DOI: 10.12131/20210056

文章编号: 2095-0780-(2021)04-0058-08

裂壶藻蛋白肽美拉德反应产物的制备及其抗氧化特性

胡 晓¹, 刘 晶¹, 高 颖^{1,2}, 李瑞杰^{1,2}, 李来好¹, 杨贤庆¹, 陈胜军¹, 吴燕燕¹, 戚 勃¹, 荣 辉¹

(1. 中国水产科学研究院南海水产研究所/农业农村部水产品加工重点实验室/国家水产品加工技术研发中心, 广东 广州 510300; 2. 中国海洋大学食品科学与工程学院,山东 青岛 266003)

摘要:该研究以裂壶藻 (Schizochytrium limacinum) 渣为原料,采用酶解法制备得裂壶藻酶解物 (S. limacinum hydrolysate, SLH),分析其美拉德反应条件,同时探究其不同超滤组分和葡聚糖凝胶柱层析组分美拉德反应产物 (Maillard reaction products, MRPs) 的抗氧化能力。结果表明,当还原糖为核糖、糖肽质量比为 1:1、反应 pH 为 9、反应温度为 100 °C、反应时间为 6 h 时,SLH 的 MRPs 还原力 (5 mg·mL $^{-1}$) 为 1.24,DPPH 自由基清除率 (12.5 mg·mL $^{-1}$) 为 88.62%。将 SLH 经超滤后分别得到 SLH-1 (<5 kD)、SLH-2 (<10 kD) 和 SLH-3 (<50 kD) 组,发现 SLH-1 组在美拉德反应前后的抗氧化能力最强。将 SLH-1 组经 Sephadex G-25 凝胶柱分离后分别得到 SLH-1-I、SLH-1-III 和 SLH-1-IV 组,发现分子量较大的 SLH-1-I 组经美拉德反应修饰后的抗氧化活性最好,其还原力 (2 mg·mL $^{-1}$) 为 0.741,DPPH 自由基的清除率 (5 mg·mL $^{-1}$) 为 79.41%。此外,氨基酸组成分析表明美拉德反应可导致酪氨酸 (Tyr)、赖氨酸 (Lys)、组氨酸 (His)、精氨酸 (Arg)、色氨酸 (Trp) 等氨基酸含量明显降低,但对必需氨基酸总含量影响不大。

关键词: 裂壶藻; 酶解物; 美拉德反应; 抗氧化活性; 分离纯化

中图分类号: TS 254.9

文献标志码: A

开放科学(资源服务)标识码(OSID):

Preparation and antioxidant properties of Maillard reaction products from Schizochytrium limacinum protein peptides

HU Xiao¹, LIU Jing¹, GAO Ying^{1,2}, LI Ruijie^{1,2}, LI Laihao¹, YANG Xianqing¹, CHEN Shengjun¹, WU Yanyan¹, QI Bo¹, RONG Hui¹

(1. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs/National Research and Development Center for Aquatic Product Processing, Guangzhou 510300, China; 2. College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China)

Abstract: The *Schizochytrium limacinum* hydrolysate (SLH) was prepared from defatted *S. limacinum* residues, so as to analyze its Maillard reaction conditions. Besides, we explored the antioxidant activities of Maillard reaction products (MRPs) from the isolated fractions of SLH by ultrafiltration and sephadex gel column chromatography. The optimal Maillard reaction parameters were ob-

收稿日期:2021-02-03; 修回日期:2021-04-16

资助项目:广东省重点领域研发计划资助项目 (2020B1111030004); 财政部和农业农村部国家现代农业产业技术体系资助; 广东省基础与应用基础研究基金项目 (2019A1515011588); 中国水产科学研究院基本科研业务费项目 (2020TD69); 中国水产科学研究院南海水产研究所中央级公益性科研院所基本科研业务费专项资金资助 (2021SD06)

作者简介: 胡 晓 (1981—), 男,博士,副研究员,从事食品生物技术、水产品加工与质量安全研究。E-mail: hnhuxiao@163.com

通信作者: 李来好 (1963—),男,博士,研究员,从事水产品精深加工与质量安全研究。E-mail: laihaoli@163.com

tained as follows: mass ratio (ribose: peptide) of 1:1, pH of 9, temperature of 100 °C and time of 6 h (the reducing power activity was 1.24 at 5 mg·mL⁻¹ and the DPPH radical scavenging rate was 88.62% at 12.5 mg·mL⁻¹). The SLH was ultra-filtered to obtain the fractions of SLH-1 (<5 kD), SLH-2 (<10 kD) and SLH-3 (<50 kD). It is found that the SLH-1 had the strongest antioxidant capacity before and after Maillard reaction. Then the SLH-1 was further separated by Sephadex G-25 gel column to obtain the fractions of SLH-1-I, SLH-1-III and SLH-1-IV. Higher molecular mass fraction of SLH-1-I had higher antioxidant activity after Maillard reaction (the reducing power activity was 0.741 at 2 mg·mL⁻¹ and the DPPH free radical scavenging rate was 79.41% at 5 mg·mL⁻¹). Amino acid composition analysis shows that Maillard reaction could decrease the contents of Tyr, Lys, His, Arg and Trp, etc. However, there was no obvious change in the content of essential amino acids after Maillard reaction.

