关于 p(kp + 1)(kp + 2) 阶的单群

洪 加 威(北京市科学技术局)

摘 要

本文证明了: 对于任何一个正整数 n 存在一个正整数 m,使得对任何正整数 $k \le n$ 及任何素数 $p \ge m$,阶为 p(kp+1)(kp+2) 的 单群都必须同构于 LF(2,p+1) 或 LF(2,2p+1).

按照 R. Brauer 的一个结果[1], p(p+1)(p+2) 阶的单群必须同构于 LF(2,p+1), $p+1=2^r$. 1956年,O. Nagai^[2] 证明了: 如果 p-Sylow 子群的中心化子就等于自身,那 末 p(2p+1)(2p+2)阶的单群必须同构于 LF(2,2p+1). 作者将在另一文¹⁰中证明定理 1.

定理 1. 阶为 $p(kp + \delta)(kp + 2\delta)$ (δ = ± 1, k \leq 5) 的单群必须同构于:

- i) LF(2, p+1), $\stackrel{.}{+} k = 1$, $\delta = 1$, $p = 2^{e} 1$;
- ii) $LF(2, p-1), \stackrel{\omega}{=} k = 1, \delta = -1, p = 2^c + 1;$
- iii) $LF(2, 2p + 1), \stackrel{\text{def}}{=} k = 2, \delta = 1, p = \frac{1}{2}(q^{\epsilon} 1);$
- iv) $LF(2, 2p-1), \stackrel{\text{def}}{=} k = 2, \delta = -1, p = \frac{1}{2}(q^e + 1);$
- v) $LF(2,7), \leq k=3, \delta=-1, p=3$.

于是,我们可以提出,对于任何正整数 n,确定全部 p(kp+1)(kp+2) (其中 $k \le n$)阶单群的工作能够在有限步之内完成吗?作者在老师段学复教授的指导下,证明了下列的定理 2.

定理 2. 对于任何一个正整数 n, 存在一个正整数 m, 使得对任何正整数 $k \le n$ 及任何素数 $p \ge m$, 阶为 p(kp+1)(kp+2) 的单群都必须同构于 LF(2,p+1) 或 LF(2,2p+1).

在这个定理的证明中,我们将看到:确定全部 p(kp+1)(kp+2) (其中 $k \le n$)阶单群的工作,是能够在有限步之内完成的.

证明的大致步骤如下:令G是 g=p(kp+1)(kp+2) 阶的单群,P是 G 的一个 p-Sylow 子群, $N=\mathfrak{N}_G(P)$ 是 P 在 G 中的正规化子. 我们首先证明(见第一节),对于充分大的 p, [N:1]=2p,N 是非交换的,因此,P是 G 的一个特殊子群,G是一个(井)群(参看 Harada [S])。根据 Harada 关于(井)群的结果,对于充分大的 p,在 G 的第一个 p-指标块 $B_1(p)$ 中,有一个 a=kp+1 级不可约指标 χ_1 , $\frac{1}{2}$ (p-1) 个 b=kp+2 级不可约例外指标 χ_2^c 和主指标 χ_3 。

本文 1972 年 6 月 10 日收到

^{1) &}quot;阶为 $p(kp + \delta)(kp + 2\delta)$, (δ = ±1, k≤5) 的单群"—文将在《科学通报》发表。

G的元素被分成三部分: p-元素; (kp+1)-元素和 (kp+2)-元素(见第二节). 然后证明对于充分大的 p, u=kp+1 必须是一个素数方幂 q (见第三节), 并且对于充分大的 p, 必须有 c=1 或 k=q-1 (见第四节). 对于 c=1, 我们立刻得到 k=2, $G\cong LF(2,2p+1)$. 对于 k=q-1, 我们证明对于充分大的素数 p, q-Sylow 子群 Q 是初等交换 q-群, 因此是一个 T. I. 集合, $[G:\mathfrak{N}_G(Q)]=kp+2$ (见第五节). 最后证明 (见第六节),对于充分大的 p, $k\leq 2$. 当 k=1 时, $G\cong LF(2,p+1)$; 当 k=2 时, $G\cong LF(2,2p+1)$.

-、 $\mathfrak{N}_G(P)$ 的阶等于 2p

假定 P 是一个足够大的素数。在这个假定之下,我们将证明:任何一个 p-Sylow 子群的正规化子的阶等于 2p $|\mathfrak{N}_c(P)| = 2p$

引理 1. 令G是一个有限群,S是G的一个子群, $N = \mathfrak{N}_G(S)$ 是S在G中的正规化子。假定 S在N内对于G 弱封闭。那末,在G的以N的陪集为文字的置换表示中,S 恰好保持一个文字不动。

证. 假定 Nx 是被 S 保持不动的一个陪集,那末,对任何 $s \in S$,我们有

$$Nxs = Nx, \quad xsx^{-1} \in N,$$

所以

$$xSx^{-1} \subseteq N$$

因为 S 在 N 内是弱封闭的,故 $xSx^{-1}=S$. 因此, $x\in \mathfrak{N}_{c}(S)=N$,也就是说,恰好只有陪集 $N\cdot 1$ 是被 S 保持不动的.

