Vol. 36 No.19 CHINESE SCIENCE BULLETIN October 1991

ENUMERATION RESULTS FOR THE CODEWORDS
HAVING NO INNER PERIODS IN
REED-SOLOMON CODES*

YANG Yrxian (#5 3L %) .
(Beifing University of Posts and Telecommunications. Beijing 100088, PRC)

Received April 12, 1990. y

Keywords: Reed-Solomon code. error-correcting code- sequence .
I. DESCRIPTION FOR THE PROBLEM

Let x =(x,,--- »x,-, ) be a sequence in the finite field GF(q) with length n, §', x is the
icyclic shift of x,i.e. S = (x;,x;,, »--- »x;,_; ) (Where i+ | means (i+ 1)mod n). If there exists
a positive integer 0 <r <nmaking Sx=x+ (4, u, --- ,u)hold for some ue GFlg), thenther
is called one of the generalized periods of this sequence x. The least one r,, of such periods
is called the minimum generalized period of x. In particular, if r,,=n (i. e. the minimum
generalized period equals the length of the sequence ), then we say that this sequence has no
inner period. It is clear that the definitions for the normal period and the generalized period
mean the same thing when y=0.

Reed-Solomon (R-S) code is one of the most important cyclic codes'’. Nguyen and
Massey found, in 1988, that the R-S codewords with no inner period can be widely used in
the construction of sequences with perfect generalized Hamming correlative property. What
is the exact number T, of R-S codewords having no inner period ? This problem remains
open by now, although Nguyen has found the lower bound'? T,>(g—1)¢*"'. By the
Fourier transform in GF(q) and the Polya’s enumeration formula, the above open prob-
lem was solved. In addition, the exact number of random sequences in GF(g ) with minimum
generalized period n was also shown in Section III.

~ II. Exact VALUE For T,

The exact number T, of R-S codewords with no inner period was presented in this sec-
tion.

Let g be a primitive element in GF(q)(g=p™ p being prime number). The Fourier
transform coefficients vector ¥=(V,, ¥, -+, Vy,) of the N=g—1 dimensional vector
v={(vy, 0+ »Vy_;)in GF(q)was defined as'" :
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N-1
: V=Y vg’ (0<j< N-1). (1)
i=0
The generator matrix G for (N, k, d) R-S code (N=g—1,d=N—-k+ 1)is formulated
as: _1o1 I
L g ¢ g¥! |
G= 1 gz g4 mgz(N—l) )
. L gl guh gy

The R-S codeword x was determined by its information vector a= (g, »a,)(a;€

k-1
GF(g))in the form x=aG= (x4 -, xy_, ), Where x; = Za}.g‘f(OsisN— 1). So that S'x=
j=0

k=1
O X0 s X, )= s yy oo s yy- Y With y, =xi+r=z a;8

j=0

(r+i)j

From the definition, we know that r is one of the generalized periods of codeword x iff
there exists some u € GF(q)such that

Sx—x =(ustt» > u). (3)

By carrying out the Fourier transform (1) on both sides of (3 ), and by orthogonal
property, Eq.(3 ) was changed to

(0,-,0,a,_,(1-g*" V), q,_,(1=g*"P),.cc,q,(1 =¢"))=(- u,0,0,---,0). (4)

From the inverse property, we know that Eqs.(3)and (4 ) are equivalent to each other.
By comparing the first component on both sides of (4), we have y=0. Therefore (4)is also
equivalent to

(ak-|(l —g(k—”’)v'“ va|(1 —g’))=(0,0, o, 0). (5)
By now we have proved the following lemma :

Lemma 1. The R-S codeword x with information vector (ay > a, »-**»a,., ) has r as one of
itS gneralizedwriodf l:tf (al ’ az sv"' ’ ak_l) =(a|g” azgzrs"'!ak_lg(k_l)r ).

Let 4, ={a=(a,.-,a,,): the R-S codeword x=aG is of generalized period r }
(1<r<N-1), then the set D of information vectors corresponding to those R-S
codewords having inner periods is D= A4,UA,U---UAy-,. The information vector a
and the codeword x are uniquely determined by each other. There are g codewords in (N,
k,d) R-S code, therefore there are | 4,UA,U---UA,_, | R-S codewords having inner periods,
i.e. the exact number T of codewords having no inner period is

T0=qk_ |A|UA2U"' UAN—I Is (6)
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where | X | means the cardinal number of the set X .

In another aspect, by Lemma 1, A, can be rewritten as :

A, ={ a=(ao st ,ak_l) :(01 PR ,a,,_,)=(a|g’,--- ,a,,_lg“"”' ) }- (7)
Because gis a primitive element in GF(g), g°=1is equivalent to N|s. Hence (a, ,--- , ‘
ak—|)=(a|gr"" ,ak_,g(k_”’ )lff
0 if N .
o= ‘(mr) (l<m <k—1).
arbitrary if Nl(mr)
while N|(mr)is equivalent to N/ged(N, r) |m, hence there are f(k—1, N/ged(N, r)) 4

integers m in the range of 1<m <k- 1 such that (mr) can be divided by N, ( where and
from now on f (u, v) = : | u/v], it means the number of integers s in the range I<s<u
such that s can be divided by v,| x | means the integer part of the real number x).
From (7), for any 1 <r<N-—1 we have

'A,, =q(l +j(k-l.N/yd(N.r)))’ (8)

where ged( - , © ) means the greatest common divisor function.