Key words: Schizochytrium limacinum; Hydrolysates; Maillard reaction; Antioxidant activity; Separation and purification

美拉德反应 (Maillard reaction, MR),又称"非酶棕色化反应",主要是指羰基化合物与氨基化合物之间的复杂反应^[1]。该反应不仅给食品带来特殊的色泽与风味,还产生大量抗氧化活性物质,能有效延长食品的货架期^[2-3]。目前已有关于氨基酸或多肽与不同种类还原糖的美拉德反应产物的抗氧化活性和特定香料的生产研究,但美拉德反应机制尚未明确^[4]。方菲等^[5] 研究了鲷鱼鳞多肽-木糖的美拉德反应产物的结构与抗氧化活性,表明肽链结构发生变化,形成了新的化合物,反应产物抗氧化活性显著增加,且具有多酚氧化酶抑制活性。

製壶藻 (Schizochytrium limacinum), 又称裂殖 壶菌,属单细胞海洋真菌微藻[6]。裂壶藻富含油 脂,占干质量的40%以上,目前已实现工业化生 产 DHA 藻油^[7], 且异养发酵培养时绿色环保无污 染。然而, 裂壶藻经提取不饱和脂肪酸后会产生蛋 白质含量高达干质量 40% 以上的藻渣, 目前该藻 渣大多被当作动物饲料或肥料使用,造成该蛋白资 源高值化利用程度低。本实验以提取油脂后的裂壶 藻渣为原料,采用复合蛋白酶对其进行水解,得到 裂壶藻酶解物 (S. limacinum hydrolysate, SLH), 加 入还原糖对 SLH 进行美拉德反应修饰,通过单因 素实验探究美拉德反应条件对 SLH 抗氧化活性的 影响,再借助超滤、葡聚糖凝胶层析色谱等技术 对 SLH 进行逐级分离纯化,测定不同分子量的美 拉德反应产物 (Maillard reaction products, MRPs) 的 抗氧化能力,并分析其氨基酸组成,为进一步实现 裂壶藻藻渣的高值化和资源再利用提供理论依据和 思路。

1 材料与方法

1.1 材料与试剂

裂壶藻渣购自广东润科生物工程有限公司。

1,1-二苯基-2-三硝基苯肼 (DPPH, 美国 Sigma 公司)。复合蛋白酶、核糖、木糖、阿拉伯糖、葡萄糖、果糖、盐酸、无水乙醇、铁氰化钾、磷酸二氢钠、磷酸氢二钠、三氯乙酸、三氯化铁 (广州齐云生物技术有限公司)。

1.2 仪器与设备

BS224S 型电子精密天平 (德国 Sartorius 公司); N & DN 系列 (LCD) 超声波细胞粉碎机 (宁波新芝生物科技股份有限公司); THZ-82 水浴恒温振荡器 (精达仪器制造有限公司); UV2550 型紫外可见分光光度计 (日本岛津); SynergyH1 型酶标仪 (美国伯腾仪器有限公司); 超纯水系统 (德国 Milipore 公司); 凝胶层析柱 Sephadex G-25 (Φ=1.6 cm×78 cm, 瑞典 Pharmacia); Alpha1-4 型冷冻干燥机 (德国 Christ); Labscale TFF system 小型切向流超滤系统 (德国 Milipore 公司); AvantiJ26XP 型高速离心机 (美国 Beckman Coulter); 3K30 型高速冷冻离心机 (德国 Sigma 公司); AKTA purifier UPC100型蛋白质纯化系统 (美国 GE Healthcare)。

1.3 方法

1.3.1 酶解产物的制备 按照高颖等^[8] 的方法制备 SLH。称取一定质量的藻渣于烧杯中,按料水质量比 1:12 加入蒸馏水,混匀,超声处理 25 min (功率调至 70%) 后,将 pH 调至 7.5,按酶总量质量分数 0.5% 加入复合蛋白酶,于 50 ℃ 水浴锅恒温酶解 3 h。酶解完成后,将酶解液置于沸水浴中灭酶 10 min,冷却后以 10 000 r·min⁻¹ 离心 15 min,冷冻干燥上清液后所得粉末即为 SLH。