引理 2. 设U和V都是群,[U:1] = u, [I':1] = v, (u, v) = 1. 如果 $C = U \times V$ 在一组文字上有一个忠实的置换表示,而且这一组文字被U分成r个传递区,那末

$$v \leq r!$$

证略.

引理 3. 令 G 是一个 g 阶单群, g=pg',(p, g') = 1. P 是 G 的一个 p-Sylow 子群, $N=\mathfrak{N}_G(P)$,[G:N] = 1 + rp. 令 $C=\mathfrak{C}_G(P)$ 是 P 的中心化子, $C=V\times P$,[V:1] = v. 则有

$$v \leq r!$$

证. 考虑G的以 1 + rp 个N的陪集为文字的置换表示。因为P 是N的特征子群,所以它在 N 内弱封闭。根据引理 1,P恰恰保持一个文字不动。又因为G 是单群,故表示是忠实的,C 在 rp 个文字上有一个忠实的表示,而这 rp 个文字又被 P 分成 r 个传递区。因此,根据引理 2 , $v \le r!$

引理 4. 设 m > 0 是一个整数,并设单群 G 的阶为 g = fp(up + 1), $f \le m$, $u \le mp$. P 是一个 p-Sylow 子群, $N = \mathfrak{N}_G(P)$. 假定 p 充分大,则N 的阶等于 fp.

证. $\[\mathcal{C}[G:N] = 1 + rp, [N:1] = p(sp + a), 0 \le a < p. 那末, \]$

$$p(sp+u)(rp+1) = pf(up+1),$$

所以

$$a \equiv f \pmod{p}, \quad a = f$$

因此, srp + fr + s = fu, $m^2p \ge fu \ge srp$, 我们就得到

$$m^2 \geqslant sr$$

如果 s=0, 那末 [N:1]=pa=fp, 引理就成立了。因此、我们不妨设 $s \neq 0$, $m^2 \geqslant sr \geqslant r$.

考虑以 N 的陪集为文字的置换表示。 令 $C = \mathfrak{C}_{G}(P) = V \times P$. 我们有 [N:C] | (p-1) 以及 [N:C] | (sp+f),因此,

所以 [N:C]|(p-1, sp+f) = (p-1, s+f), 所以 $[N:C]|(s+f), [N:1]|(s+f) \cdot [C:1],$ $p(sp+f)|(s+f) \cdot p \cdot [V:1],$ $[V:1] \ge (sp+f)/(s+f).$

但是. V \triangleleft N. ([V:1], ρ) = 1. 根据引理 3,

$$[V:1] \leq r!$$

所以

$$(sp + f)/(f + s) \le r!, \quad sp \le r!(f + s),$$

 $p \le r!(1 + f/s) \le r!(1 + f) \le (m^2)!(1 + m).$

在这里, 单群 G 的阶 g = p(kp+1)(kp+2) = fp(up+1). 其中 $u = \frac{1}{2}(k^2p+3k) \le k^2p$, f = 2, p 是充分大的. 根据引理 4, 我们断言 [N:1] = 2p. 如果 N 是交换的, 容易证明在 G 中存在一个 (kp+1)(kp+2) 阶的正规子群. 因此 N 是非交换的, P 是一个 G 的特殊子 $\mathbb{H}^{(3)}$, G 是一个 (+1) $\mathbb{H}^{(3)}$.

二、 $B_1(p)$ 的指标

根据 K. Harada 的结果^[3], 在 G 的指标块 $B_1(p)$ 中, 有一个 a 级不可约指标 X_1 , $\frac{1}{2}$ (p-1) 个 b 级不可约例外指标 X_2^n 和主指标 X_0 ,它们的级数满足

$$1 + a\delta = b\delta$$
, $\delta = \pm 1$,
 $a \equiv \delta \pmod{p}$, $g = pabd$.

这里 d 是某个整数, $d \equiv 1 \pmod{p}$. 我们可以写成

$$a = sp + \delta$$
, $b = sp + 2\delta$, $d = tp + 1$,

这里。和,是适当的整数。于是有

$$(tp+1)(sp+\delta)(sp+2\delta) = (kp+1)(kp+2).$$

因此, 当 p 充分大时, 则 t = 0, d = 1, $\delta = 1$, s = k. 所以

$$g = pab$$
, $a = kp + 1$, $b = kp + 2$.

