outer boundaries of φ̃(A(z1, k)), provided
that [z2, z3] intersects at least three such sets. If [z2, z3] is contained in the union of two of these sets,
we claim that (4.2) follows from the bi-Lipschitz estimate from Lemma 2.13. Indeed, by the definition of
hyperbolic rays in R2 \D, φ̃−1([z2, z3]) is contained in B(φ̃−1(z3),

3
4 (|φ̃

−1(z3)|− 1)) if [z2, z3] is contained
in the union of two consecutive φ̃(A(z1, k)). Write G = B(φ̃−1(z3),

4
5 (|φ̃

−1(z3)| − 1)). Then the version
of (4.2) (with ∂Ω replaced by ∂G) holds for the radial segment φ̃−1([z1, z3]) = [φ̃−1(z2), φ̃

−1(z3)] ⊂ G

with a constant depending only on p̂. Hence, a change of variable together with Lemma 2.13 applied to
φ̃ in the set G ensures us that (4.2) holds for [z2, z3] with a constant depending only on p̂; notice that
dist(z, ∂φ̃(G)) ⩽ dist(z, ∂Ω) when z ∈ φ̃(G) since φ̃ is a homeomorphism.

Suppose then that [z2, z3] intersects at least three of the sets φ̃(A(z1, k)). For each k ∈ Z with

|φ̃−1(z1)− φ̃−1(z2)| ⩽ 2k−1 ⩽ 2k ⩽ |φ̃−1(z1)− φ̃−1(z3)|,

let
Zk = φ̃(S1

k) ∩ Γk,

where S1
k is the circle centered at φ̃−1(z1) and with radius 3× 2k−2.

Fix k ⩽ 2 as above. According to Lemma 2.31,

dist(Γk, ∂Ω) ∼ dist(Zk, ∂Ω) (4.3)
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and

le(Γk) ∼ dist(Γk, ∂Ω) (4.4)

with absolute constants. Hence,∫
Γk

dist(z, ∂Ω)1−p̂ds(z) ≲ dist(Zk, ∂Ω)
2−p̂. (4.5)

Next, we claim that
dist(Zk, ∂Ω) ≳ dist(γk, ∂Ω) (4.6)

for some absolute constant. Indeed, let Bk = B(Zk,
1
4dist(Zk, ∂Ω)). If γk ∩Bk 6= ∅, then by the triangle

inequality, we obtain the claim. For the other case, notice that Bk is a 4-Whitney-type set, and then by
Lemma 2.12, φ̃−1(Bk) is of λ-Whitney type for some absolute constant λ. Hence, (2.13) gives

dist(φ̃−1(Zk), S1) ∼ diam(φ̃−1(Bk)) (4.7)

with an absolute constant. By the geometry of A(z1, k) in R2 \ D, we have

dist(φ̃−1(Zk), φ̃
−1(γk)) ⩽ 4dist(φ̃−1(Zk), S1)

and
diam(φ̃−1(γk)) ⩾ 2dist(φ̃−1(Zk), S1).

Hence, with the version of (2.25) for R2 \ D and (4.7), we conclude that

Cap(φ̃−1(Bk), φ̃
−1(γk),R2 \ D) ⩾ δ(λ) > 0,

and the conformal invariance of capacity gives

Cap(Bk, γk, Ω̃) ⩾ δ(λ).

This estimate together with Lemma 2.17 yields

dist(Bk, γk) ⩽ C(λ)diam(Bk).

We then conclude (4.6) also in this case by the definition of Bk and the triangle inequality; indeed,

dist(γk, ∂Ω) ⩽ dist(Bk, ∂Ω) + dist(Bk, γk)

⩽ dist(Bk, ∂Ω) + C(λ)diam(Bk)

⩽ C(λ)dist(Zk, ∂Ω).

By Lemma 2.31,
ℓ(γk) ≳ ℓ(Γk)

with an absolute constant. Then, by (4.6), (4.3) and (4.4), this gives that there is a subcurve γ′k ⊂ γk
such that

dist(Zk, ∂Ω) ≳ dist(γ′k, ∂Ω)

and
le(γ′k) ∼ le(Γk)

with absolute constants. By combining this with (4.3) and (4.4), we conclude that∫
γk

dist(z, ∂Ω)1−p̂ds(z) ≳
∫
γ′
k

dist(z, ∂Ω)1−p̂ds(z) ≳ dist(Zk, ∂Ω)
2−p̂. (4.8)
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Now (4.5) and (4.8) give us the inequality∫
Γk

dist(z, ∂Ω)1−p̂ds(z) ⩽ C(λ)

∫
γk

dist(z, ∂Ω)1−p̂ds(z). (4.9)

Let us consider the remaining values of k. If k ⩾ 2, then A(z1, k) is a full annulus and of 8-Whitney
type. Especially,

dist(z, ∂Ω) ∼ dist(w, ∂Ω) (4.10)

for all z, w ∈ φ̃(A(z1, k)) since this set is of λ-Whitney type for an absolute λ by Lemma 2.12. Moreover,
le(φ̃−1(γk)) ⩾ le(φ̃−1(Γk)) since the former crosses A(z1, k) and the latter is a radial segment. Hence,
the bi-Lipschitz estimate from Lemma 2.13 gives that le(Γk) ⩽ C le(γk) with an absolute constant and
(4.9) follows from (4.10). The only remaining values of k to consider are those potential k with

2k−1 ⩽ |φ̃−1(z1)− φ̃−1(z3)| ⩽ 2k

or
2k−1 ⩽ |φ̃−1(z1)− φ̃−1(z2)| ⩽ 2k.

For such a k, (4.5) still holds and Lemma 2.6 shows that dist(Zk, ∂Ω) ∼ dist(Zk−1, ∂Ω) with absolute
constants. By our assumption, [z2, z3] is not contained in the union of two of our sets φ̃(A(z1, k)), and
hence these additional integrals over Γk are controlled by the earlier terms for which (4.8) holds.

We conclude from the previous paragraph and (4.9) that summing over k together with the first
paragraph of the proof yields (4.2) when z1 6= z2.

Finally if z1 = z2, we deduce (4.2) by picking wj ∈ [z1, z3] ∩ Ω̃ with wj → z1 and by applying the
conclusion from the case z1 6= z2 (to [wj , z3]) and the monotone convergence theorem.

4.2 Shadows of Whitney-type sets

Let Ω be a Jordan domain whose complementary domain Ω̃ satisfies (4.1). According to [30] (see also
[39, Lemma 2.1]), Ω̃ is then quasiconvex with a constant that depends only on p̂ and the constant C
in (4.1). Consequently, by the second part of Lemma 2.1, also the complement of Ω is quasiconvex with
the same constant. We conclude from Lemma 2.22 that Ω is J-John, where the John constant J depends
only on p̂ and the constant C in (4.1). We fix a John center x0 for Ω and a conformal map φ : D → Ω

with φ(0) = x0. By the Carathéodory-Osgood theorem, φ extends homeomorphically up to the boundary
and we refer also to the extension by φ. Our map φ will be fixed through Subsection 4.6. Recall from
Subsection 4.1 that φ̃ refers to a fixed exterior conformal map.

We assign a collection of “reflected” squares in the Whitney decomposition W of Ω to squares Q̃i in the
Whitney decomposition W̃ = {Q̃i} of the complementary domain Ω̃. This will actually only be needed
for those Q̃i for which ℓ(Q̃i) ⩽ 3diam(Ω). The construction of our extension operator will then rely on
these squares. We continue under the assumption that Ω̃ satisfies (4.1) and with the above φ and φ̃. In
what follows, we usually use the notation Ã to indicate that the set in question is contained in Ω̃.

Given a set Ã ⊂ Ω̃, we consider all the hyperbolic rays in Ω̃ passing through Ã, and define the shadow
SΩ̃(Ã) as the set of all the points, where these rays hit the boundary ∂Ω. Equivalently, by the invariance
of hyperbolic rays,

SΩ̃(Ã) = φ̃(πr(φ̃
−1(Ã))),

where πr is the radial projection to the unit circle.
Similarly, we define SΩ(A) for A ⊂ Ω, with the difference that the hyperbolic rays now begin from

φ(0). Then
SΩ(A) = φ(πr(φ

−1(A))).

When there is no risk of confusion, we drop the subindices and simply write S(·) for the respective
shadow.

We have the following properties.
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Lemma 4.3. Let A ⊂ Ω be a closed λ-Whitney-type set. Then S(A) is connected and

diamΩ(S(A)) ∼J diam(S(A)) ∼J,λ diam(A),

where the constant J is the John constant. Moreover, for any fixed M ⩾ 1 and each closed λ-Whitney-type
set Ã in the exterior domain Ω̃ of Ω with

diam(Ã) ⩽Mdiam(Ω),

S(Ã) is connected and
diam(S(Ã)) ⩾ c(λ,M)diam(Ã).

Proof. Let us begin with the case A ⊂ Ω. By the definition of Whitney-type sets, A is connected and
thus also φ−1(A) is connected. Therefore, φ−1(S(A)) = πr(φ

−1(A)) is connected, and so is S(A).
Next, by Lemma 2.12, φ−1(A) is a λ′-Whitney-type set with λ′ = λ′(λ). Moreover,

dist(φ−1(A), φ−1(S(A))) = dist(φ−1(A), πr(φ
−1(A))) = dist(φ−1(A), ∂D),

and hence the conformal capacity between φ−1(S(A)) and φ−1(A) in D is bounded from below by a
positive constant depending only on λ (see (2.25)). By conformal invariance of capacity, also

Cap(A,S(A),Ω) ⩾ δ(λ).

Let us prove that C(λ)diam(S(A)) ⩾ diam(A). By the monotonicity of capacity, we have

δ(λ) ⩽ Cap(A,S(A),Ω) ⩽ Cap(A,S(A),R2), (4.11)

which by Lemma 2.17 yields that

dist(A,S(A)) ⩽ C(λ)diam(S(A)). (4.12)

Hence, by the definition of Whitney-type sets,

diam(A) ≲ dist(A, ∂Ω) ⩽ dist(A,S(A)) ≲ diam(S(A)) (4.13)

with constants depending only on λ.
Since Ω is John, hyperbolic rays are John curves by Lemma 2.19. Then for each hyperbolic ray Γ ⊂ Ω

ending at w ∈ ∂Ω with Γ ∩A 6= ∅, the property (2.13) of λ-Whitney-type sets and the definition of John
curves give

dist(w,A) ⩽ C(J, λ)dist(A, ∂Ω) ⩽ C(J, λ)diam(A).

Thus,
diam(S(A)) ⩽ C(J, λ)diam(A),

and hence, by (4.13), we can find another constant C(J, λ) such that

1

C(J, λ)
diam(A) ⩽ diam(S(A)) ⩽ C(J, λ)diam(A). (4.14)

Finally, it follows from Lemma 2.29 that

diamΩ(S(A)) ∼ diam(S(A))

with constants depending only on J, and the asserted estimate follows by combining this with (4.14).
The connectivity of S(Ã) follows analogously to the above argument. Regarding the desired estimate

for diam(S(Ã)), we first notice that Ã contains a disk B = B(z0, r) with r = 1
λdiam(Ã) since it is of

λ-Whitney type. By the monotonicity of capacity, we know that

Cap(Ã, ∂Ω , Ω̃) ⩾ Cap(∂B, ∂Ω , Ω̃ \B). (4.15)
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Next, the Möbius transformation ϕ : z 7→ r2

z−z0
, given in complex notation, is bi-Lipschitz with a constant

depending only on λ in B(z0, Cr) \ B(z0, r) for C = 2λ(λ+ 1), and B(z0, Cr) \ B(z0, r) contains an arc
of ∂Ω of the diameter at least λr/M. We conclude that

dist(ϕ(∂B), ϕ(∂Ω)) ⩽ C(λ,M)diam(∂(ϕ(Ω))).