By a similar method, we know that for any | <s<r<N-1 the necessary and suf-
ficient condition for the simultaneous equations

{ (al PR ,ak_l)=(alg',azg2”... ’ak—lg(k—”r ).

(@ap-)=(a, g% a, 8% .a,-, 8%"")

{ arbitrary if N|(mr)and N| (ms)
is a,=

0 otherwise

while Nl(mr)and N| (ms)are equivalent to N/ged (N, r)|m and N/ged (N, s)Im, and also
to LCM(N/gd(N.r), N/gcd(N, s))l m, where LCM( - , - ) is the least common
multiplier function.

Then we know that for any 1 <s<r<N-1, -
|A ﬂ A I =q(l +f k=1, LCM(N/ged (N. 1), N/g:d(N's)))). (9)
r A
In general, it can be proved that for any 1 <i, <i, <.+ <i, <N-1
|A'lﬂA'2ﬂ'” mA' I=q(l+j(k—l.LCM(N/g:d(N.il).---.N/gad(N.iw))))' (10)
holds.
Finally according to the famous Polya’s enumeration formula'™ and Eqs.(8), (9).
(10), we have -

N-1
|A|UA2U'“UAN—1|= Z (-1 Z lAilnAnﬂ"' mAiwl
w=1

1il<p<-<iwy<N-1
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N-1
- 1+ -1, /@d(N. il »-,N/ ged (N.i
> = Z (=1 )" Z q( +fk=1.LCMN/ godN. i1 - N/ ged (Ni ))))
w=1 1€l <2<~ <iy<N-1

By setting the above equation into (6 ), the exact value for T, is obtained.

T,=q*+ Ni (=1)* z g (V¥ k=1 LM N/gd (N. i) N/ (N i) D)
w=1 I1<i| <) < <iwyg<N-1
. where f(m,n)=:[m/n].
III. ENUMERATION FOR RANDOM SEQUENCES WiTH GENERALIZED PERIOD 7
e
That an R-S codeword x has no inner period means that both the minimum generalized
period and the codeword length of x are equal to each other. Therefore the value of T in
the above section equals the number of codewords such that r,,, = N. In this section we con-
sider a more general problem and show the exact number of random sequences in GF(q)
with minimum generalized period n (n is any integer ).
Lemma 2. Let x=(x,,--- »x,_,) be an arbitrary sequence in GF(q), r,,, is the minimum
generalized period of x ,then r is one of the generalized periods of x iff ru | r.
Proof . The sufficiency is clear.
Necessity. By counterevidence.
Let r,,,}r. i.e. there exist some integers m and 0<e<r,, such that r=mr_, +e.
Because both of the r,, and r are the generalized periods of x, there exist some u, v €
GRg)such that S'x—x=(u, --- u)and S™rx —x=(v,"--,v).
Sx—x= §rmintex — x=§e(Sming ) — x=S(x+ (mv,---mv))—x=Sx—x + (mv,---.mv).
Substituting Sx —x=(u, u, ---,u) into the above equation, we have S°x—x=(u—mo,
u—my,---,u—my). This means that ¢ (0<e<r,,)is also one of the generalized periods of
x , which is contradictory to the minimum property of r,,,, .
~ Q.E.D.
Definition . Let x and y be two vectors with lengths m and n respectively. If (x, x,-- ) =
(p>y,--+), then x is called the cyclic repeat of y.
Let g(n) be the number of GF(q) random sequences with minimum generalized period
of n , h(n)be the number of GF(g)random sequences with generalized period of n.
By Lemma 3, the relationship between g(n)and h(n)can be stated as
Z, g(r)="h(n).
rin
- Then from the Mobius inverse formula'¥, we have
gln)= Zp(d)h(n/d). (11)
din
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where u( - ) is the Mobius function, i.e.
1 if n=1,
un)=<0 if n contains a square factor,
(—=1) if nis the production of r different primes.

For the computation of A(n), it should be noted that the possible lengths of sequences
with generalized period of n are n, 2n, 3n, rn,--- . In another aspect, it is easy to verify the fol-
lowing 4 results :

(a) Any GF(q) sequence with length n has n as one of its generalized periods. The num-
ber of such sequences is B, = ¢".

(b) The sequence (a, > »a,» @,+;+ ** »a,,) having generalized period n is not the
cyclic repeat of those sequences in (a)iff there exist some u € GF(q) such that (a, - ,a,,
Apryr " 24y, )=(ap"' aa,,,a,+u,---,a,,+ u)and 2u=0, u#o ’ (u € GF(q))-

When ged( g, 2) > 1, 2u=0 holds for any u. Hence the number of sequences of
length 2 n with generalized period n having no cyclic repeat with the sequences in (a ) equals
B,=(q—1)q"p (gcd(gq.2)), where

{o if x=1,
e B

(c)In general, for any 1 <r<pthere are B,=(q—1)q"¢(ged(g, r)) sequences of length
rn with generalized period n having no cyclic repeat with the above sequences in (a), (b),
etc.

(d) For any sequence x of length (p+ 1) n, (p+2)n,--- if x has n as one of its general-
ized periods then x is surely the cyclic repeat of some sequences in (a), (b)or (c).

By now, we have known that
14 P

h(n)=Y B=g"+Y (g-1)g"p(ged (¢.r))=q"+(g—1)g" (p—0(p))=¢"".
r=1 r=2

where ¢ (p)is the Euler function', for pis prime, ¢p(p)=p— 1.

Finally by setting the value of A(n)into (11), the number of GF(q) random sequences
with generalized period n was derived :

— d n/d+l.
g(n) ;lu( )q
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