根据(#)群的性质, G 中所有非单位元素分成三类: p-元素, (kp + 1)-元素和(kp + 2)-元素. (kp + 1)-元素的总数是 kp(kp + 2).

从文献[4,5]可知, $B_{i}(p)$ 的指标如表 1.

				ā	表 1.	$B_1(p$)的	指 标					
gi	I	ab	ab	•	сħ	t_1pb	t_2pb	•••	1,10				
於	1	Þ	p	•••	P	<i>5</i> 1	52	•••	s,				
χ_{o}	1	1	1	•••	1	1	1	•••	1	1	1	•••	1
$\chi_{\frac{1}{2}}$	kp+1	1	1	•••	1	0	0	•••	()	1	-1	•••	l
$\chi^2_{\sigma^1}$	kp+2	η_0	η_1	•••	η_{t-1}	1	1	•••	1	0	0	•••	0
$\chi_2^{\sigma_2}$	kp+2	η_1	η_2	•••	η_0	1	1	•••	1	0	0	•••	U
÷	:	:	:		:	:	:		:	÷	:		:
$\chi_{1}^{\sigma_{t}}$	kp+2	η_{t-1}	η_0	•••	η_{t-2}	1	1	•••	1	0	0	•••	Ü

这里 $t = \frac{1}{2}(p-1)$, χ_{2}^{σ} , χ_{2}^{σ} , \dots , χ_{2}^{σ} 是 t 个不同的 p—共轭指标。 令 ϵ 是 1 的 p 次本原根, γ 是模 p 的一个本原根,

$$e_0 = e^{\gamma^0}, \ e_1 = e^{\gamma^1}, \ \cdots, \ e_{p-2} = e^{\gamma^{p-2}}, e_{p-1} = e^{\gamma^{p-1}} = e^{\gamma^0} = e_0,$$
 $\eta_0 = e_0 + e_t, \ \eta_1 = e_1 + e_{t+1}, \ \cdots, \ \eta_{t-1} = e_{t-1} + e_{2t-1},$

 s_1, s_2, \dots, s_n 是 kp + 1 的某些因子。

引理 5. 假设 q 是一个不等于 p 的素数, $q \mid g$. 那末, 存在 q-最高块 $B_i(q)$, …, $B_i(q)$, 使得

$$B_1(q) \cup B_2(q) \cup \cdots \cup B_l(q) \supseteq B_1(p)$$
.

证. 因为 G 是一个单纯(井) 群, 所有级数与 p 互素的指标都包含作 $B_1(p)$ 中. 显然, $\chi_0 \in B_1(p) \cap B_1(q)$. 首先, 我们假定 $\chi_1 \notin B_1(p) \cap B_1(q)$, 则 $B_1(p) \cap B_1(q)$ 由 χ_0 和某些 χ_2 组成. 我们把 σ 分成两个集合: 如果 $\chi_2^p \in B_1(p) \cap B_1(q)$, 就令 $\sigma \in \Delta$; 否则就令 $\sigma \in \Delta'$. 令 φ 是一个 p 阶元, 设 φ $\|g$, 我们有

$$\chi_0(1)\chi_0(y) + \sum_{\sigma \in \mathcal{S}} \chi_2^{\sigma}(1)\chi_2^{\sigma}(y) \equiv 0 \pmod{q^{\epsilon}}.$$

从表 1 得知, $\chi_2^{\sigma}(y) = r_{i\sigma}$, 对于不同的 σ , $i\sigma$ 是互不相同的。我们有

$$1 + \chi_2(1) \sum_{\sigma \in \Delta} \eta_{i_{\sigma}} \equiv 0 \pmod{q^c}.$$

但是, $1 + \eta_0 + \eta_1 + \cdots + \eta_{t-1} = 0$, 因此

$$-\left(\sum_{\sigma \in \Delta} \eta_{i\sigma} + \sum_{\sigma \in \Delta'} \eta_{i\sigma}\right) + \chi_2(1) \sum_{\sigma \in \Delta} \eta_{i\sigma} \equiv 0 \pmod{q^c},$$

故

$$-\frac{1}{q'}\sum_{\sigma\in\Delta'}\eta_{i_{\sigma}}+\frac{\chi_{2}(1)-1}{q'}\sum_{\sigma\in\Delta}\eta_{i_{\sigma}}$$

是一个代数整量. 如果 $\sigma \succeq \tau$, $R = i_{\sigma}$, 被包含在 $\eta_{i_{\sigma}}$ 中的 ϵ 的方幂也就完全不同。但是 ϵ_{0} , ϵ_{1} , \cdots , ϵ_{p-1} 构成一组基, 在域 $R(\epsilon)$ 中, 每一个代数整量都是 ϵ 的整多项式, 因此我们得到:

- Δ′ 是空集,
- 2) $(\chi_2(1) 1)/q^c = \chi_1(1)/q^c$ 是一个整数. 于是 χ_1 被包含在一个 q-最高块之中. 如果我们置 $B_*(q) = \{\chi_1\}$, 立刻得到

$$B_1(q) \cup B_s(q) \supseteq B_1(p)$$
.