Hence, (2.27) (with U0 = ϕ(B)) gives

Cap(ϕ(∂B), ϕ(∂Ω) ,R2) = Cap(∂(ϕ(B)), ∂(ϕ(Ω)) , ϕ(R2 \ (B ∪ Ω))) ⩾ δ(λ,M). (4.16)

Monotonicity, conformal invariance of capacity and (4.15) and (4.16) allow us to conclude that

Cap(Ã, ∂Ω ,R2) ⩾ Cap(Ã, ∂Ω , Ω̃) ⩾ δ(λ,M). (4.17)

Now, Lemma 2.17 together with conformal invariance of capacity and (4.17) gives

dist(φ̃−1(Ã), ∂D) ⩽ C(M,λ).

Since φ̃−1(Ã) is of C(λ)-Whitney type by Lemma 2.12, we conclude that

diam(φ̃−1(Ã)) ∼λ dist(φ̃−1(Ã), ∂D) ⩽ C(M,λ).

This together with the version of (2.25) for R2 \ D and conformal invariance imply that

δ(λ,M) ⩽ Cap(φ̃−1(Ã), φ̃−1(S(Ã)),R2 \ D) = Cap(Ã, S(Ã), Ω̃).

By monotonicity of capacity, we further conclude that

δ(λ,M) ⩽ Cap(Ã, S(Ã),R2).

This estimate is the analog of (4.11) and hence we may complete the argument exactly as in the case of
Ω above.

The following lemma associates a Whitney square of Ω with a given closed boundary arc.
Lemma 4.4. For each closed nondegenerate subarc γ ⊂ ∂Ω, there exists a Whitney square Q ∈ W

satisfying

diam(S(Q)) ⩽ C(J)diam(γ), (4.18)
diam(γ) ⩽ C(J)diam(S(Q) ∩ γ) (4.19)

and

dist(Q, γ) ⩽ C(J)diam(γ). (4.20)

Here, C(J) depends only on J.

Proof. Given a closed nondegerate subarc γ, let α = φ−1(γ). Suppose first that le(α) > 1
2 . By

Lemma 2.30, φ is quasisymmetric with respect to the inner distance of Ω with η depending only on
J. Pick z1, z2 ∈ α such that

distΩ(φ(z1), φ(0)) = distΩ(φ(0), γ)

and
|z1 − z2| =

1

4
.

Recall that φ(zi) is rectifiably joinable, i.e., to φ(0) by Remark 2.20 for i = 1, 2. Since φ is homeomorphic
up to the boundary, we may pick points wj

1 and wj
2 along these rectifiable curves so that distΩ(w

j
1, φ(0))

tends to distΩ(z1, φ(0)), distΩ(w
j
1, w

j
2) tends to distΩ(φ(z1), φ(z2)), φ

−1(wj
1) tends to z1 and φ−1(wj

2)

tends to z2. Now
|0− φ−1(wj

1)| ⩽ 8|φ−1(wj
1)− φ−1(wj

2)|
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for all sufficiently large j and then the quasisymmetry of φ gives the estimate

distΩ(φ(0), w
j
1) ⩽ η(8)distΩ(w

j
1, w

j
2).

By letting j tend to infinity, we conclude that

distΩ(φ(0), γ) = distΩ(φ(z1), φ(0)) ⩽ η(8)distΩ(φ(z1), φ(z2)) ⩽ η(8)diamΩ(γ). (4.21)

By the John property (see Lemma 2.19), for each hyperbolic ray Γ ⊂ Ω, we have

distΩ(φ(0), ∂Ω) ⩾ J le(Γ).

Then the triangle inequality gives

distΩ(φ(0), γ) ⩾ distΩ(φ(0), ∂Ω) ⩾
J

2
diam(Ω). (4.22)

Moreover, Lemma 2.29 implies that
diam(γ) ∼J diamΩ(γ). (4.23)

By combining (4.23) with (4.21) and (4.22), we conclude that

diam(γ) ⩾ 1

C(J)
diam(∂Ω).

Therefore, if one chooses a Whitney square Q containing φ(0), then its shadow is ∂Ω, and (4.18) follows;
in this case, (4.19) holds trivially and (4.20) follows from (4.21) together with (4.23) since φ(0) ∈ Q.

When le(α) ⩽ 1
2 , we denote the midpoint of α by w, let

r =
sin( le(α)2 )

1 + 2 sin( le(α)2 )
, z = (1− 2r)w

and set B = B(z, r) (see Figure 6). Observe that by the assumption le(α) ⩽ 1
2 , the set B satisfies

2dist(B, ∂D) = 2r = diam(B),

and is of 2-Whitney type, and the radial projection of B is precisely α. Moreover, quasisymmetry of φ
easily gives

dist(φ(B), γ) ⩽ C(J)diam(φ(B)). (4.24)

ΩD

ϕ

ϕ(B)
α

w

γ

B

Figure 6 (Color online) The set B ⊂ D is chosen to be a Whitney-type set whose shadow is exactly α. Since φ(B) is also
of Whitney type, there are at most a fixed number of Whitney squares intersecting it. Therefore, one of these squares must
have a large shadow
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Consider the collection WB of all Whitney squares in W that intersects φ(B). Since φ(B) is a λ-
Whitney-type set by Lemma 2.12, for some absolute constant λ, this collection has no more than N

squares where N = N(λ) (see the discussion after Definition 2.10). Since φ is homeomorphic up to the
boundary, the shadow of φ(B) is precisely φ(α) = γ. We claim that the shadow of one of the Whitney
squares in WB , call it Q, satisfies

diam(S(Q) ∩ γ) ⩾ diam(γ)/N.

Towards this, since φ(B) ⊂
⋃

Q′∈WB
Q′, we have

γ = S(φ(B)) ⊂
⋃

Q′∈WB

S(Q′).

Suppose that for every Q′ ∈WB , we have

diam(S(Q′) ∩ γ) < diam(γ)/N.

Recall that γ is an arc and each S(Q′) is connected and hence also an arc. Since γ ⊂
⋃

Q′∈WB
S(Q′), we

deduce by the triangle inequality that

diam(γ) ⩽
∑

Q′∈WB

diam(S(Q′) ∩ γ) < diam(γ).

This gives a contradiction, and hence (4.19) follows.
Towards (4.18), first notice that φ(B) is of λ-Whitney type for an absolute λ by Lemma 2.12. Also, Q

as a Whitney square is of 4
√
2-Whitney type. Since Q intersects φ(B), the property (2.14) of intersecting

Whitney-type sets ensures that
diam(Q) ∼λ diam(φ(B)). (4.25)

By Lemma 4.3, we further have
diam(S(Q)) ∼J diam(Q) (4.26)

and
diam(φ(B)) ∼J diam(γ) (4.27)

since
S(φ(B)) = γ.

By combining (4.26) and (4.27) with (4.25), we conclude that

diam(S(Q)) ⩽ C(J)diam(γ),

as desired.
Finally, (4.20) follows by combining (4.24) with (4.25).

The definition of our extension operator in Subsection 4.3 will rely on the following existence result.
Lemma 4.5. Let Ω be a Jordan John domain with a constant J. There is a constant C(J) that depends
only on J so that the following holds. Given Q̃ ∈ W̃ , there exists Q ∈W so that

diam(S(Q))/C(J) ⩽ diam(S(Q̃)) ⩽ C(J)diam(S(Q) ∩ S(Q̃)) (4.28)

and
dist(Q,S(Q̃)) ⩽ C(J)diam(S(Q̃)). (4.29)

Moreover, if ℓ(Q̃) ⩽ 3diam(Ω), then

diam(Q̃) ⩽ C(J)diam(Q). (4.30)
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Proof. Since Q̃ is of 4
√
2 -Whitney type, Lemma 4.3 shows that S(Q̃) is a nondegenerate subarc of

∂Ω. Thus, by Lemma 4.4, there exists a Whitney square Q ∈ W that satisfies both (4.28) and (4.29)
with constants depending only on J. Finally, (4.30) follows from these properties of Q together with
Lemma 4.3.

Notice that a single Q ∈ W may well satisfy the requirement in Lemma 4.5 for many distinct Q̃, of
different sizes: S(Q̃) can be much larger in size than Q̃ (see Figure 7). We close this subsection with
technical lemmas that will eventually allow us to deal with the distribution of such squares Q̃.
Lemma 4.6. Let C ⩾ 1. Suppose that Q ∈W and suppose that γ2, . . . , γn ⊂ S(Q) are pairwise disjoint
arcs so that

diam(S(Q)) ⩽ Cdiam(γj)

for each 1 ⩽ j ⩽ n. Then n ⩽ N , where N depends only on C and the John constant J of Ω.
Proof. Let γ1, . . . , γn be pairwise disjoint arcs contained in S(Q) so that diam(S(Q)) ⩽ Cdiam(γj)

for each 1 ⩽ j ⩽ n. In order to bound n, it suffices to associate each γj with a disk Bj of radius
r ⩾ diam(S(Q))/C ′ so that these disks are pairwise disjoint and all have the distance to S(Q) no more
than C ′diam(S(Q)), for a constant C ′ depending only on C and J.

Let wj be the midpoint of φ−1(γj),

rj =
sin(

le(φ−1(γj))
2 )

1 + 2 sin(
le(φ−1(γj))

2 )
, zj = (1− 2rj)wj

and set Bj = B(zj , rj). Then the radial projection of Bj is precisely φ−1(γj) and each Bj is of 4-Whitney
type. Since the arcs γj are pairwise disjoint, so are also φ−1(γj) and consequently also the sets Bj . Then
the sets φ(Bj) are also pairwise disjoint. From Lemma 4.3, it follows that

diam(φ(Bj)) ⩾ C(J)diam(γj)

and (by (4.12))

dist(φ(Bj), S(Q)) ⩽ dist(φ(Bj), γj) ⩽ C(J)diam(γj) ⩽ C(J)diam(S(Q)).

The claim follows by recalling that a λ-Whitney-type set A contains a disk of radius 1
λdiam(A) and that

Cdiam(γj) ⩾ diam(S(Q)); the sets φ(Bj) are of λ-Whitney type for an absolute λ by Lemma 2.12.

For a Whitney-type set Ã ⊂ Ω̃ and a hyperbolic ray Γ with Γ∩Ã 6= ∅, corresponding to a point z ∈ ∂Ω,
we define the tail of Γ with respect to Ã to be the arc of Γ between z and Ã, i.e., Γz,w ⊂ Γ with w the
first point in Ã when travelled towards infinity from z. Denote this set by TΩ̃(Γ, Ã).

Ω
S(Q̃)

Q̃

Figure 7 (Color online) The shadow S(Q̃) of a Whitney square Q̃ of the complementary domain Ω̃ may have a much
larger diameter than the square in question
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Lemma 4.7. Let Ã ⊂ Ω̃ be a closed λ-Whitney-type set so that Ω̃ \ Ã is connected and let Γ be a
hyperbolic ray with Γ ∩ Ã 6= ∅. Set W̃ (Ã,Γ) = {Q̃j ∈ W̃ : Q̃j ∩ TΩ̃(Γ, Ã) 6= ∅}. Then∑

Q̃j∈W̃ (Ã,Γ)

ℓ(Q̃j)
2−p̂ ⩽ Cdiam(S(Ã))2−p̂,

where C depends only on p̂, λ and the constant in (4.1).
In order to prove this, we need an auxiliary lemma and a definition.
We define the tail of Ã by setting

TΩ̃(Ã) = {y ∈ Ω̃ | y ∈ TΩ̃(Γ, Ã) for some hyperbolic ray Γ}.