1.3.2 单因素实验 采用单因素实验分别研究糖种类、糖肽质量比、反应 pH、反应温度和反应时间对反应产物的影响,以 MRPs 褐变程度和抗氧化活性为指标,确定美拉德反应条件;选取核糖、木糖、阿拉伯糖、葡萄糖和果糖作为参与美拉德反应的糖类,反应条件为糖肽质量比 1:1、pH 7.0、反

应温度 80 ℃、反应时间 1 h, 探讨单糖的种类对美 拉德反应程度及其产物抗氧化活性的影响; 以核糖 作为美拉德反应修饰物,反应条件为pH 7.0、反应 温度 80 ℃、反应时间 1 h, 研究糖肽质量比 (1:1、2:1、1:2) 对美拉德反应程度及其产物抗 氧化活性的影响;以核糖作为美拉德反应修饰物, 反应条件为糖肽质量比1:1、反应温度80℃、反 应时间 1 h, 研究不同反应 pH (4.0、5.0、6.0、 7.0、8.0、9.0、10.0) 对美拉德反应程度及其产物 抗氧化活性的影响; 以核糖作为美拉德反应修饰 物,糖肽质量比为1:1、pH为9.0、反应时间1h 来考察反应温度(30、40、50、60、70、80、90、 100 ℃) 对美拉德反应程度及其产物抗氧化活性的 影响; 以核糖作为美拉德反应修饰物, 糖肽质量 比 1:1、pH 9.0、反应温度 100 ℃,考察反应时间 (1、2、4、6、8 h) 对美拉德反应程度和抗氧化能 力的影响。

1.3.3 MRPs 褐变程度的测定 美拉德反应的中间 产物随反应的进行不断增加,使溶液颜色逐渐变深。将样品稀释至 25~250 倍,测定产物在 294 和 420 nm 处的吸光值来表示美拉德反应的程度^[4]。

1.3.4 DPPH 自由基清除能力 参照 Zhang 等^[9] 的测定方法加以修改。预实验以确定样品需要稀释的倍数。取 0.5 mL 样液于 10 mL 离心管中,再加入 0.5 mL $2\times10^{-4} \text{ mol·L}^{-1}$ 的 DPPH 乙醇溶液,混匀后室温避光 20 min,以 $10 000 \text{ r·min}^{-1}$ 离心 10 min,用酶标仪测定 517 nm 处的吸光度。DPPH 自由基清除能力的计算公式为:

$$DPPH清除率 = \left(1 - \frac{A_i - A_j}{A_0}\right) \times 100\% \tag{1}$$

式中 A_i 为样液与 DPPH 溶液混合后的吸光值; A_j 为样液与乙醇混合后的吸光值; A_0 为不含样液的 DPPH 溶液的吸光值。

1.3.5 还原力 参照李瑞杰等^[10]的测定方法并略作修改。取 1 mL 待测样液于 10 mL 离心管中,分别加入 1 mL 0.2 mol·L⁻¹的磷酸盐缓冲液 (pH 6.6),1 mL 质量分数 1%的铁氰化钾溶液,振荡混匀后于 50 ℃ 水浴保温 20 min。取出,加入 1 mL 质量分数 10% 三氯乙酸,振荡混匀后以 10 000 r·mim⁻¹离心 10 min。取 1 mL 上清液,加入 1 mL 去离子水和 0.2 mL 质量分数 0.1%的氯化铁溶液,振荡混匀后于 50 ℃ 保温 10 min,溶液体系变为蓝色,用酶标仪于 700 nm 处测定吸光度。以去离子水代替

样品作空白对照。

1.3.6 超滤分离 将 SLH 依次通过截留分子量为 50、10、5 kD 的超滤膜,收集过完膜的组分,得 到分子量为 50 kD 以下、10 kD 以下及 5 kD 以下 的多肽,经冷冻干燥后于-20 ℃ 备用。分别比较 <5 kD (SLH-1)、<10 kD (SLH-2)、<50 kD (SLH-3) 组在美拉德反应前后的 DPPH 自由基清除能力及 还原力。其中测量 DPPH 清除能力所用样品质量 浓度为 5 mg·mL $^{-1}$,还原力所用样品质量浓度为 2 mg·mL $^{-1}$ 。

1.3.7 Sephadex G-25 纯化 选取 SLH-1 组通过 Sephadex G-25 凝胶柱 (Φ =1.6 cm×78 cm) 纯化,将 收集到的各峰冷冻干燥,得到不同分子量的多肽,将各个峰组分进行美拉德反应,对其产物 DPPH 自由基清除率和还原力大小进行测定。其中测量 DPPH 清除能力所用样品质量浓度为 5 mg·mL $^{-1}$,还原力所用样品质量浓度为 2 mg·mL $^{-1}$ 。