现在,我们假定 $X_i \in B_1(p) \cap B_1(q)$. 用同样的方法,我们得到

$$1 + \chi_1(1) + \chi_2(1) \sum_{\sigma \in \Lambda} \eta_{\sigma\sigma} \equiv 0 \pmod{q^{\sigma}},$$

$$(-1 - \chi_1(1)) \left(\sum_{\sigma \in \Delta} \eta_{i_{\sigma}} + \sum_{\sigma \in \Delta'} \eta_{i_{\sigma}} \right) + \chi_2(1) \sum_{\sigma \in \Delta} \eta_{i_{\sigma}} \equiv 0 \pmod{q^c}.$$

因此

$$\frac{1}{q^{\epsilon}}(-1 - \chi_{1}(1) + \chi_{2}(1)) \sum_{\sigma \in \Delta} \eta_{i_{\sigma}} - \frac{1}{q^{\epsilon}}(1 + \chi_{1}(1)) \sum_{\sigma \in \Delta'} \eta_{i_{\sigma}} = -\frac{1}{q^{\epsilon}} \chi_{2}(1) \sum_{\sigma \in \Delta'} \eta_{i_{\sigma}}$$

是一个代数整量. 如果 Δ' 是空集, 那末 $B_1(q) \supseteq B_1(p)$. 如果确有某些 σ 属于 Δ' , 那末 $g^{\epsilon}[\chi_2(1), \text{每一个} \chi_2']$ 构成一个 g^{ϵ} 最高块, 把它们取作 $B_s(q), \dots, B_l(q)$, 就有

$$B_1(q) \cup B_s(q) \cup \cdots \cup B_l(q) \supseteq B_1(p)$$
.

三、a 是一个素数方幂 $(a = q^c)$

我们用 $\pi(s)$ 标记在s中出现的不同素因子的个数。 任给两个正整数s与t,s一定有这样的因子: 它的每个素因子都在t中出现。把s的这种因子中的最大者记为s_t.

引理 6. 假定 G 是一个单群,|G| = g = pabd, $|\mathfrak{N}_G(P)| = 2p$. 那末 $\pi(a) < 2 \ln a d_a / \ln 2p$, $\pi(d) < 2 \ln d u_d / \ln 2p$.

证. 假定 r'||a,根据引理 5, $\frac{1}{2}(p-1)$ 个 b 级例外指标全都属于 $B_1(r)$,因此 $B_1(r)$ 至 少包含有 $\frac{1}{2}(p+1)$ 个指标. 但是,如果 r' 则g,根据 R. Brauer 和 Feit 的结果 b 为,在 $B_1(r)$ 中 至多有 $\frac{1}{4}r''$ 个不可约指标,所以

$$\frac{1}{2}(p+1) \leqslant \frac{1}{4} r^{2i_0}.$$

现在, a 中出现有 $\pi(a)$ 个不同的素数 $r_1, r_2, \dots, r_{\pi(a)}$, 因此

$$\left[\frac{1}{2}(p+1)\right]^{\pi(a)} \leqslant \left(\frac{1}{4}\right)^{\pi(a)} r_1^{2i_{01}} \cdot r_2^{2i_{02}} \cdots r_{\pi(a)}^{2i_{0\pi(a)}}.$$

这里 rp/||g. 显然, rp/||ad, rp/||ada. 因此

$$\left[\frac{1}{2}(p+1)\right]^{\pi(a)} \leqslant \left(\frac{1}{4}\right)^{\pi(a)} (ad_a)^2,$$

$$(2p)^{\pi(a)} < (ad_a)^2,$$

$$\pi(a) < 2 \ln ad_a / \ln 2p.$$

所以

第二个不等式可以同样证明.