Equivalently,
TΩ̃(Ã) = φ̃(TR2\D(φ̃

−1(Ã))).

When there is no danger of confusion, we simply write T instead of T(·).
We need an estimate for the sizes of those Whitney squares that intersect a given tail. Such estimates

follow rather easily in the complement of the disk (see Figure 8), but our exterior domain case requires
work.
Lemma 4.8. Let Ã ⊂ Ω̃ be a closed λ-Whitney-type set with diam(Ã) ⩽ 3diam(Ω). Assume additionally
that Ω̃ \ Ã is connected. Let Q̃ ∈ W̃ satisfy Q̃ ∩ T (Ã) 6= ∅. Then

ℓ(Q̃) ⩽ C(λ)diam(S(Ã)).

Proof. Fix Q̃ ∈ W̃ with Q̃ ∩ T (Ã) 6= ∅. We may assume that λ ⩾ 4
√
2 so that also Q̃ is of λ-Whitney

type. Let us first prove that
diam(Q̃) ≲ diam(Ω) (4.31)

with a constant depending only on λ.

Towards this claim, recall from the definition of λ-Whitney type that there exists a disk

B

(
z0,

1

λ
diam(Ã)

)
⊂ Ã.

Next, by (2.26), we have
Cap(Ã, ∂Ω, Ω̃) = Cap(∂Ã, ∂Ω, Ω̃ \ Ã). (4.32)

We continue by arguing as in the proof of Lemma 4.3.
Since the Möbius transformation ϕ : z 7→ diam(Ã)2

(z−z0)
is C(λ)-bi-Lipschitz in the set

B(z0, (2 + λ)diam(Ã)) \B(z0, diam(Ã)/λ)

z

Γ

Γ′

ϕ̃−1(Q̃z) ϕ̃−1(Ã)

ϕ̃−1(Q̃)

ϕ̃−1(T (Ã))

Figure 8 (Color online) In the case diam(φ̃−1(Q̃)) < c1diam(φ̃−1(S(Ã)), we argue using an extra Whitney-type set
φ̃−1(Q̃z) ⊂ φ̃−1(T (Ã)) of roughly the same size as φ̃−1(Ã) that is also near φ̃−1(Ã)
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and this set contains both ∂Ã and an arc of ∂Ω of a diameter at least diam(Ã)/3, we have

dist(ϕ(Ã), ϕ(∂Ω)) ⩽ C ′(λ)diam(ϕ(∂Ω)).

Hence, (2.27) (with U0 = R2 \ ϕ(Ã)) gives the estimate

Cap(ϕ(∂Ã), ϕ(∂Ω), ϕ(Ω̃ \ Ã)) ⩾ δ(λ).

Thus,
Cap(Ã, ∂Ω, Ω̃ \ Ã) ⩾ δ(λ) (4.33)

by the conformal invariance of capacity; notice that ϕ is conformal in the ring domain Ω̃ \ Ã.
Next, as φ̃−1 also preserves conformal capacity, monotonicity together with the inequalities (4.32)

and (4.33) gives
Cap(φ̃−1(Ã), ∂D,R2) ⩾ Cap(φ̃−1(Ã), ∂D,R2 \ D) ⩾ δ(λ). (4.34)

Hence, Lemma 2.17 and the fact that φ−1(Ã) is of λ′-Whitney type by Lemma 2.12 yield

dist(φ̃−1(Ã), ∂D) ⩽ C(λ). (4.35)

By (2.13) and the fact that φ̃−1(TΩ̃(Ã)) = TR2\Dφ̃
−1(Ã), we deduce that

dist(w,D) ⩽ C(λ) (4.36)

for every w ∈ φ̃−1(T (Ã)). Since Q̃ ∩ T (Ã) 6= ∅ and φ̃−1(Q̃) is also of λ′-Whitney type by Lemma 2.12,
(4.36) gives us the estimate

diam(φ−1(Q̃)) ⩽ C(λ)dist(φ−1(Q̃),D) ⩽ C(λ). (4.37)

Now monotonicity and conformal invariance of capacity together with (2.25) and (4.37) yield

Cap(Q̃, ∂Ω,R2) ⩾ Cap(Q̃, ∂Ω, Ω̃) = Cap(φ−1(Q̃), ∂D,R2 \ D) ⩾ δ(λ).

Since Q̃ is a Whitney square, (4.31) follows from this by Lemma 2.17.
Recall again that the preimages of both Ã and Q̃ are of λ′-Whitney type with λ′ = λ′(λ). Hence, if

Q̃ ∩ Ã 6= ∅, then ℓ(Q̃) ∼ diam(Ã) by (2.14), and our asserted estimate follows from Lemma 4.3. Hence,
we may assume that Q̃ ∩ Ã = ∅.

We prove the claim of the lemma first under the additional assumption that

diam(φ̃−1(Q̃)) ⩾ c1diam(φ̃−1(S(Ã))), (4.38)

where
c1 = min

{
1

9
,
1

6λ′
,

1

8λ′2

}
. (4.39)

To begin, since φ̃−1(Ã) is of λ′-Whitney type, (4.35) together with Lemma 4.3 gives

diam(φ̃−1(Ã)) ⩽ C(λ, λ′)diam(S(φ̃−1(Ã))). (4.40)

Since Q̃ ∩ TΩ̃(Ã) 6= ∅, we can pick a point

z ∈ φ̃−1(Q̃) ∩ φ̃−1(TΩ̃(Ã)) = φ−1(Q̃) ∩ TD\D(φ̃
−1(Ã)).

Then the hyperbolic ray (radial line) through z intersects φ̃−1(Ã). Since φ̃−1(Ã) is of λ′-Whitney
type, the length of the segment of this radial line between ∂D and φ̃−1(Ã) is no more than
C(λ′)dist(φ̃−1(Ã), S(φ̃−1(Ã))). Let I be the subsegment between z and φ̃−1(Ã). Then

le(I) ≲ C(λ′)dist(φ̃−1(Ã), S(φ̃−1(Ã))) = C(λ′)dist(φ̃−1(Ã), ∂D).
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Recalling that φ̃−1(Ã) is of λ′-Whitney type with λ′ = λ′(λ), we see that this in combination with (4.38)
and (4.40) gives

le(I) ≲ diam(φ−1(Ã)) ≲ diam(φ̃−1(Q̃)) (4.41)

with constants depending only on λ. Since φ̃−1(Q̃) is of λ′-Whitney type, we deduce that le(I) ≲ |z| − 1.
Because I is also a radial segment with z the closest point to ∂D, it follows that the number of the
Whitney squares of R2 \D that intersects I is at most N = N(λ′). Recalling that λ′ = λ′(λ), we can join
φ̃−1(Ã) and φ̃−1(Q̃) by a chain of no more than N(λ) Whitney squares. Then by Lemma 2.12 and the
fact that a λ̂-Whitney-type set intersects at most N(λ̂) Whitney squares, there also exists a chain of no
more than N ′ = N ′(λ) Whitney squares of Ω̃ joining Ã and Q̃. Since both Ã and Q̃ are of λ-Whitney
type, their diameters are comparable by (2.14) to diameters of those Whitney squares that intersect them
and the diameters of any two consecutive Whitney squares in our chain are comparable. It follows that
diam(Q̃) ⩽ C(λ)diam(Ã). By Lemma 4.3 and the assumption that

diam(Ã) ⩽ 3diam(Ω),

we conclude that diam(Q̃) ⩽ C(λ)diam(Ã) ⩽ C(λ)diam(S(Ã)).

We are left to consider the case where

diam(φ̃−1(Q̃)) < c1diam(φ̃−1(S(Ã))). (4.42)

If Q̃ ⊂ T (Ã), then by Lemma 4.3 with (4.31), we have

diam(Q̃) ≲ diam(S(Q̃)) ≲ diam(S(Ã)).

If Q̃ is not contained in T (Ã), let d = diam(φ̃−1(Q̃)). Let w1 and w2 be the endpoints of φ̃−1(S(Ã)).

By (4.42) and (4.39), we have
d < 6λ′d ⩽ diam(φ̃−1(S(Ã))), (4.43)

and it follows that φ̃−1(Q̃) intersects only one of the hyperbolic rays from w1 and w2 to infinity. Let Γ be
this hyperbolic ray. Also, let Γ′ be the hyperbolic ray in R2 \D, which intersects φ̃−1(T (Ã)) and satisfies

dist(Γ,Γ′) = 2λ′d; (4.44)

the existence of Γ′ follows from (4.43). Let z be the point on Γ′ with |z| = 1 + d (see Figure 8). Let
Q̃z be a Whitney square so that z ∈ φ̃−1(Q̃z). Then φ̃−1(Q̃z) is also of λ′-Whitney type as Q̃z is of
4
√
2-Whitney type and we assume that λ ⩾ 4

√
2. Hence, by Definition 2.10 of λ′-Whitney-type sets,

(4.39) and (4.42), we conclude that

diam(φ̃−1(Q̃z)) + dist(φ̃−1(Q̃z), ∂D) ⩽ λ′d+ d <
1

4λ′
diam(φ̃−1(S(Ã))), (4.45)

where we used the fact that c1 ⩽ 1
8λ′2 ⩽ 1

4λ′(λ′+1) .

Next, φ̃−1(S(Ã)) = S(φ−1(Ã)) = πr(φ̃
−1(Ã)), where πr is the radial projection. Since πr is a

contraction, diam(φ̃−1(Ã)) > 0 and φ̃−1(Ã) is of λ′-Whitney type, we have

1

4λ′
diam(φ̃−1(S(Ã))) <

1

λ′
diam(φ̃−1(Ã)) ⩽ dist(φ̃−1(Ã), ∂D).

By combining this estimate with (4.45), we conclude that for any point x ∈ φ̃−1(Q̃z),

dist(x, ∂D) ⩽ diam(φ̃−1(Q̃z)) + dist(φ̃−1(Q̃z), ∂D) < dist(φ̃−1(Ã), ∂D); (4.46)

especially,
φ̃−1(Q̃z) ∩ φ̃−1(Ã) = ∅.

Furthermore, since
diam(φ̃−1(Q̃z)) ⩽ λ′d,
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by (4.43) and (4.44), we know that φ̃−1(Q̃z) does not intersect either of our two hyperbolic rays in R2 \D
from the endpoints w1 and w2 of φ̃−1(S(Ã)). This implies that

S(φ̃−1(Q̃z)) ⊂ φ̃−1(S(Ã)).

This, together with (4.46), yields φ̃−1(Q̃z) ⊂ φ̃−1(T (Ã)), or equivalently, Q̃z ⊂ T (Ã). Since Q̃z ⊂ T (Ã)

and diam(Q̃z) ≲ diam(Ω) by (4.31), Lemma 4.3 gives

diam(Q̃z) ≲ diam(S(Q̃z)) ≲ diam(S(Ã)). (4.47)

Pick ẑ ∈ φ̃−1(Q̃)∩Γ. Since φ̃−1(Q̃) is of λ′-Whitney type, we have |ẑ|−1 ∼ d with a constant depending
only on λ′. Let z1 be the point on Γ with |z1| = 1 + 2d and let z2 be a point on Γ′ with |z2| = 1 + 2d.

Consider the curve γ obtained by concatenation from the part of Γ between ẑ and z1, the part of Γ′

between z and z2 and a shorter one of the circular arcs on S(0, 1 + 2d) joining z1 and z2. Then the
number of Whitney squares of R2 \ D intersecting γ is at most N(λ′). We again rely on Lemma 2.12
and the fact that a λ̂-Whitney-type set intersects at most N(λ̂) Whitney squares to conclude that there
also exists a chain of no more than N ′ = N ′(λ) Whitney squares of Ω̃ joining Q̃z to Q̃. It follows that
diam(Q̃z) ∼ diam(Q̃) and hence the desired estimate follows from (4.47).