1.3.8 氨基酸组成分析 参考国标 GB 5009.124—2016 进行。

2 结果与分析

2.1 单因素实验

2.1.1 糖种类 在美拉德反应初期, 氨羰缩合会产 生酮、醛等无色小分子物质,这些小分子在 294 nm 处会有吸收,吸光值越大,中间产物越多;而美拉 德反应最终产物——类黑精在 420 nm 检测有吸收 值,吸光值越大,褐变程度越高[11]。褐变程度用来 评价美拉德反应的程度。SLH与核糖的美拉德反 应中间产物和终产物的含量最多,与葡萄糖、果糖 反应得到的产物含量较少(图 1-a)。SLH 与核糖的 美拉德反应产物的抗氧化活性高于其他糖类, 其还 原力 (5 mg·mL⁻¹) 和 DPPH 自由基清除率 (12.5 mg·mL⁻¹) 分别为 1.39 和 86.73% (图 2-a)。还原糖 的开链程度对美拉德反应进程和速率起着重要作 用[12]。上述结果表明,核糖可能更易于裂解参与美 拉德反应, 生成更多的类黑精, 增加褐变程度, 从 而产物抗氧化能力较高。这与其他研究结果[13-15] 一致。因此,选用核糖作为与 SLH 进行美拉德反 应的糖类。

2.1.2 糖肽质量比 随着糖肽质量比的增加, SLH 发生美拉德反应的程度和抗氧化活性均先增加后下降。糖肽质量比为1:1时,在294和420 nm 处吸光值达到最高值(图1-b),表明美拉德反应最

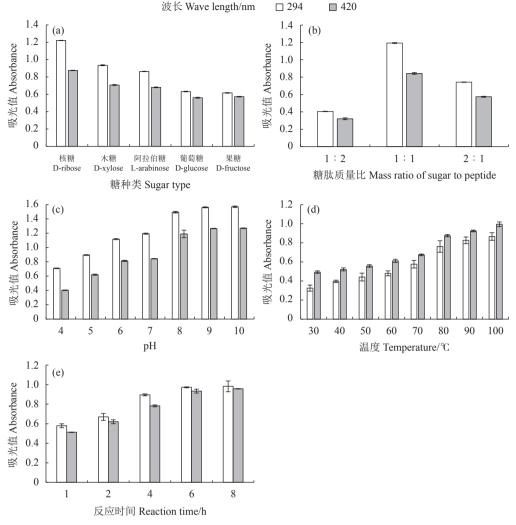


图1 裂壶藻酶解物与不同糖、糖肽质量比、反应pH、反应温度和反应时间对美拉德反应产物吸光值的影响 Figure 1 Effect of SLH and different sugars, mass ratio of sugar to peptide, reaction pH, reaction temperature and reaction time on absorbance of Maillard reaction products

强烈,此时产物的还原力为 1.35, DPPH 自由基清除率为 86.59% (图 2-b)。反应底物的用量不同会影响美拉德反应进程,适当的糖肽用量比例可以减少副反应的发生。核糖分子与 SLH 之间的有效碰撞随核糖浓度的升高而增加,促进美拉德反应进行。然而,随着比例继续升高,核糖分子与多肽分子会受到空间阻碍,影响了美拉德反应进程,导致各项指标降低^[16]。周冬香等^[17] 控制 L-赖氨酸与还原糖质量比分别为 1:1、2:1 和 1:2,测得质量比为 1:1 的美拉德反应产物的 DPPH 自由基清除效果相对最好。因此,美拉德反应时,核糖与 SLH 的质量比为 1:1 较为适宜。

2.1.3 反应 pH 美拉德产物的吸光值随着 pH 递增而逐渐上升,当 pH>9 时变化趋于平缓 (图 1-c)。 美拉德产物的抗氧化活性随着 pH 的增加而增强,反应 pH 为 10.0 时还原力和 DPPH 自由基清除率较

高(图 2-c),说明 pH 为 10.0 时有利于美拉德反应的发生。这可能是由于氨基在酸性条件下以-NH³的存在阻碍了羰氨缩合,影响美拉德反应;而在碱性条件下,氨基态氮被游离出来参与反应,pH 越高,越有利于美拉德反应^[18]。这与康乐和宋焕禄^[19]及胡礼等^[20]的研究结果一致。由于 pH 9.0同 pH 10.0 的各项指标无显著差异 (*P*<0.05),因此选择反应 pH为 9.0 较为适宜。

2.1.4 反应温度 反应温度对美拉德反应产物的 抗氧化性影响较大,随着温度的升高,美拉德反应产物的吸光值增大,反应越来越强烈,100 ℃ 时产物在 294 和 420 nm 的吸光值分别为 0.866、0.995 (图 1-d)。随着温度的升高,美拉德反应产物的抗氧化活性增强,温度到达 100 ℃ 时,还原力达 1.17,DPPH 清除率为 88.02% (图 2-d),表明高温有利于SLH 进行美拉德反应且促进其抗氧化活性。这可