我们已经证明了 $\lim_{n \to \infty} d = 1$,所以

 $\lim_{p \to \infty} (2 \ln a d_a / \ln 2p) = \lim_{p \to \infty} (2 \ln a / \ln 2p) = \lim_{p \to \infty} (2 \ln (kp + 1) / \ln 2p) = 2.$

于是, 当 p 充分大时, $\pi(a) \leq 2$. 也就是说, a 中最多包含两个不同的素因子, 我们假定

$$a = kp + 1 = q^m \cdot r^n.$$

如果 $m \ge 1$, $n \ge 1$, 假定在 G 中有 $\mu \land q^m$ -类, 它们的代表元素是 x_1, x_2, \dots, x_{μ} , 每类分别 包含有 u_1pb , u_2pb , \dots , $u_{\mu}pb$ 个元素。还假定在 G 中有 $\nu \land r^n$ -类, 它们的代表元素是 y_1, y_2, \dots, y_{ν} , 每类分别包含 v_1pb , v_2pb , \dots , $v_{\nu}pb$ 个元素。假定 x_i 恰和 s_{ii} 个与 y_i 共轭的元素交换,且 y_i 恰和 t_{ii} 个与 x_i 共轭的元素和交换。显然

$$u_i s_{ij} = v_j t_{ij}$$

如果 G 中元素 z 的阶是 $q^{m_1}r^{n_1}$, $m_1 > 0$, $n_1 > 0$, 我们就称 z 为一个混合元素. 显然, 其 q-部 分共轭于 x_i , 且 r-部分又共轭于 y_i 的混合元素的总数是

$$u_i pbs_{ij} = v_i pbt_{ij}$$
.

假定有 i_0 , j_0 , 使得 $s_{i_0i_0} \succeq 0$, 那末 $t_{i_0i_0} \succeq 0$. 在这种情形, $\mathfrak{N}(x_{i_0})$ 中存在一个 r 阶的元素,因此,我们能假定在 $\mathfrak{N}(x_{i_0})$ 中的 r-Sylow 子群的阶是 r^{n_1} , $n_1 > 0$.

可以证明, r^{n-n_1} 是共轭于 x_{i_0} 的元素的总数的一个因子

$$r^{n-n_1}|u_{i_0}pb, r^{n-n_1}|u_{i_0}.$$

在 G 中,与 x_{i_0} 交换的,"一元素的总数是 $\sum_i s_{i_0i}$ 、因此

$$r^{n_1}-1\leqslant \sum_i s_{i_0l}.$$

所以

$$\sum_{i} u_{i_0} pbs_{i_0 i} \geqslant pbr^{n-n_1} \sum_{i} s_{i_0 i}$$

$$\geqslant pbr^{n-n_1} (r^{n_1} - 1)$$

$$\geqslant rbr^{n-n_1} (r^{n_1} - r^{n_1-1})$$

$$= pbr^n \cdot \left(\frac{r-1}{r}\right).$$

同样,可以证明

$$\sum_{i} v_{i_0} pbt_{ij_0} \geqslant pbq^m \left(\frac{q-1}{q}\right).$$

容易看到, 如果 $l = \sum_{i} \sum_{j} u_{i} p b s_{ij} = \sum_{j} \sum_{i} v_{j} p b t_{ij}$, 则有 k p b > l. 但

$$l \geqslant \sum_{i} u_{i_0} pbs_{i_0 l} \geqslant pbr^n \left(\frac{r-1}{r}\right),$$

$$l \geqslant \sum_{i} v_{i_0} pbt_{ii_0} \geqslant pbq^m \left(\frac{q-1}{q}\right).$$

因此,

$$(kpb)^{2} > l^{2} \geqslant (pb)^{2} r^{n} q^{m} \left(\frac{r-1}{r}\right) \left(\frac{q-1}{q}\right)$$

$$\geqslant \frac{1}{3} (pb)^{2} q^{m} r^{n}.$$

所以

$$k^2 > \frac{a}{3} > \frac{1}{3} kp$$
, $3k > p$.

所以,对充分大的 p,不存在混合元素,也就是说, $s_{ij}=t_{ij}=0$. 因此,一个 q 阶的共轭类至少包含 pbr'' 个元素,一个 r 阶的共轭类至少包含 pbq''' 个元素. 于是

$$kpb \geqslant q^m pb + r^n pb,$$

$$k \geqslant q^m + r^n \geqslant 2\sqrt{q^m r^n} = 2\sqrt{a},$$

$$kp + 1 \leqslant \frac{1}{4}k^2, \quad p \leqslant \frac{1}{4}k.$$

所以

这就证明了: 当 p 充分大时, $a = q^r$ 是一个素数方幂.

四、
$$k=q-1$$
 或 $k=2$, G 同构于 $LF(2,2p+1)$

引理 7. 对于固定的 k, 如果 $kp + 1 = q^c$, 那末 p 是有界的。除非 k = q - 1 或 c = 1. 证. 假定 $k \approx q - 1$, $c \approx 1$, 我们将证明 p 是有界的。

$$kp = q^c - 1 = (q - 1)(q^{c-1} + \dots + q + 1),$$

如果 p(q-1), 那末

$$(q^{i-1} + \cdots + q + 1) | k_i$$

于是 $q^c < k^2$, p 就是有界的了.