Proof of Lemma 4.7. Let Γ be a hyperbolic ray that intersects Ã. Denote by Γ0 the tail of Γ with
respect to Ã.

We claim that le(Γ0) ⩽ Cdiam(S(Ã)) with a constant that depends only on our data: p̂ and the
constant C in (4.1). To begin, suppose that Q̃ ∈ W̃ intersects Γ0. Then Q̃ ∩ T (Ã) 6= ∅, and hence
Lemma 4.8 gives

ℓ(Q̃) ⩽ Cdiam(S(Ã)) (4.48)

with a constant that depends only on λ. Next, (4.48) yields that

dist(z, ∂Ω) ⩽ 4
√
2Cdiam(S(Ã)) (4.49)

whenever z ∈ Γ0.

By (4.49) and Lemma 4.2, we have

diam(S(Ã))1−p̂ le(Γ0) ⩽ C

∫
Γ0

dist(z, ∂Ω)1−p̂ds(z) ⩽ C1ℓ(Γ0)
2−p̂, (4.50)

where C depends only on λ and C1 depends only on p̂, λ and the constant in (4.1). This together with
the assumption that p̂ > 1 results in

le(Γ0) ⩽ C
1/(p̂−1)
1 diam(S(Ã)). (4.51)

By combining (4.50) with (4.51), we conclude that∫
Γ0

dist(z, ∂Ω)1−p̂ds(z) ⩽ C
(2−p̂)/(p̂−1)
1 diam(S̃(Ã))2−p̂. (4.52)

We now employ (4.52) to prove our claim.
Recall that W̃ (A,Γ) consists of those Q̃j ∈ W̃ that intersect Γ0. Since each Whitney square has at most

20 neighboring squares, we can distribute the squares in W̃ (A,Γ) into no more than 21 subcollections
{W̃k}21k=1 such that in each of the subcollections, the squares are pairwise disjoint. Next, for any two
distinct Q̃i, Q̃j ∈ W̃k, by Lemma 2.9, we have

11

10
Q̃i ∩

11

10
Q̃j = ∅.

Clearly, for each Q̃j ∈ W̃ (A,Γ), we have

H1

(
11

10
Q̃j ∩ Γ0

)
⩾ 1

10
ℓ(Q̃j),
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where H1 denotes the 1-dimensional Hausdorff measure. Recall that

ℓ(Q̃j) ⩽ dist(Q̃j , ∂Ω) ⩽ 4
√
2 ℓ(Q̃j).

Hence, (4.52) gives

∑
Q̃j∈W̃ (Ã,Γ)

ℓ(Q̃j)
2−p̂ ≲

13∑
k=1

∑
Q̃j∈W̃k

∫
Γ0∩ 11

10 Q̃j

dist(z, ∂Ω)1−p̂ds

≲
∫
Γ0

dist(z, ∂Ω)1−p̂ds ≲ diam(S(Ã))2−p̂.

This completes the proof.

4.3 Definition of the extension operator in the Jordan case

Recall from Subsection 4.2 that our conformal map φ : D → Ω satisfies φ(0) = x0, where x0 is a fixed
John center of Ω. Let

BΩ = B(x0, diam(Ω)).

Then Ω ⊂ BΩ. Recall from Lemma 2.9 that

ℓ(Q̃) ⩽ dist(Q̃, ∂Ω)

for each Q̃ ∈ W̃ , the Whitney decomposition of Ω̃. Then, if Q̃ ∩BΩ 6= ∅, we obtain by definition that

ℓ(Q̃) ⩽ dist(Q̃, ∂Ω) ⩽ diam(Ω).

Also, if Q̃′ ∈ W̃ is a neighbor of Q̃ with Q̃ ∩BΩ 6= ∅, then

ℓ(Q̃′) ⩽ dist(Q̃′, ∂Ω) ⩽ (1 +
√
2)dist(Q̃, ∂Ω) ⩽ 3diam(Ω).

Hence, the side lengths of all the Whitney squares Q̃ that intersect BΩ and of all their neighbors are at
most 3diam(Ω).

Let C(J) be the constant from Lemma 4.5. For each Q̃i ∈ W̃ with ℓ(Q̃i) ⩽ 3diam(Ω), we consider
the collection Wi of all squares Q ∈W that satisfy the conclusions of Lemma 4.5 for this value of C(J).
Then this collection is non-empty. We have to choose one Q from this collection. Since any choice will
work, we may proceed as follows. Recall that W can be written as {Q1, Q2, . . . }. We pick the Qj ∈ Wi

of smallest index j and define
R(Q̃i) = Qj .

It may happen that R(Q̃i) = R(Q̃k) even when k 6= i and there may well be squares Q ∈W for which
there is no Q̃i with R(Q̃i) = Q. In fact, the number of distinct Q̃i with R(Q̃i) = Q is always finite (see
Lemma 4.12 in Subsection 4.5) but we do not have a uniform bound on the number of them. Nevertheless,
Lemma 4.7 with work would allow us to control the sum of ℓ(Q̃i)

2−p̂ for the Q̃i that satisfy R(Q̃i) = Q.

However, this would not suffice for our final estimate, as certain intermediate Whitney squares also come
into the estimate. To overcome this, we eventually prove Lemma 4.13 that takes into consideration also
these intermediate squares.

Pick a collection of functions ϕi ∈ C∞(Ω̃) so that each ϕi is compactly supported in 11
10 Q̃i, |∇ϕi| ≲

ℓ(Q̃i)
−1 and ∑

i

ϕi(x) = 1

for all x ∈ Ω̃. Then the support of ϕi and that of ϕj have no intersection unless Q̃i ∩ Q̃j 6= ∅ (see [23] for
the existence of such a partition of unity {ϕi}).
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Given u ∈W 1,p(Ω) and Q̃i ∈ W̃ with ℓ(Q̃i) ⩽ 3diam(Ω), we set

ai = –
∫

R(Q̃i)

u(z)dz =
1

|R(Q̃i)|

∫
R(Q̃i)

u(z)dz,

and we define Eu(x) = u(x) in Ω and

Eu(x) =
∑
i

aiϕi(x) (4.53)

for x ∈ BΩ \ Ω. Here, the sum runs over those i for which ℓ(Q̃i) ⩽ 3diam(Ω). We prove that
‖Eu‖W 1,p(BΩ\Ω) ≲ ‖u‖W 1,p(Ω). We have not yet defined Eu on ∂Ω. Since ∂Ω is of area zero by
Lemma 2.24, this is not an issue, and we simply let Eu(x) = 0 for points in ∂Ω.

Remark 4.9. A reader familiar with the extension operator employed in [23] perhaps wonders why
we have chosen R(Q̃i) via the shadow of Q̃i instead of picking a Whitney square Q of the diameter
comparable to that of Q̃i and at distance comparable to the diameter of Q̃i. Actually, such a square can
be found as Ω is John, but we have not been able to establish useful estimates for the difference of averages
over reflections of neighboring squares under this kind of a choice. One should view our construction of
R as a kind of reflection via harmonic measure. In fact, the Jordan case in the setting of [23] is that
of a quasidisk and for them our choice of R(Q̃i) can be checked to conform with the one used in [23].
We control the above difference of averages via suitable John subdomains of Ω. In our setting, these
subdomains may well have bad overlaps contrary to what happens in [23] and in our adaptation of this
technique in Section 3 (see (3.42)). The key point in what follows will be to obtain control on the overlaps
in terms of the squares Q̃i.

4.4 Basic estimate

In order to estimate |∇Eu| for the operator defined in (4.53), we need control on the differences of the
averages of u over pairs of Whitney squares. Towards this, denote by ̂|∇u| the zero extension of |∇u|,
and by M the Hardy-Littlewood maximal operator.
Lemma 4.10. Given distinct Whitney squares Q,Q′ ⊂ Ω such that

distΩ(S(Q), S(Q′)) ≲ ℓ(Q) ∼ ℓ(Q′), (4.54)

we have ∣∣∣∣ –
∫

Q

u(z)dz − –
∫

Q′
u(z)dz

∣∣∣∣ ⩽ C0ℓ(Q)−1

∫
Q

M( ̂|∇u|)(z)dz.
Here, C0 depends only on J and the constants in (4.54).
Proof. Since Ω is John and φ(0) is a John center of Ω, φ is η-quasisymmetric with respect to the
inner distance by Lemma 2.30, where η depends only on the John constant J. Next, dist(A, ∂D) =

dist(A,S(A)) for each A ⊂ D. Since φ−1(Q), φ−1(Q′) are of λ-Whitney type for some absolute constant
λ by Lemma 2.12, we conclude that

dist(φ−1(Q), φ−1(S(Q))) ⩽ C(λ)diam(φ−1(Q)) (4.55)

and
dist(φ−1(Q′), φ−1(S(Q′))) ⩽ C(λ)diam(φ−1(Q′)).

Let us show that quasisymmetry of φ allows us to translate (4.55) and its analog for Q′ to Ω. Pick
z1 ∈ φ−1(Q) and z2 ∈ φ−1(S(Q)) such that

dist(φ−1(Q), φ−1(S(Q))) = |z1 − z2|, (4.56)

and let z3 ∈ φ−1(Q) be a point such that

diam(φ−1(Q)) ⩽ 2|z1 − z3|. (4.57)
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Recall that φ(z2) is rectifiably joinable, i.e., to φ(0) by Remark 2.20. Pick points wj along this rectifiable
curve so that wj tend to φ(z2) and distΩ(φ(z1), wj) tends to distΩ(φ(z1), φ(z2)). Since φ is homeomorphic
up to boundary, it follows that φ−1(wj) tend to z2. Hence, by (4.55)–(4.57), we have

|z1 − φ−1(wj)| ⩽ C(λ)|z1 − z3|

when j is sufficiently large. Then the quasisymmetry of φ gives

distΩ(φ(z1), wj) ⩽ C(J, λ)distΩ(φ(z1), φ(z3))

for all sufficiently large j. Since distΩ(φ(z1), wj) tends to distΩ(φ(z1), φ(z2)), we deduce that

distΩ(φ(z1), φ(z2)) ⩽ C(J, λ)distΩ(φ(z1), φ(z3)).

Hence,
distΩ(Q,S(Q)) ≲ diamΩ(Q) ∼ ℓ(Q) (4.58)

with constants depending only on λ and J. Similarly,

distΩ(Q
′, S(Q′)) ≲ diamΩ(Q

′) ∼ ℓ(Q′). (4.59)

By the triangle inequality (see Lemma 2.16), (4.58), (4.59), (4.54) and Lemma 4.3, we conclude that

distΩ(Q,Q
′) ≲ distΩ(Q,S(Q)) + diamΩ(S(Q)) + distΩ(S(Q), S(Q′))

+ diamΩ(S(Q
′)) + distΩ(Q,S(Q

′))

≲ ℓ(Q)

with constants depending only on λ and J . By Lemma 2.7, we deduce from this that the length of the
hyperbolic segment Γ between the centers of Q and Q′ is no more than a constant (depending only on
the constants in (4.54) and the John constant J) multiple of ℓ(Q).