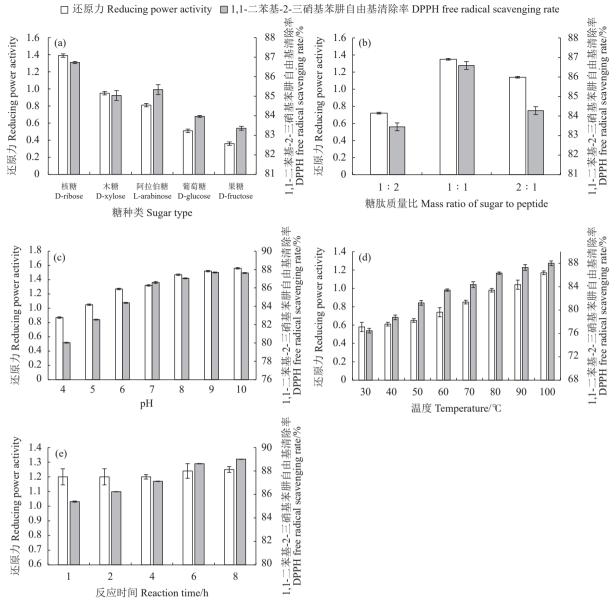


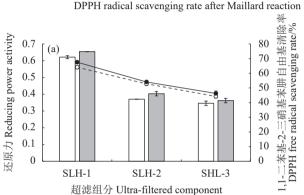
图2 裂壶藻酶解物与不同糖、糖肽质量比、反应pH、反应温度和反应时间对美拉德反应产物其 还原力与1,1-二苯基-2-三硝基苯肼自由基清除率的影响

Figure 2 Effect of SLH and different sugars, mass ratio of sugar to peptide, reaction pH, reaction temperature and reaction time on reducing power activity and DPPH free radical scavenging rate of Maillard reaction products

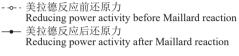
能是温度的升高带来了焦糖化和美拉德反应速率的增加,使得褐变程度加深,同时也导致了肽的降解和交联发生^[21]。杨璐等^[22]在羊骨胶原肽与还原糖的美拉德反应体系中也发现在一定温度范围内,提升温度可使反应产物的抗氧化能力提高。因此在常压条件下,选取反应温度 100 ℃ 较为合适。

2.1.5 反应时间 随着反应时间的延长,美拉德 反应产物在 294 和 420 nm 的吸光值逐渐增加,当 反应时间达 6 h 后吸光值变化缓慢 (图 1-e)。产物 的抗氧化活性随反应时间的增加而逐渐增强,反应 6 h 时其还原力和 DPPH 清除率分别为 1.24

(5 mg·mL⁻¹) 和 88.62% (12.5 mg·mL⁻¹),继续延长 反应时间其抗氧化活性变化不显著 (图 2-e)。这可能 是由于 SLH 与核糖反应产生了大量具有还原性的 酮类物质,因此随着时间的延长,其反应程度、还 原力及清除 DPPH 自由基的能力迅速提升。当达到一定时间之后反应完全,继续增加反应时间,其反应程度、还原力及清除 DPPH 自由基的能力不再 有太大的变化^[23-24]。故选择反应时间为 6 h 较为合适。


综上,美拉德反应的最佳条件确定为: SLH 与核糖质量比为 1:1,反应 pH 为 9.0,反应温度为 100 ℃,反应时间为 6 h,在此条件下的美拉德

反应产物具有较好的抗氧化活性。


2.2 超滤分离

分别比较其超滤组 SLH-1 (<5 kD)、SLH-2 (<10 kD)、SLH-3 (<50 kD) 在美拉德反应前后的抗氧化活性。不同分子量的各组分及其 MRPs 之间的抗氧化活性存在显著性差异 (P<0.05,图 3-a),其中SLH-1 组及其 MRPs 的抗氧化活性均高于其他组。SLH-1 组的美拉德反应前的还原力为 0.561, DPPH自由基清除率为 71.01%,其经过美拉德反应后的还原力为 0.591, DPPH自由基清除率为 74.81%。分

■ 美拉德反应前1,1-二苯基-2-三硝基苯肼清除率 DPPH radical scavenging rate before Maillard reaction 美拉德反应后1,1-二苯基-2-三硝基苯肼清除率