因此我们能够假定 $p \neq (q-1)$. 那末

$$p|(q^{c-1}+\cdots+q+1), (q-1)|k.$$

于是 q 是有界的. 假定 d 是使得 $q^d \equiv 1 \pmod{k}$ 成立的最小正整数, 那末 $d \mid c$, c = de, e 是某个整数. 我们有

$$kp = q^{de} - 1 = (q^d - 1)(q^{d(e-1)} + \dots + q^d + 1)$$

如果 $p(a^d-1)$, 则

$$(q^{d(r-1)} + \cdots + q^d + 1)|k.$$

当 e = 1 时, $c = d \le \varphi(k)$, φ 表示欧拉函数; 既然 q 是有界的, 当然 q^e 和 p 也都是有界的. 当 $e \ne 1$ 时, 我们有 $q^{d(e-1)} < k$, $q^e = q^{de} < k^2$. 所以 q^e 和 p 都是有界的.

因此,我们能够假定 $p \nmid (q^d - 1)$ 那末

$$p|(q^{d(c-1)}+\cdots+q^d+1),$$

因为 $g^d \equiv 1 \pmod{k}$, 我们得到 $k = g^d - 1$, 故 $d \ge 1$. 我们有

$$kp = q^{de} - 1 = (q^e - 1)(q^{e(d-1)} + \dots + q^e + 1)$$

如果 $p(q^r-1)$, 则有

$$(q^{c(d-1)} + \cdots + q^c + 1) | k, \quad q^c = q^{dc} < k^2,$$

 a^c 和 p 都是有界的。因此,我们假定 $p \nmid (q^c - 1)$, 于是

$$p[(q^{e(d-1)} + \cdots + q^e + 1), (q^e - 1)]k = q^d - 1$$

于是、 $e \leq d$ 、

$$q^{c} = q^{dc} \leqslant q^{d \cdot d} = (k+1)^{d} \leqslant (k+1)^{\Phi(k)} \leqslant (k+1)^{k}$$

因此, $p = (q^c - 1)/k$ 有界. 引理 7 证毕.

设 $a = kp + 1 = q^{\epsilon}$, 当 p 充分大时, 我们有

k = q - 1 或 c = 1, 假定 c = 1, 那末

$$g = pq(kp + 2), \quad q = kp + 1,$$

 $q^3 > g.$

则有

根据 R. Brauer 和 W. F. Reynolds 的结果^[7], G同构于 LF(2,q) 或 LF(2,q-1). 因为 q-1=kp, 不是 2 的方幂,群 LF(2,q-1) 不是解,如果 $G\cong LF(2,q)$,那末

$$g = \frac{1}{2}q(q-1)(q+1) = pq(q+1),$$

$$q = 2p + 1, \quad k = 2.$$

从现在起,我们假定 k = q - 1.

五、q-Sylow 子群 Q 是一个初等 Abelian q-群

令 x 是一个 q^c -元素,那末与 x 共轭的元素的总数是 upb. 这里 u 是 q 的一个方幂, $u=q^i$. 考虑到 k=q-1 以及 $k \ge q^i$,我们得到 i=0. 因此,每个 q^c -元素属于某个 q-Sylow 子群的中心,每个 q-非正则类恰好包含 pb 个元素.

我们考虑 $N=\mathfrak{N}_{c}(Q)\supseteq Q$. 如果 N=Q, 根据 H. Wielandt 的一个定理(见文献 [8, Satz

2]), 对于任何一个Q的正规子群 Q_0 , 只要 Q/Q_0 是交换的, 就存在G的一个正规子群 G_0 , 使得 $G/G_0 \cong Q/Q_0$.

我们取Q的某个极大子群作为Q, 因为G是单群, 故N = Q是不可能的, 所以 $N \supset Q$.

我们将要证明存在一个Q的p阶自同构,它仅仅保持单位元不变。为了这个目的,我们将证明p|[N:Q]。考虑以N的陪集为文字的置换表示,假定这个表示的指标是 χ 。因为[G:N] = $\chi(1)$,所以我们想要证则 $p \nmid \chi(1)$ 。

设 $\rho(\chi(1))$, 我们知道 χ 包含 χ_0 恰好一次,因此 χ 必须还包含某个 $B_1(\rho)$ 的指标.