Next, we construct a John subdomain ΩQ,Q′ ⊂ Ω∩CQ of the diameter no more than Cℓ(Q), containing
both Q and Q′, where C depends only on the John constant J . Towards this, set

ΩQ,Q′ = Q ∪Q′ ∪
⋃
z∈Γ

B(z, 3−1dist(z, ∂Ω)),

where Γ is the above hyperbolic segment between the centers of Q and Q′. To see that ΩQ,Q′ is John, let
z0 be the middle point (in the sense of the length) of Γ and consider, for a given z ∈ ΩQ,Q′ , the following
curve γ: the first part of the curve is a line segment from z to z1 ∈ Γ, where z ∈ B(z1, 3

−1dist(z1, ∂Ω))

or z1 is the center of Q (or Q′) if z ∈ Q (or z ∈ Q′), and the second part coincides with Γ[z1, z0]. Since a
simply connected John domain Ω is (quantitatively) inner uniform and we can use hyperbolic segments
as the curves required in (2.39) (see Definition 2.27 and Lemma 2.28), it follows that the above curve is
a John curve of ΩQ,Q′ between z and z0, with a constant depending only on J.

By letting
a = –

∫
ΩQ,Q′

udz, aQ = –
∫

Q

u(z)dz, aQ′ = –
∫

Q′
u(z)dz,

the Poincaré inequality on ΩQ,Q′ from [2] (with a constant depending only on J) and (4.54) imply

|aQ − aQ′ | ⩽ |aQ − a|+ |aQ′ − a| ≲ –
∫

Q

|u− a|dz + –
∫

Q′
|u− a|dz

≲ ℓ(Q)−1

∫
ΩQ,Q′

|∇u(z)|dz ≲ ℓ(Q) –
∫

CQ

̂|∇u|(z)dz
≲ ℓ(Q) –

∫
Q

M( ̂|∇u|)(z)dz ≲ ℓ(Q)−1

∫
Q

M( ̂|∇u|)(z)dz.
This completes the proof.
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4.5 Intermediate Whitney squares

We employ Lemma 4.10 to estimate |aR(Q̃i)
− aR(Q̃j)

| for pairs of neighboring squares Q̃i and Q̃j .

Unfortunately, the reflected squares need not have comparable size (see Figure 9), and hence we cannot
always directly rely on Lemma 4.10. To fix this problem, we construct chains of suitable intermediate
Whitney squares in order to be able to use our estimate. Each of these chains consists of a finite number
of elements, but there is no uniform bound for these numbers.
Lemma 4.11. Let Q̃i and Q̃j be distinct squares so that Q̃i ∩ Q̃j 6= ∅ and

ℓ(Q̃i), ℓ(Q̃j) ⩽ 3diam(Ω).

Suppose that diam(S(Q̃i)) ⩽ diam(S(Q̃j)). Then there exist

l = l(i, j) ∈ N and G(Q̃i, Q̃j) := {Q0, . . . , Ql}

consisting of squares of W so that

Q0 = R(Q̃i) and Ql = R(Q̃j), (4.60)

for 0 ⩽ n ⩽ l − 1, we have the estimate

distΩ(S(Q
n), S(Qn+1)) ≲ ℓ(Qn) ∼ ℓ(Qn+1), (4.61)

and for 0 ⩽ m ⩽ l, we have the estimate

ℓ(Qm) ∼ 2−mdiam(S(Q̃j)) (4.62)

with constants depending only on J.

Proof. Let distinct squares Q̃i and Q̃j with Q̃i ∩ Q̃j 6= ∅ satisfy both diam(S(Q̃i)) ⩽ diam(S(Q̃j)) and
ℓ(Q̃i), ℓ(Q̃j) ⩽ 3diam(Ω). If

1

8
diam(S(Q̃j)) ⩽ diam(S(Q̃i)), (4.63)

we set l(i, j) = 1 and define Q0 = R(Q̃i) and Q1 = R(Q̃j). Then by Lemmas 4.3 and 4.4 and the fact
that Q̃i ∩ Q̃j 6= ∅, we have that (4.61) holds with constants depending only on J . Moreover, (4.62) holds
with an absolute constant.

Suppose that (4.63) fails. Set Q0 = R(Q̃i). Pick a connected closed set F̃ 1 (referred to as a fake square)
such that Ω̃ \ F̃ 1 is connected,

Q̃i ⊂ F̃ 1 ⊂ Q̃i ∪ Q̃j , S(Q̃i) ⊂ S(F̃ 1)

Ω

Q̃1

Q̃2

Q1

Q2

Figure 9 (Color online) The shadows of neighboring squares Q̃1 and Q̃2 can differ significantly in size from each other.
Consequently, the reflected squares Q1 and Q2 may be of very different sizes
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and
2diam(S(F̃ 1)) = diam(S(Q̃i ∪ Q̃j)). (4.64)

The existence of F̃ 1 is clear since φ̃ : R2 \ D → Ω̃ is a homeomorphism and conformal outside D. For
example, we can construct F̃ 1 in the following way. Since φ̃ is a homeomorphism, we know that both
φ̃−1(∂Q̃i) and φ̃−1(∂Q̃j) are Jordan curves, and they intersect each other. Pick z ∈ ∂Q̃i ∩ ∂Q̃j . Then
parameterizing φ̃−1(∂Q̃j) via γ : [0, 1] → φ̃−1(∂Q̃j) with γ(0) = γ(1) = z, by continuity, we see that
there is 0 < t < 1 such that by letting F̃ 1 = φ̃(γ[0, t] ∪ Q̃i), we have that (4.64) holds; notice that the
preimages under φ̃ of hyperbolic rays are radial rays, and then φ̃−1(S(∂Q̃j)) = φ̃−1(S(Q̃j)). Then by
our construction, it is clear that Q̃i ⊂ F̃ 1 ⊂ Q̃i ∪ Q̃j and Ω̃ \ F̃ 1 is connected. Hence, F̃ 1 is a desired set.

Notice that F̃ 1 is a Whitney-type set since ℓ(Q̃i) ∼ ℓ(Q̃j) ∼ diam(F̃ 1) and Q̃i ⊂ F̃ 1. By Lemma 4.4,
there is a Whitney square Q1 ∈W such that

diam(S(Q1)) ⩽ C(J)diam(S(F̃ 1))

and
diam(S(F̃ 1)) ⩽ C(J)diam(S(Q1) ∩ S(F̃ 1)),

where C(J) depends only on J . We did not need the assumption that Ω̃ \ F̃ 1 is connected above; we will
later use it in order to apply Lemma 4.7.

Next, we pick a connected closed set F̃ 2 such that Ω̃ \ F̃ 2 is connected, Q̃i ⊂ F̃ 2 ⊂ F̃ 1 ⊂ Q̃i ∪ Q̃j ,
S(Q̃i) ⊂ S(F̃ 2) and

4diam(S(F̃ 2)) = diam(S(Q̃i ∪ Q̃j)),

and select a Whitney square Q2 ⊂ Ω such that

diam(S(Q2)) ⩽ C(J)diam(S(F̃ 2))

and
diam(S(F̃ 2)) ⩽ C(J)diam(S(Q2) ∩ S(F̃ 2)),

where C(J) depends only on J. We continue this process to find squares Ql ∈W until we have

1

2
diam(S(F̃ l)) ⩽ diam(S(Q̃i)) ⩽ diam(S(F̃ l))

for some l ∈ N.
By our construction,

2mdiam(S(F̃m)) = diam(S(Q̃i ∪ Q̃j)) (4.65)

for m = 1, . . . , l. Next, Qm was obtained via Lemma 4.4, where the corresponding square satisfies by (4.26)
the additional requirement that

diam(S(Qm)) ∼J ℓ(Q
m). (4.66)

Taking into account the estimate

diam(S(F̃m)) ≲ diam(S(Qm)) ≲ diam(S(F̃m)) (4.67)

with constants depending only on J that follows from our choice of Qm, we conclude with (4.62).
Regarding (4.61), we recall from the construction that S(Qm)∩S(F̃m) 6= ∅ and S(F̃n)∩S(F̃n+1) 6= ∅

for all relevant n and m. Since distΩ satisfies a triangle inequality by Lemma 2.16, we conclude that

distΩ(S(Q
n), S(Qn+1))

≲ diamΩ(S(Q
n)) + diamΩ(S(F̃

n)) + diamΩ(S(F̃
n+1)) + diamΩ(S(Q

n+1)). (4.68)

Hence, (4.65)–(4.68) together with Lemma 2.29 give (4.61).
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From now on, in this subsection, we always assume that ℓ(Q̃i) ⩽ 3diam(Ω) and ℓ(Q̃j) ⩽ 3diam(Ω). We
call such Whitney squares allowable. The preceding lemma gives the chain G(Q̃i, Q̃j) when

diam(S(Q̃i)) ⩽ diam(S(Q̃j)).

Especially, both G(Q̃i, Q̃j) and G(Q̃j , Q̃i) have been constructed when

diam(S(Q̃i)) = diam(S(Q̃j)).

Even though the claim of the lemma does not imply that these chains coincide as sets, the construction
in the proof of the lemma gives this. In order not to make our notation overly complicated, we abuse
notation and extend our definition also to the case where

diam(S(Q̃i)) > diam(S(Q̃j))

by setting G(Q̃i, Q̃j) := G(Q̃j , Q̃i). Under this convention, Q0 is one of the squares R(Q̃i) and R(Q̃j),
Ql, l = l(i, j) = l(j, i) is the other one, and (4.61) holds as stated, but for (4.62), we need to replace
diam(S(Q̃j)) with the maximum of diam(S(Q̃j)) and diam(S(Q̃j)).

Given an allowable Q̃i ∈ W̃ , we define G(Q̃i) =
⋃

j G(Q̃i, Q̃j), where the union runs over all the squares
Q̃j ∈ W̃ that intersect Q̃i.

Our next lemma gives estimates for the overlaps of our chains.
Lemma 4.12. There is a positive integer N = N(J) so that∑

Q∈G(Q̃i,Q̃j)

χQ(x) ⩽ N (4.69)

for all i and j and every x ∈ Ω. Moreover,∑
j

∑
Q∈G(Q̃i,Q̃j)

χQ(x) ⩽ 20
∑

Q∈G(Q̃i)

χQ(x) (4.70)

for each i, and ∑
i

∑
Q∈G(Q̃i)

χQ(x) <∞ (4.71)

for all x ∈ Ω.

Proof. The first claim follows from (4.62). The second claim is an immediate consequence of the fact
that the Whitney square Q̃i has at most 20 neighbors. Towards the final claim, recall that φ̃ : R2 \D→ Ω̃

is a homeomorphism (and conformal in R2 \D). This implies that the diameter of the shadow of Ã tends
to zero uniformly when diam(Ã) → 0. Consequently, given δ > 0, there can be only a finite number of
Q̃j ∈ W̃ with ℓ(Q̃i) ⩽ 3diam(Ω) for which diam(S(Q̃i ∪ Q̃j)) ⩾ δ for some neighbor Q̃i of Q̃j . The final
claim follows from this together with our first claim, (4.66) and (4.67).