析可知,裂壶藻不同分子量多肽均具有一定的抗氧化能力,小分子量的肽能更易在生物体内运转,可更有效地通过细胞膜,清除自由基,抗氧化能力更高^[25],此结论与王传幸和李国英^[26] 及徐浩等^[27]的结果一致;美拉德反应能够提高多肽抗氧化活性,尤指低分子量多肽易于和还原糖结合^[28],与韩佳润等^[29] 对虾夷扇贝 (Patinopecten yessoensis) 生殖腺酶解物与核糖反应生成的 MRPs的抗氧化实验的结论相似。为了获得更好的分离效果,本实验对SLH-1 组继续分离纯化。

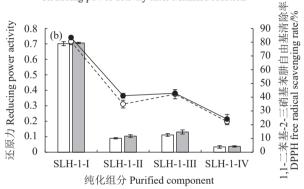


图3 不同超滤组分和Sephadex G-25凝胶柱层析组分的美拉德反应产物还原力和1,1-二苯基-2-三硝基苯肼自由基清除率 Figure 3 Comparison of reducing power activity and DPPH free radical scavenging rate of Maillard reaction products prepared by different ultrafiltration fractions and Sephadex G-25 gel column separated fraction

2.3 Sephadex G-25 分离

SLH-1 组经葡聚糖凝胶分离出 4 个分离峰,分别记为 SLH-1-I、SLH-1-II、SLH-1-II、SLH-1-IV (图 4)。根据凝胶层析法原理可知组分 SLH-1-I 的分子量较大,SLH-1-IV 的较小^[30]。SLH-1-I 组的抗氧化活性远高于其他 3 组,其对 DPPH 自由基的

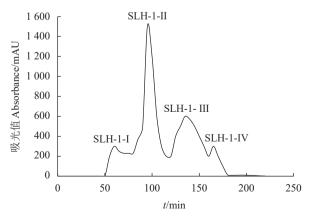


图4 Sephadex G-25 凝胶柱层析图谱

Figure 4 Sephadex G-25 gel column chromatography

清除率为 78.95%,还原力为 0.715 (图 3-b)。SLH-1-IV 的抗氧化活性较差,其对 DPPH 自由基的清除率为 3.84%,还原力为 0.198。经美拉德反应后,4个分离组的美拉德反应产物的抗氧化活性在一定程度上得到提升,其中 SLH-1-I 组的 MRPs 抗氧化活性最好,其对 DPPH 自由基的清除率达 79.41%,还原力为 0.741。肽的抗氧化活性与其分子量分布和氨基酸组成有关[31-32],一般认为小分子肽的抗氧化活性要高于大分子多肽或蛋白质,但 Yu 等[31] 发现分子量较大的大豆多肽 (1~3 kD) 抗氧化活性较高,与本结果一致。同时美拉德反应的修饰提高了抗氧化性,可能是在加热过程中生成呋喃、还原酮、吡嗪等中间产物参与反应增强了其活性。

2.4 氨基酸组成分析

裂壶藻蛋白肽经美拉德反应修饰时主要是氨基酸参与反应,这可能会导致氨基酸组成发生较大变化,通过比较美拉德反应前后的氨基酸组成可以反映出各种氨基酸参与美拉德反应的程度^[33-34]。美拉

德反应会导致裂壶藻蛋白肽中的酪氨酸 (Tyr)、赖氨酸 (Lys)、组氨酸 (His)、精氨酸 (Arg)、色氨酸 (Trp)等氨基酸含量显著降低 (P<0.05,表1),其中 Arg 和 Lys 含量降幅最大,分别减少了 71.88%和 70.56%,表明 Arg 和 Lys 是参与美拉德反应的主要氨基酸,这极有可能是因为在反应过程中,与核糖或其降解产物之间的相互作用 (交联) 大量消耗了体系中的氨基酸^[21]。从美拉德反应前后的必需氨基酸含量来看,其含量由反应前的 34.97% 变为反应后的 33.09%,变化不显著 (P>0.05),表明美拉德反应并未明显降低裂壶藻蛋白肽的营养价值。

表1 美拉德反应前后的氨基酸含量比较
Table 1 Comparison of amino acid content before and after Maillard reaction

氨基酸种类 Amino acid type	含量 Content/%	
	美拉德反应前 Before Maillard reaction	美拉德反应后 After Maillard reaction
天冬氨酸 Asp	10.46±0.61	11.74±0.54
苏氨酸 [*] Thr	5.12±0.30	5.77±0.38
丝氨酸 Ser	4.70±0.21	4.78±0.33
谷氨酸 Glu	20.18±2.13	24.07±2.69
脯氨酸 Pro	4.32±0.20	6.17±0.39
甘氨酸 Gly	6.22 ± 0.31	6.76±0.27
丙氨酸 Ala	8.64±0.42	8.75±0.33
缬氨酸 [*] Val	5.82±0.36	6.76±0.41
蛋氨酸 [*] Met	2.33±0.24	2.19±0.17
异亮氨酸 [*] Ile	4.24±0.23	4.78±0.37
亮氨酸 [*] Leu	7.08±0.44	6.96±0.30
酪氨酸 Try	3.30±0.28	1.83±0.10
苯丙氨酸* Phe	4.21±0.32	4.78±0.29
赖氨酸 [*] Lys	4.45±0.25	1.31±0.08
组氨酸 His	1.82±0.09	1.29±0.06
精氨酸 Arg	5.37±0.36	1.51±0.11
色氨酸 [*] Trp	1.72±0.16	0.54±0.04
必需氨基酸 Essential amino acids	34.97±2.31	33.09±2.05