情形 1. 如果 χ 包含某个 b=kp+2 级指标,它就必须包含所有的 $\frac{1}{2}(p-1)$ 个 b 级的 p~ 共轭指标. 因此

$$\chi(1) \geqslant 1 + \frac{1}{2} (p-1)(kp+2).$$
但, $\chi(1) = [G:N]$, $[G:Q] = p(kp+2)$. 令 $\omega = [N:Q]$, 就行
$$\omega = [G:Q]/[G:N]$$

$$\leq p(kp+2) / \left(1 + \frac{1}{2} (p-1)(kp+2)\right) \xrightarrow[p \to \infty]{} 2.$$

因此,当 p 充分大时, $w \le 2$. 我们已证明了 $w \ne 1$,所以 w = 2,Q 有一个 2 阶自同构,它仅仅保持单位元不变。根据 R. Brauer 和 K. Fowler 的一个定理(见文献[9, 定理(4B)]), Q 是交换的。因为 q-元素以及单位交换,Q 是一个 T. I 集合。q-Sylow 子群的 意数是

$$kr(kp+2)/(q^c-1) = kp+2$$

于是, [N:1] = p(kp+1) = 2(kp+1), 这是不可能的,因此 χ 不能包含 b 级的指标.

情形 2. X 包含 u 个 u 级指标, 因此

$$\chi(1) = 1 + u(kp + 1) + sp.$$

因为我们假定了 $p(\chi(1))$,所以

$$p|(1+u), u \ge p-1, \chi(1) \ge 1 + (p-1)(kp+1), w = p(kp+2)/\chi(1) \le \frac{p(kp+2)}{1 + (p-1)(kp+1)} \xrightarrow{p \to \infty} 1.$$

所以,当p充分大时,w=1,这是不可能的。因此, $p \nmid \chi(1)$ 。存在一个Q的p阶自同构,它 仅仅保持单位元不变。

现在假定 $Q = Q_0 \supset Q_1 \supset Q_2 \supset \cdots \supset Q_l = 1$. 这里 $Q_i \neq Q$ 的特征子群. 我们把 l 称为 这个特征链的长度。

引理 8. 如果 q-群 Q 有一个 P 阶自同构 τ 仅仅保持单位元不变,I 是 Q 的某个特征链的 长度,则有

$$l \leq \ln[Q:1]/\ln(p+1).$$

证. 假定特征链是

$$Q = Q_0 \supset Q_1 \supset Q_2 \supset \cdots \supset Q_l = 1$$
.

我们将要证明 $[O_{i-1}:O_i] \ge p+1$.

对于任意的 $x_1, x_2 \in Q_i$, 如 $x_1(x_1^{-1})^r = x_2(x_2^{-1})^r$, 那末 $x_2^{-1}x_1 = (x_2^{-1}x_1)^r$, 因此, $x_2^{-1}x_1 = 1$,

 $x_1 = x_2$. 因此,如果 $x_1 \leq x_2$,就有 $x_1(x_1^{-1})^{\mathsf{r}} \leq x_2(x_2^{-1})^{\mathsf{r}}$. 故所有 Q_i 的元素都能写成 $x(x^{-1})^{\mathsf{r}}$ ($x \in Q_i$) 的形式.

假若 $[Q_{i-1}:Q_i] \leq p$,那末 $(Q_ix)^r = Q_ix$ 。对某个 $x \in Q_{i-1}$, $x \notin Q_i$ 成立。这时, $x^r = xy$, $y \in Q_i$ 。令 $y = z(z^{-1})^r$, $z \in Q_i$ 。我们有

$$(xz)^{\mathfrak{r}} = x^{\mathfrak{r}}z^{\mathfrak{r}} = xy \cdot z^{\mathfrak{r}} = x \cdot z(z^{-1})^{\mathfrak{r}} \cdot z^{\mathfrak{r}} = xz.$$

 τ 保持 xz 不变,所以 xz = 1. 但是 $x \notin Q_i$, $z \in Q_i$, 这是不可能的,因此 $[Q_{i-1}:Q_i] \ge p+1$. 我们立即得到

$$[Q:1] \geqslant (p+1)^{l},$$

$$l \leqslant \ln[Q:1]/\ln(p+1).$$

在我们的情形,

$$\lim_{p \to \infty} \ln[Q:1]/\ln(p+1) = \lim_{p \to \infty} \ln(kp+1)/\ln(p+1) = 1,$$

故当 p 充分大时,l=1. 也就是说,不存在 Q 的真特征子群. 因此, $\mathfrak{C}(Q)=Q$,Q 是交换的。 $Q^q=1$,Q 是初等 Abelian q-群,且 Q 是一个 T. I 集合,[G:N]=kp+2.