Notice that we are not claiming a uniform bound for the number of distinct Q̃i for which a given Q

belongs to G(Q̃i). In fact, such a bound does not necessarily exist. The following lemma provides us with
a crucial substitute for such an estimate.
Lemma 4.13. For each Q ∈W , we have∑

Q∈G(Q̃i)

ℓ(Q̃i)
2−p̂ ≲ ℓ(Q)2−p̂,

where the constant depends only on p̂ and the constant C in (4.1).
Proof. Recall that Ω is J-John with a constant that depends only on p̂ and the constant C in (4.1) by
Lemma 2.23.
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Fix Q ∈W so that Q ∈ G(Q̃i) for at least one i. By Lemma 4.12, the number of such indices i is finite,
and for each of the at most 20 neighbors Q̃j , Q corresponds to at most N(J) different fake squares F̃m

i,j

used in the construction of G(Q̃i, Q̃j). Consider this finite collection of the sets F̃m
i,j . We relabel them as

F̃n with respect to n, i.e., 1 ⩽ n ⩽ k, so that the diameters of φ̃−1(S(F̃n)) decrease when n increases.
We set F̃ 1

Q := F̃k and stop the construction if k = 1 or the shadow of each Fn with 1 ⩽ n ⩽ k − 1

intersects the shadow of F̃ 1
Q. If this is not the case and S(F̃k−1)∩S(F̃ 1

Q) = ∅, we set F̃ 2
Q = F̃k−1. Otherwise,

we consider F̃k−2 as a candidate for F̃ 2
Q and continue inductively via the following procedure. We choose

F̃ 2
Q to be F̃n for the largest integer n smaller than k for which S(F̃n) ∩ S(F̃ 1

Q) = ∅. We stop the process
if n = 1 or the shadow of each Fm with 1 ⩽ m ⩽ n− 1 intersects S(F̃ 1

Q) or S(F̃ 2
Q). Otherwise, we choose

F̃ 3
Q to be F̃m with the largest m ⩽ n− 1 such that its shadow does not intersect S(F̃ 1

Q) nor S(F̃ 2
Q), and

continue this process. This gives us F̃ 1
Q, . . . , F̃

n0

Q with pairwise disjoint shadows. By the construction of
these sets, Lemma 4.6 gives us a universal bound on n0 in terms of C(J) (see (4.18) and (4.19)).

Let F̃n be a set from above, which was not chosen as one of the sets F̃ i
Q. By the construction in the

previous paragraph, there is an index l so that S(F̃n)∩S(F̃ l
Q) 6= ∅. Since φ̃−1(S(F̃n)) = S(φ̃−1(F̃n)) and

φ̃−1(S(F̃ l
Q)) = S(φ̃−1(F̃ l

Q)) are closed arcs of the unit circle, at least one of the endpoints of S(F̃ l
Q) is

contained in S(F̃n); otherwise, S(F̃n) is strictly contained in S(F̃ l
Q), which means that

diam(φ̃−1(S(F̃ l
Q))) > diam(φ̃−1(S(F̃n))),

contradicting our selection of the sets F̃ l
Q. Therefore, by assigning two hyperbolic rays to each F̃ l

Q, we
obtain a collection of 2n0 hyperbolic rays that intersect all of our sets F̃m

i,j with i ∈ I(Q).

Let Γ be one of our 2n0 hyperbolic rays. Denote by Γ0 the tail of Γ with respect to a set in

{F̃m
i,j | Q ∈ G(Q̃i),Γ ∩ F̃m

i,j 6= ∅},

whose preimage under φ̃ is furthest away from the origin, i.e., a last set that Γ hits towards infinity.
Let F̃0 be such a set. Then ℓ(Q) ∼ diam(S(F̃0)) by (4.62) as F̃0 is one of the sets F̃m

i,j . Moreover, F̃0

is of 8
√
2-Whitney type and Ω̃ \ F̃0 is connected since F̃0 is one of the sets F̃m

i,j (see Figure 10 for an
illustration). Hence, Lemma 4.7 gives the estimate∑

Q̃l∈W̃ ,Q̃l∩Γ0 ̸=∅

ℓ(Q̃l)
2−p̂ ≲ ℓ(Qm)2−p̂ (4.72)

with a constant that depends only on p̂ and the constant C in (4.1).
Since each F̃m

i,j is a subset of Q̃i∪Q̃j where Q̃i∩Q̃j 6= ∅, each Whitney square has at most 20 neighbors,
and the number n0 of our hyperbolic rays is bounded in terms of J, our claim follows from (4.72).

Q̃m1

Q̃m2

Q̃m3

Q̃m4

Q̃1

Q̃2

F̃
1,2
m

F̃
j,k
m

Q1

Q2

Q1

Qm = Q2

Figure 10 (Color online) A square Q ∈ W might be associated with several squares Q̃l as well as to fake squares F̃ j,k
Q .

In the illustration, the squares Q̃1 and Q̃2 give rise to two fake squares, one of which is associated with Q. Another fake
square as well as four (real) squares that are associated with Q are exhibited. Also, the shadow of Q is shown
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4.6 Sufficiency in the Jordan case

Recall the definition of Eu via (4.53) from Subsection 4.3 and of the chains G(Q̃i, Q̃j) and the sets G(Q̃i)

from Subsection 4.5. We begin by estimating the norm of the gradient of our extension over each square
Q̃ ∈ W̃ with Q̃ ∩BΩ 6= ∅.
Lemma 4.14. For all Q̃i ∈ W̃ with Q̃i ∩BΩ 6= ∅, we have

‖∇Eu‖p
Lp(Q̃i)

⩽ C
∑
i

∑
Q∈G(Q̃i,Q̃k)

ℓ(Q̃i)
2−p̂ℓ(Q)p̂−2

∫
Q

(M( ̂|∇u|)(z))pdz,
where the sum is over all the indices k for which Q̃k ∩ Q̃j 6= ∅. Here, C depends only on p, p̂ and the
constant C in (4.1).
Proof. Recall that φ̃ : R2 \ D→ Ω̃ extends homeomorphically up to the boundary.

Fix Q̃j with Q̃j ∩ Q̃i 6= ∅. Let Qn, Qn+1 ∈ G(Q̃i, Q̃j) be consecutive squares. Then

distΩ(S(Q
n), S(Qn+1)) ≲J ℓ(Q

n) ∼J ℓ(Q
n+1) (4.73)

by (4.61).
Let q > 0. Then by (4.62), together with Lemma 4.3, we have the estimate∑

Qn∈G(Q̃i,Q̃j)

ℓ(Qn)−q ⩽ C(q, J)min{diam(S(Q̃i)), diam(S(Q̃j))}−q

⩽ C(q, J)ℓ(Q̃i)
−q. (4.74)

Recall that {ϕk} is a partition of unity with ϕk = 0 in Q̃j if Q̃j ∩ Q̃k = ∅. Hence, for each x ∈ Q̃i, we
have

∇Eu(x) = ∇
( ∑

Q̃k∩Q̃i ̸=∅

akϕk(x)

)
= ∇

( ∑
Q̃k∩Q̃i ̸=∅

(ak − ai)ϕk(x)
)
,

where al refers to the average of u over R(Q̃l). Since |∇ϕk| ≲ ℓ(Q̃i)
−1 whenever Q̃k ∩ Q̃i 6= ∅, we further

have

‖∇Eu‖p
Lp(Q̃i)

≲
∫
Q̃i

∑
Q̃k∩Q̃i ̸=∅

|ak − ai|p|∇ϕk(x)|pdx

≲
∑

Q̃k∩Q̃i ̸=∅

|ak − ai|pℓ(Q̃j)
−p|Q̃i|

≲
∑

Q̃k∩Q̃i ̸=∅

|ak − ai|pℓ(Q̃i)
2−p (4.75)

with an absolute constant.
Let ϵ = p̂−p

p > 0. We apply Lemma 4.10 via (4.73), Hölder’s inequality and (4.74) with q = ϵp
p−1 to get

|ak − ai|p ≲
( ∑

Qn∈G(Q̃k,Q̃i)

|aQn − aQn+1 |
)p

≲
( ∑

Qn∈G(Q̃k,Q̃i)

ℓ(Qn) –
∫

Qn

M( ̂|∇u|)(z)dz)p

≲
[ ∑
Qn∈G(Q̃k,Q̃i)

ℓ(Qn)1+ϵ−ϵ

(
–
∫

Qn

(M( ̂|∇u|)(z))pdz) 1
p
]p

≲
( ∑

Qm∈G(Q̃k,Q̃i)

ℓ(Qn)p+pϵ –
∫

Qn

(M( ̂|∇u|)(z))pdz)( ∑
Qn∈G(Q̃k,Q̃i)

ℓ(Qn)−
ϵp

p−1

)p−1
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≲ ℓ(Q̃i)
−ϵp

∑
Qn∈G(Q̃k,Q̃i)

ℓ(Qn)p+pϵ−2

∫
Qn

(M( ̂|∇u|)(z))pdz.
Above, the constants depend only on p, p̂ and the constant C in (4.1).

By recalling that ϵp = p̂− p and inserting the above estimate into (4.75), we obtain

‖∇Eu‖p
Lp(Q̃i)

≲
∑

Q̃k∩Q̃i ̸=∅

|ak − ai|pℓ(Q̃i)
2−p

≲
∑

Q̃k∩Q̃i ̸=∅

∑
Qn∈G(Q̃i,Q̃k)

ℓ(Q̃i)
2−p̂ℓ(Qn)p̂−2

∫
Qn

(M( ̂|∇u|)(z))pdz
with the desired control on the constants.

Proof of Theorem 4.1. Recall that BΩ = B(x0, diam(Ω)), Eu is defined on BΩ as in (4.53), and
ℓ(Q̃) ⩽ 3diam(Ω) whenever Q̃ ∈ W̃ intersects BΩ or is a neighbor of such a square. By Lemma 4.14, we
have

‖∇Eu‖p
Lp(BΩ\Ω)

≲
∑

Q̃i∩BΩ ̸=∅

∑
Q̃k∩Q̃i ̸=∅

∑
Q∈G(Q̃i,Q̃k)

ℓ(Q̃i)
2−p̂ℓ(Q)p̂−2

∫
Q

(M( ̂|∇u|)(z))pdz
with a constant depending only on our data: p, p̂ and the constant C in (4.1).

Towards interchanging the order of summation, we notice that a fixed Q ∈ W appears in our triple
sum only when Q ∈ G(Q̃i) in which case it is counted for each of the at most 20 neighbors Q̃j at most
N(J) times by Lemma 4.12. Hence, by interchanging the order of summation (Tonelli’s theorem), we
obtain by Lemma 4.13 the estimate

‖∇Eu‖p
Lp(BΩ\Ω)

≲
∑

Q̃i∩BΩ ̸=∅

∑
Q̃k∩Q̃i ̸=∅

∑
Q∈G(Q̃i,Q̃k)

ℓ(Q̃i)
2−p̂ℓ(Q)p̂−2

∫
Q

(M( ̂|∇u|)(z))pdz
≲

∑
Q∈W

∑
Q∈G(Q̃i)

ℓ(Q̃i)
2−p̂ℓ(Q)p̂−2

∫
Q

(M( ̂|∇u|)(z))pdz
≲

∑
Q∈W

∫
Q

(M( ̂|∇u|)(z))pdz
≲

∫
R2

̂|∇u|p(z)dz ⩽ ∫
Ω

|∇u|pdz. (4.76)

Here, the constants depend only on our data.
Next, recall that Eu(x) =

∑
j ajϕj(x) when x ∈ BΩ \Ω, where aj is the average over R(Q̃j) ∈W with

ℓ(Q̃j) ⩽ 3diam(Ω). Write R−1(Q) for the collection of all Q̃j ∈ W̃ with Q = R(Q̃j). Now∑
Q̃j∈R−1(Q)

ℓ(Q̃j)
2 ⩽ C(J)ℓ(Q)2

since for every Q̃j ∈ R−1(Q), we have Q̃j ⊂ C(J)Q by Lemma 4.3, (4.20) and the triangle inequality.
Then, by the definition of Eu, Tonelli’s theorem for series and Hölder’s inequality, we obtain

‖Eu‖p
Lp(BΩ\Ω)

≲
∑
Q∈W

∑
Q̃j∈R(Q)

ℓ(Q̃j)
2

(
–
∫

Q

|u|dx
)p

≲
∑
Q∈W

∑
Q̃j∈R−1(Q)

ℓ(Q̃j)
2ℓ(Q)−2

∫
Q

|u|pdx

≲
∑
Q∈W

∫
Q

|u|pdx ≲
∫
Ω

|u|pdx (4.77)
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with constants depending only on our data. By combining (4.76) and (4.77), we conclude that∫
BΩ\∂Ω

(|∇Eu|p + |Eu|p)dx ⩽ C‖u‖pW 1,p(Ω),

where C depends only on p, p̂ and the constant C in (4.1).
Suppose now that u ∈W 1,p(Ω) ∩ C∞(Ω). We extend Eu to all of BΩ by letting

Êu(x) = Eu(x) when x ∈ BΩ \ ∂Ω, Êu(x) = u(x) when x ∈ ∂Ω.