注: *. 必需氨基酸

Note: *. Essential amino acids

3 结论

本研究采用单因素实验分别考察了还原糖种类、糖肽质量比、pH、反应温度和反应时间对

SLH 发生美拉德反应的影响。研究表明当参与反 应的糖为核糖、糖肽质量比为1:1、pH为9、反 应温度为 100 ℃、反应时间为 6 h 时, MRPs 牛成量 较多, 其还原力和 DPPH 清除率分别为 1.24 (5 mg·mL⁻¹) 和 88.62% (12.5 mg·mL⁻¹)。此外,采 用超滤与葡聚糖凝胶柱对 SLH-1 超滤组进行分离 纯化后发现 SLH-1-I 组的抗氧化活性最好, 且该组 的 MRPs 抗氧化活性也最高,其还原力 (2 mg·mL^{-1}) 为 0.741、DPPH 自由基清除率 (5 mg·mL⁻¹) 为 79.41%。由于在美拉德反应过程中会产生呋喃、 噻唑和噻吩等杂环类挥发性物质, SLH-1-I 组的电 子转移能力 (DPPH 自由基清除活性) 和还原铁氰化 钾的能力(还原力)均得到了提升。对比美拉德反 应前后的氨基酸含量发现, 美拉德反应导致了裂壶 藻蛋白肽中的 Tyr、Lys、His、Arg、Trp 等氨基酸 的含量降低, 但对其必需氨基酸总含量的影响不 大,未明显降低其营养价值。本研究结果可为裂壶 藻渣蛋白资源的高值化利用以及抗氧化产品的开发 提供一定参考。

参考文献:

- HOU L, XIE J, ZHAO J, et al. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteinexylose-glycine model reaction systems[J]. Food Chem, 2017, 232: 135-144.
- [2] HAN J R, YAN J N, SUN S G, et al. Characteristic antioxidant activity and comprehensive flavor compound profile of scallop (*Chlamys farreri*) mantle hydrolysates-ribose Maillard reaction products[J]. Food Chem, 2018, 261: 337-347.
- [3] 尹晨玲, 谢一丹, 吴高琪, 等. 美拉德反应对泥鳅蛋白酶解产物 抗氧化性能的强化研究 [J]. 食品工业科技, 2018, 39(4): 77-81, 105
- [4] 苗艳丽, 方富永, 宋文东. 鲍鱼内脏的酸水解及其梅拉德反应产物分析 [J]. 南方水产科学, 2009, 5(4): 54-57.
- [5] 方菲, 陈惠敏, 汪少芸. 鲷鱼鳞多肽-木糖美拉德反应产物的制备、结构与功能 [J]. 食品科学, 2018, 39(8): 182-190.
- [6] 武琼, 胡晓, 杨贤庆, 等. 复合酶解裂壶藻渣制备抗氧化肽的工艺研究 [J]. 食品工业科技, 2015, 36(16): 167-172.
- [7] 林源锋, 谢鑫磊, 付杰, 等. 化学添加剂对裂壶藻突变株发酵产 DHA 的影响 [J]. 食品工业科技, 2017, 38(22): 132-136.
- [8] 高颖, 胡晓, 李来好, 等. 超声辅助酶解对裂壶藻抗氧化肽抗氧 化活性的影响 [C]//中国水产学会, 四川省水产学会. 2016 年中 国水产学会学术年会论文摘要集. 成都: 中国水产学会, 2016: 343-344.
- [9] ZHANG Y L, SHEN Y X, ZHU Y C, et al. Assessment of the correlations between reducing power, scavenging DPPH activity