We claim that Êu(x) is continuous in BΩ.
Notice that Eu is clearly continuous (even smooth) in BΩ \Ω and smooth in Ω. Hence, we are reduced

to show continuity at every x ∈ ∂Ω. Recall that Ω is Jordan. This implies that diam(S(Q̃)) tends to zero
uniformly when ℓ(Q̃) tends to zero. Given x ∈ ∂Ω and points xk converging to x from within Ω̃, we pick
Whitney squares Q̃k containing xk. Then by the fact that {ϕj} forms a partition of unity, we have

|Êu(xk)− u(x)| =
∣∣∣∣ ∑
Q̃j∩Q̃k ̸=∅

ajϕj(xk)−
∑

Q̃j∩Q̃k ̸=∅

ϕj(xk)u(x)

∣∣∣∣
⩽

∑
Q̃j∩Q̃k ̸=∅

ϕj(xk)|aj − u(x)|.

Since Q̃k tend to x, the neighboring squares of Q̃k also tend to x. We claim that their shadows also
converge to x. Towards this, it suffices to check that the preimages of their shadows tend to φ̃−1(x) under
our homeomorphism φ̃ : R2 \ D → Ω̃ that is conformal in R2 \ D. Now the preimages of the shadows
of these squares are the radial projections of the preimages φ̃−1(Ãk) of these squares and the desired
conclusion follows since φ̃−1(Ãk) tend to φ̃−1(x). Hence, it follows from Lemmas 4.3 and 4.4 that the
Whitney squares of Ω associated with the neighboring squares of Q̃k also tend to x. Thus, we have

Êu(xk)→ u(x)

by the assumption that u is the restriction of a smooth (especially continuous) function to Ω and Eu(xk)
is defined via averages over the squares associated with the neighboring squares of Q̃k.

Recall that Ω is John and the Lebesgue measure of ∂Ω is zero Lemma 2.24. With the continuity of
Êu, [24, Theorem 4] then guarantees that the above definition gives a Sobolev function with the desired
norm control. Also by Lemma 2.24, we know that Êu = Eu as Sobolev functions. Thus,

E : W 1,p(Ω) ∩ C∞(Ω)→W 1,p(BΩ)

is a bounded operator, and it is also linear by its definition.
Recall that C∞(Ω) is dense in W 1,p(Ω) for 1 < p < ∞ if Ω is a planar Jordan domain (see [31]). By

our norm estimates above, we can (uniquely) extend E to entire W 1,p(Ω) as a bounded operator. This
extension is given by the original definition of E. Since BΩ is an extension domain, we conclude that the
claim of the theorem follows.

Remark 4.15. The norm of our extension operator from W 1,p(Ω) into W 1,p(BΩ) depends only on p, p̂
and the constant C in (4.1), both for the homogeneous and the full Sobolev norms (see (4.76) and (4.77)).
Here, BΩ = B(x0, diam(Ω)) and x0 is a chosen John center of Ω. If we wish to extend to entire R2, then
the norm of the extension operator will also necessarily depend on the diameter of Ω if we use the full
Sobolev norm.

4.7 Proof of the general case

We establish the existence of an extension operator in the general case of a bounded simply connected
domain Ω via an approximation process, relying on our earlier results.
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Recall that we are claiming the existence of a bounded extension operator under the condition (1.1)
for a given bounded simply connected domain Ω. We have already verified a version of this if Ω is Jordan.

In order to be able to prove the general case by using the result for the Jordan case, we need a
sequence of approximating Jordan domains to have extension operators with uniform norm bounds. For
this purpose, we have stated the dependence of the norm of the extension operator in Theorem 4.1
explicitly in Remark 4.15.

From now on, Ω is a bounded simply connected domain that satisfies (1.1). Towards the existence
of a suitable approximating sequence, recall that (1.1) guarantees that Ω is John (see Corollary 2.23).
Fix a conformal map φ : D → Ω so that φ(0) is a John center of Ω. By Remark 2.26, we may extend φ

continuously up to the boundary. We still denote the extended map by φ.
Let Bn = B(0, 1 − 1

n ) for n ⩾ 2. Then Ωn = φ(Bn) are Jordan John domains (with constant
independent of n) contained in Ω by Lemma 2.30, and converge to Ω uniformly in Hausdorff distane
because of the uniform continuity of φ up to the boundary. Actually, φ is even uniformly Hölder
continuous (see [11,35]).

Before giving the proof of Theorem 1.1, we establish a technical result according to which the
complementary domain of Ωn satisfies the condition (4.1) with p̂ > p and C that are independent of
n. This eventually allows us to apply Theorem 4.1 to Ωn so as to complete the proof by a compactness
argument.
Lemma 4.16. Each of the complementary domains Ω̃n of Ωn satisfies the condition (4.1) with curves
γ ⊂ Ω̃n for a fixed p̂ > p and a constant independent of n.
Proof. Fix n ⩾ 2 and let z1, z2 ∈ Ω̃n. Write R = 1 − 1

n . We begin by noticing that if z1 and z2 are
both outside Ω, then the condition (4.1) with a fixed p̂ > p and C follows immediately from (1.1) and the
self-improvement property for Ω from Lemma 2.3 since dist(z, ∂Ω) ⩽ dist(z, ∂Ωn) for z ∈ R2 \Ω. Hence,
switching z1 and z2 if necessary, we may assume that z1 ∈ Ω \ Ωn.

We fix p̂ > p as in the first paragraph of the proof. Suppose first that also z2 ∈ Ω \Ωn. Let us consider
the case where φ−1(z2) ∈ B(φ−1(z1), δ(1 − |φ−1(z1)|)), where δ is as in Lemma 2.4. Then Lemma 2.4
gives us a curve α joining φ−1(z1) to φ−1(z2) in B(φ−1(z1), (1− |z1|)/2) \B(0, R) so that∫

α

dist(z, ∂B(0, R) ∪ ∂B(φ−1(z1), (1− |φ−1(z1)|)/2))1−p̂ds(z) ⩽ C(p̂)|φ−1(z1)− φ−1(z2)|2−p̂ (4.78)

(see Figure 11). Because B := B(φ−1(z1), (1− |φ−1(z1)|)/2) is of 2-Whitney type, Lemma 2.13 gives us
the estimate

C−1|φ′(φ−1(z1))||w2 − w1| ⩽ |φ(w2)− φ(w1)| ⩽ C|φ′(φ−1(z1))||w2 − w1|

(a) (b)

Figure 11 (Color online) The proof of the existence of the curve satisfying (4.1) for the domain Ω̃n is split into two cases.
In (a), we have the case where the preimages of the points z1 and z2 are close enough so that one can use a curve α from
Lemma 2.4 connecting them in the annular domain Ω \ Ωn. In (b), it is the case where the preimages are far from each
other and the constructed curve exits the annular domain
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for all w1, w2 ∈ B for an absolute constant C. Since α ⊂ B, we may apply this bi-Lipschitz estimate to
the above integral over α so as to conclude for γ = φ ◦ α that∫

γ

dist(z, φ(S(0, R) ∩B) ∪ φ(∂B))1−p̂ds(z) ⩽ C ′(p̂)|z2 − z1|2−p̂,

where C ′(p̂) depends only on p̂. The desired inequality follows since φ is a homeomorphism and hence
dist(z, ∂Ω̃n) ⩾ dist(z, φ((S(0, R) ∩ B) ∪ ∂B)) when z ∈ φ(α) = γ. The desired conclusion also follows if
the roles of z1 and z2 above are reversed.

Next, (2.16) (applied to φ−1) gives us an absolute constant C such that if

C|z1 − z2| ⩽ max{dist(z1, ∂Ω), dist(z2, ∂Ω)},

then we are in a situation covered by the previous paragraph. Thus, we may assume that

C|z1 − z2| ⩾ max{dist(z1, ∂Ω), dist(z2, ∂Ω)}. (4.79)

Recall from Lemma 2.25 that φ is η-quasisymmetric with respect to the inner distance with η that
depends only on the John constant of Ω. Define

U = B

(
1 + |φ−1(z1)|

2

φ−1(z1)

|φ−1(z1)|
,
1− |φ−1(z1)|

2

)
.

Then the disk U is contained in D \Bn, z1 ∈ φ(U), φ(U) ∩ ∂Ω 6= ∅, and Lemma 2.30 gives that φ(U) is
J ′-John with the center φ(w), where w is the center of U, and J ′ depends only on the John constant J
of Ω.

We claim that
diam(φ(U)) ⩽ C(J)dist(z1, ∂Ω). (4.80)

Towards this, let ξ = φ−1(z1)/|φ−1(z1)|, the tangent point of U with the unit circle, and pick a point
z3 ∈ ∂Ω satisfying

dist(z1, ∂Ω) = |z1 − z3|.

Pick a sequence of points xj along the Euclidean segment between z1 and z3 so that xj → z3. Then

distΩ(z1, xj) = |z1 − xj | ⩽ distΩ(z1, xj). (4.81)

Since φ is a homeomorphism of the unit disk onto Ω, there is a subsequence of the sequence (xj) so that
the preimages converge to some w3 ∈ ∂D. For simplicity, we refer to the elements of this subsequence still
by xj . Write r for the radius of U. By the definitions of U and ξ, we have

2r = |φ−1(z1)− ξ| = dist(φ−1(z1), ∂D),

and since w3 ∈ ∂D, we conclude that
2r ⩽ |φ−1(z1)− w3|.

In particular, for any w2 ∈ U , we have

|φ−1(z1)− w2| ⩽ 2r ⩽ |φ−1(z1)− w3|,

and consequently,
|φ−1(z1)− w2| ⩽ 2|φ−1(z1)− φ−1(xj)| (4.82)

for all sufficiently large j. Quasisymmetry of φ together with (4.82) and (4.81) now gives for all sufficiently
large j the estimate

|z1 − φ(w2)| ⩽ distΩ(z1, φ(w2)) ⩽ η(2)distΩ(z1, xj) ⩽ η(2)dist(z1, ∂Ω).



2412 Koskela P et al. Sci China Math October 2025 Vol. 68 No. 10

Hence, (4.80) follows.
By connecting z1 to the John center φ(w) of φ(U) and then the John center to φ(ξ) ∈ ∂Ω via hyperbolic

segments in φ(U), we obtain by Remark 2.20, (4.80) and (4.79) a curve γ1 ⊂ φ(U) consisting of two John
curves and joining z1 to ∂Ω so that∫

γ1

dist(z, ∂Ωn)
1−p̂ds(z) ⩽

∫
γ1

dist(z, ∂(φ(U)))1−p̂ds(z)

≲ dist(φ(w), ∂(φ(U))2−s ≲ diam(φ(U))2−p̂

≲ dist(z1, ∂Ω)
2−p̂ ≲ |z2 − z1|2−p̂

(see Figure 11). Here, the constants depend only on J. Analogously, we find a corresponding curve γ2 for
z2. It remains to join the two endpoints z̃1 and z̃2 of γ1 and γ2 in ∂Ω by a curve γ3 outside Ω as in the
first paragraph of the proof; notice here that (4.79) guarantees that

|z̃1 − z̃2| ⩽ C|z1 − z2|.

By the triangle inequality, the curve obtained by concatenating γ1, γ3 and γ2 satisfies our requirements.
We are left to consider the case where z1 ∈ Ω \ Ωn and z2 /∈ Ω. In this case, we simply use the curve

γ1 constructed above for z1 together with a curve γ3 outside Ω joining z2 and the endpoint of γ1 in ∂Ω

as above.
Proof of Theorem 1.1. By Section 3, we only need to prove the sufficiency of (1.1). Recall the conformal
map φ and the domains

Ωn = φ(Bn)

from the beginning of this subsection. By Lemma 2.30, the domains Ωn are John domains with a John
center x0 = φ(0) with a John constant depending only on J.

By Lemma 4.16 and Theorem 4.1, (1.1) yields that there exist extension operators

En : W
1,p(Ωn)→W 1,p(B(x0, diam(Ωn))),

where the norms of the extension operators En are independent of n (see Remark 4.15). Since Ωn = φ(Bn)

and φ is continuous up to the boundary, diam(Ωn)→ diam(Ω) when n tends to infinity. Hence, B(x0, r) ⊂
B(x0, diam(Ωn)) for all sufficiently large n when r = diam(Ω) − dist(x0, ∂Ω). Define B = B(x0, r). We
conclude that

En : W
1,p(Ωn)→W 1,p(B)

is a bounded extension operator with a norm bound independent of n for all sufficiently large n.
Fix u ∈ W 1,p(Ω), and let un = u|Ωn

for n ⩾ 2. Now ‖∇Enun‖Lp(B) + ‖Enun‖Lp(B) is bounded
independently of n for large n. Hence, by the assumption p > 1, there exists a subsequence that converges
weakly in Lp(B) to some v ∈W 1,p(B) with

‖∇v‖Lp(B) + ‖v‖Lp(B) ⩽ lim inf
n→∞

(‖∇Enun‖Lp(B) + ‖Enun‖Lp(B)).

Define Eu := v and notice that Ω ⊂ B and the sequence {Enun} converges to u pointwise a.e. on Ω.
Hence, we know that Eu is an extension of u, and the desired norm bound over B follows from the
uniform bound on the extension operators En. Since B is a W 1,p-extension domain, this completes the
proof of Theorem 1.1.

5 Proof of Corollary 1.3

Before giving the proof of Corollary 1.3, we present a lemma stating that we can always swap an
unbounded domain with a compact boundary to a bounded domain (and vice versa) with the same
extendability and curve properties. This is the main observation needed to conclude Corollary 1.3 from
Theorems 1.1 and 1.2.
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Lemma 5.1. Let Ω ⊂ R2 be a bounded domain. Fix x ∈ Ω and define an unbounded domain Ω̂ =

ix(Ω \ {x}) using the inversion

ix : R2 \ {x} → R2 \ {x} : y 7→ x+
y − x
|y − x|2

.

Then
(1) for any 1 ⩽ p ⩽∞, the domain Ω is a W 1,p-extension domain if and only if Ω̂ is a W 1,p-extension

domain;
(2) for any q > 2, there exists a constant C > 0 such that for all z1, z2 ∈ Ω, there exists a rectifiable

curve γ ⊂ Ω joining z1 and z2 so that∫
γ

dist(z, ∂Ω)
1

1−q ds(z) ⩽ C|z1 − z2|
q−2
q−1 (5.1)

if and only if there exists a constant Ĉ > 0 such that for every ẑ1, ẑ2 ∈ Ω̂ (see (1.2)), there exists a
rectifiable curve γ̂ ⊂ Ω̂ joining ẑ1 and ẑ2 so that∫

γ

dist(z, ∂Ω̂)
1

1−q ds(z) ⩽ Ĉ|ẑ1 − ẑ2|
q−2
q−1 . (5.2)

Proof. Let R = 2diam(Ω) and 2r = dist(x, ∂Ω). Then ∂Ω ⊂ A(x, r,R) := B(x,R) \ B(x, r). Notice
that ix is a bi-Lipschitz map when restricted to A(x, r,R) with the bi-Lipschitz constant depending only
on r and R, and ix(A(x, r,R)) = A(x, 1/R, 1/r).

(1) Notice that for 0 < r1 < r2 <∞, the annulus A(x, r1, r2) is also a W 1,p-extension domain with an
operator Er1,r2 . Now, assume that Ω is a W 1,p-extension domain with an extension operator E. Let us
show that Ω̂ is also a W 1,p-extension domain. Towards this, take u ∈ W 1,p(Ω̂). By the fact that ix is
bi-Lipschitz on A(x, r,R), we have u◦ ix|A(x,r,R)∩Ω ∈W 1,p(Ω\B(x, r)). Since A(x, r, 2r) ⊂ A(x, r,R)∩Ω,
we have Er,2r(u ◦ ix|A(x,r,2r)) ∈W 1,p(R2). Now, define v ∈W 1,p(Ω) by

v(y) =

{
Er,2r(u ◦ ix)(y), if y ∈ B(x, 2r),

u ◦ ix(y), if y ∈ Ω \B(x, 2r).

This can then be extended to Ev ∈ W 1,p(R2). Again, by the bi-Lipschitz property of ix on A(x, r,R),
we have

(Ev) ◦ i−1
x ∈W 1,p(A(x, 1/R, 1/r)),

which finally gives the required extension Êu ∈W 1,p(R2) as

Êu(y) =

{
E1/R,1/r((Ev) ◦ i−1

x )(y), if y ∈ B(x, 1/r),

u(y), if y /∈ B(x, 1/r).

This shows that Ω̂ is a W 1,p-extension domain.
Let us then show the converse and assume that Ω̂ is aW 1,p-extension domain with an extension operator

Ê. The construction of the extension is done analogously to the previous case. Let u ∈ W 1,p(Ω). Then
v ∈W 1,p(Ω̂), when we define

v(y) =

{
E1/(2r),1/r(u ◦ i−1

x )(y), if y /∈ B(x, 1/r),

u ◦ i−1
x (y), if y ∈ Ω ∩B(x, 1/r),

and the required extension Eu ∈W 1,p(R2) is then given by

Eu(y) =

{
Er,R((Êv) ◦ ix)(y), if y /∈ B(x, r),

u(y), if y ∈ B(x, r).
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Hence, Ω is a W 1,p-extension domain.
(2) Suppose the existence of curves γ ⊂ Ω satisfying (5.1). Let us show the condition (5.2) for Ω̂.

Towards this, take ẑ1, ẑ2 ∈ Ω̂. Suppose first that ẑ1, ẑ2 ∈ B(x, 1/r). Define z1 = i−1
x (ẑ1) and z2 = i−1

x (ẑ2).
Let γ ⊂ Ω be a curve joining z1 and z2 so that (5.1) holds. By [39, Lemma 2.1], we may assume that
le(γ) ⩽ C|z1 − z2|. If γ ⊂ A(x, r,R), then by the bi-Lipschitz property of ix, the curve γ̂ = ix(γ)

satisfies (5.2). If γ 6⊂ A(x, r,R), let z̃1, z̃2 ⊂ γ ∩ ∂B(x, r) be such that γ[z1, z̃1] connects z1 to z̃1 in
A(x, r,R), and γ[z2, z̃2] connects z2 to z̃2 in A(x, r,R). Then

|z̃1 − z̃2| ⩽ le(γ) ⩽ C|z1 − z2|. (5.3)

Let α be a shorter arc of ∂B(x, r) joining z̃1 and z̃2. Since dist(∂B(x, r), ∂Ω) ⩾ r, by (5.3), we have∫
α

dist(z, ∂Ω)
1

1−q ds(z) ⩽ C|z1 − z2|
q−2
q−1 .

Hence, again by the bi-Lipschitz property of ix on A(x, r,R), the curve γ̂ = ix(γ[z1, z̃1] ∗ α ∗ γ[z̃2, z2])
satisfies (5.2).

Suppose then that ẑ1, ẑ2 ∈ B(x, 1/r) fails. Then if [ẑ1, ẑ2] ∩ ∂B(x, 1/r) contains two distinct points,
we can use the previous case to connect these by a curve γ ⊂ Ω̂. For the remaining part, we can simply
use the remaining parts of [ẑ1, ẑ2] \B(x, 1/r). Finally, if [ẑ1, ẑ2]∩∂B(x, 1/r) is a singleton, we simply use
[ẑ1, ẑ2].

The proof of the converse implication is analogous. Towards it, let us assume that there exist curves
γ̂ ⊂ Ω̂ satisfying (5.2). Let z1, z2 ∈ Ω and define ẑ1 = ix(z1) and ẑ2 = ix(z2). Let γ̂ ⊂ Ω̂ be a curve
connecting ẑ1 and ẑ2 that satisfies (5.2). By Lemma 2.2, we may assume that le(γ̂) ⩽ C|ẑ1 − ẑ2|. If
γ̂ ⊂ B(x, 1/r), again the bi-Lipschitz property of ix inside A(x, r,R) gives that γ = i−1

x (γ̂) satisfies (5.1).
Let us then suppose that γ̂ 6⊂ B(x, 1/r). If ẑ1 ∈ B(x, 1/r), we take z̃1 ∈ γ̂ ∩ ∂B(x, 1/r) so that
γ̂[ẑ1, z̃1] ⊂ B(x, 1/r). If ẑ1 /∈ B(x, 1/r), we define z̃1 = ẑ1. Similarly, if ẑ2 ∈ B(x, 1/r), we take
z̃2 ∈ γ̂ ∩ ∂B(x, 1/r) so that γ̂[ẑ2, z̃2] ⊂ B(x, 1/r), and if ẑ2 /∈ B(x, 1/r), we set z̃2 = ẑ2. Then the curve

γ = i−1
x (γ̂[ẑ1, z̃1]) ∗ [i−1

x (z̃1), i
−1
x (z̃2)] ∗ i−1

x (γ̂[z̃2, ẑ2])

connects z1 to z2 in Ω and satisfies (5.1) because of

|z̃1 − z̃2| ⩽ le(γ̂) ⩽ C|ẑ1 − ẑ2|

and dist(x, γ) ⩾ r.
Proof of Corollary 1.3. By Lemma 5.1, it suffices to show that the complementary domain Ω̃ of a given
Jordan W 1,p-extension domain Ω, where 1 < p <∞, is a W 1,q-extension domain for q = p/(p− 1).

Suppose first that our Jordan domain Ω is a W 1,p-extension domain for a given 1 < p < 2. Then
Theorem 3.1 and Remark 3.7 give the existence of curves as in (1.1) in the complementary domain Ω̃.

Notice that (1.1) is precisely (1.2) with q = p/(p − 1) > 2. Thus, by applying Lemma 5.1 (twice) and
Theorem 1.2, we conclude that Ω̃ is a W 1,q-extension domain.

If Ω is a W 1,p-extension domain for some p > 2, then (1.2) holds by Theorem 1.2 (for points in Ω).
Let x ∈ Ω, and take ix and Ω̂ as in Lemma 5.1. Now, by applying Lemma 5.1 again, we see that (1.1)
holds for points in Ω̂. For any pair z1, z2 ∈ Ω̂, there exist sequences (xj)j and (yj)j in Ω̂ that converge
to z1 and z2, respectively. For every pair (xj , yj), we take a curve γj ⊂ Ω̂ satisfying (1.1) (with the
obvious notational changes). By Lemma 2.1, there exists a limiting curve γ ⊂ Ω̂ connecting z1 and z2

also satisfying (1.1). Hence, by Theorem 1.1, R2 \ Ω̂ is a W 1,q-extension domain, and so, via Lemma 5.1,
also Ω̃.

We are left with the case p = 2. In this case, Ω is necessarily a uniform domain and hence so is Ω̃.
Thus, Ω̃ is also a W 1,2-extension domain (see [13–15,23]).
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