- and anti-lipid-oxidation capability of phenolic antioxidants[J]. LWT-Food Sci Technol, 2015, 63(1): 569-574.
- [10] 李瑞杰, 胡晓, 李来好, 等. 罗非鱼皮酶解物钙离子结合能力及 其结合物的抗氧化活性 [J]. 南方水产科学, 2019, 15(6): 106-
- [11] 李晓东, 杜玲玲, 张秀秀, 等. 超声对乳清蛋白及其水解物的美拉德产物抗氧化性及结构的影响 [J]. 中国食品学报, 2019, 19(2): 62-70.
- [12] CHEN K N, YANG X X, HUANG Z, et al. Modification of gelatin hydrolysates from grass carp (*Ctenopharyngodon idellus*) scales by Maillard reaction: antioxidant activity and volatile compounds[J]. Food Chem, 2019, 295: 569-578.
- [13] 汪清, 李婷, 陈丽丽, 等. 克氏原螯虾蛋白肽及其美拉德反应产物抗氧化活性的研究 [J]. 江西水产科技, 2017(2): 3-8.
- [14] SHEN Y T, CHEN G J, LI Y H. Bread characteristics and antioxidant activities of Maillard reaction products of white pan bread containing various sugars[J]. LWT-Food Sci Technol, 2018, 95: 308-315.
- [15] VHANGANI L N, van WYK J. Antioxidant activity of Maillard reaction products (MRPs) in a lipid-rich model system[J]. Food Chem, 2016, 208: 301-308.
- [16] 魏玉娇, 郭晓强, 周婷. 酪蛋白-羧甲基壳聚糖美拉德产物的制备及表征 [J]. 中国调味品, 2021, 46(2): 19-22.
- [17] 周冬香, 王惠英, 孙涛, 等. 三种 L-赖氨酸与葡萄糖美拉德反应 产物的抗氧化性能 [J]. 食品科技, 2010, 35(4): 224-227.
- [18] 罗章, 辜雪冬, 张玉凤, 等. 咸蛋清蛋白酶解液美拉德反应条件 优化及挥发性风味物质分析 [J]. 粮食科技与经济, 2020, 45(9): 118-125
- [19] 康乐, 宋焕禄. pH 值对牛肉酶解物美拉德产物风味特性的影响 [J]. 食品科学, 2017, 38(11): 25-32.
- [20] 胡礼, 王金枝, 张春晖, 等. pH 与反应温度对鸡骨素酶解液 MRPs 品质特性的影响 [J]. 中国农业科学, 2015, 48(18): 3689-3700.
- [21] LAN X H, LIU P, XIA S Q, et al. Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylosesoybean peptide system: further insights into thermal degradation and cross-linking[J]. Food Chem, 2010, 120(4): 967-

- 972
- [22] 杨璐, 程稚玲, 霍乃蕊. 美拉德反应提高羊骨胶原肽抗氧化活性研究 [J]. 山西农业大学学报 (自然科学版), 2017, 37(2): 115-120.
- [23] 丁小强, 陈丽丽, 白春清, 等. 美拉德反应对鱼蛋白酶解物抗氧 化活性的影响 [J]. 中国调味品, 2017, 42(11): 29-34.
- [24] LIU S, YANG D, JIN S, et al. Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems[J]. Food Chem, 2008, 108(2): 533-541.
- [25] 贺晓丽, 秦松, 李文军, 等. 海洋生物功能肽构效关系研究进展 [J]. 海洋科学, 2020, 44(12): 144-152.
- [26] 王传幸, 李国英. 小分子鱼鳞胶原蛋白肽的制备及其抗氧化性 测定 [J]. 食品科技, 2019, 44(4): 141-145.
- [27] 徐浩, 林琳, 刘东旭, 等. 河蚬酶解物美拉德反应产物抗氧化活性研究 [J]. 现代食品科技, 2019, 35(1): 189-197.
- [28] MALAYPALLY S P, LICEAGA A M, KIM K H, et al. Influence of molecular weight on intracellular antioxidant activity of invasive silver carp (*Hypophthalmichthys molitrix*) protein hydrolysates[J]. J Funct Foods, 2015, 18: 1158-1166.
- [29] 韩佳润, 李雪薇, 赵晨晨, 等. 虾夷扇贝生殖腺酶解物-核糖美拉 德反应产物抗氧化特性研究 [J]. 食品工业科技, 2017, 38(1): 81-86
- [30] 曲柳青, 崔素萍, 韩晶, 等. 英国红芸豆蛋白抗氧化肽的分离纯化及体外活性研究 [J]. 中国食品学报, 2018, 18(12): 164-169.
- [31] YU M, HE S D, TANG M M, et al. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate[J]. Food Chem, 2018, 243: 249-257.
- [32] CHALAMAIAN M, DINESH B, HEMALATHA R, et al. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review[J]. Food Chem, 2012, 135(4): 3020-3038.
- [33] 裴继伟, 丁连坤, 李丽, 等. 牡蛎酶解液-葡萄糖美拉德反应前后体系的溶解特性及氨基酸组成分析 [J]. 食品与发酵工业, 2019, 45(20): 93-99.
- [34] 刘海梅, 安孝宇, 陈静, 等. 牡蛎酶解液美拉德反应体系优化及产物营养评价 [J]. 食品科学, 2017, 38(16): 178-182.