六、 $k \leq 2$, G 同构于 LF(2, p+1) 或 LF(2, 2p+1)

我们将证明当 p 充分大以后,就有 $k \leq 2$,并且 $G \cong LF(2, p+1)$ 或 LF(2, 2p+1)

令 $N=\mathfrak{N}_G(Q)$, $[N:1]=pq^\epsilon$. 令 P是 N的一个 p-Sylow 子群. 每一个 P 中的非单位元素都在 Q 中产生一个 p 阶的自同构 τ . 每一个 Q 的元素都能写成形状 $x(x^{-1})^r$, $x\in Q$. 因此 N 的换位子群就是 Q. N/Q 的 p 个线性指标就是 N 的全部线性指标. P在 N 中的正规化子的阶是 p 或者 2p. 如果它是 2p,那末 q=2. 根据 Sylow 定理, $q^{c-1}\equiv 1 \pmod{p}$. 但是 $q^r=kp+1$,故 $q^c=kp+1\equiv 2 \pmod{p}$,或 $1\equiv 2 \pmod{p}$,这是不可能的. 因此 P在 N中的正规化子就是 P

因为 Q 是交换的, 并且 ([Q:1] - 1)/[N:Q] = k, 故在 N 中恰有 k 个 q-类, 容易看到, 在 N 中恰有 p - 1 个 p-类. 因此, 在 N 中恰有 p + k 个共轭类.

假定 N 的 p-最高块的指标的级数是 hp, \cdots , h,p. 在 $B_1(p)$ 中,有 p 个线性指标,于是 我们有 i+p 个不可约指标,所以 i=k. 我们有

$$(h_1p)^2 + (h_2p)^2 + \dots + (h_kp)^2 + p = [N:1] = p(kp+1),$$

 $h_1^2 + h_2^2 + \dots + h_k^2 = k, \quad h_1 = h_2 = \dots = h_k = 1$

于是, N 有 p 个线性指标 ω^1 , ω^2 , \cdots , $\omega^p = \omega^0$ 和 k 个 p 级指标 φ_1 , φ_2 , \cdots , φ_k . 下面是N的指标表.

			表 2.	N	的指	标 表			
阶	1	p	p	•••	p	q	4		q
ω^{0}	1	1	1	•••	1	I	1	•••	1
ωι	1	6	ϵ^{\imath}	•••	e^{p-1}	1	1	• • •	1
ω^2	1	e^z	ϵ^{4}	• • •	e^{p-2}	1	1	• • •	I
:	:	÷	;		:	:	:		:
ω^{p-1}	1	e^{p-1}	e^{p-2}	•••	E	1	1	•••	1
φ_1	p	0	U		0	α_{11}	α_{12}	•••	u _{1k}
φ_{2}	p	U	0	•••	υ	α_{21}	α_{12}	•••	α_{2k}
÷	:	:	;		:	:	:		;
φ_k	P	0	0	•••	0	α_{k_1}	α_{k2}	•••	u _{kk}

既然 Q 是一个 T. I 集合, φ_i 在 Q 以外的值为 0, 因此 $\varphi_1, \varphi_2, \dots, \varphi_k$ 是例外指标[10], 一 定有 $k \cap G$ 的不可约指标 $\phi_1, \phi_2, \dots, \phi_k$, 使得

$$\phi_i = \pm \varphi_i + u \Phi + \Omega.$$

这里 $\Phi = \varphi_1 + \varphi_2 + \cdots + \varphi_k$, $Q \neq N$ 的某些线性指标的和。 我们有 $\varphi_1(1) = \varphi_2(1) = \cdots$ $= \phi_b(1)$, 但是 $\phi_1, \phi_2, \cdots, \phi_b$ 在 q 阶元上有不同的值, 因此 $\phi_i \in B_1(p)$. ϕ_i 是属于 p—最高 类的,所以它在p阶元上的值为0。如果x是一个p阶元,

$$0 = \psi_i(x) = \pm \varphi_i(x) + u \Phi(x) + \Omega(x),$$

所以

$$Q(x) = 0$$

我们可写成

$$Q = vQ_0, \quad Q_0 = \omega^0 + \omega^1 + \dots + \omega^{p-1}.$$

$$\psi_i = \pm \varphi_i + u\Phi + vQ_0, \quad i = 1, 2, \dots, k.$$

假定还有另外的 p-最高类指标 d.利用例外指标的性质,考虑到 d(x) = 0 对 $x \in P$ 成立, 我们可写成

$$\phi = t\Phi + s\Omega_0$$

容易看到, χ 包含 ω 一次并且不再包含别的线性指标了,因此

$$\chi_1 = \omega^0 + \Phi$$

 χ_2^{α} 包含两个线性指标 $\omega^{\prime \alpha}$, $\omega^{\prime \alpha}$,

$$\chi_2^{\sigma} = \omega^{\prime \sigma} + \omega^{\prime \sigma} + \Phi$$

 $\phi \alpha \neq G$ 的正则表示的指标, $\beta \neq N$ 的正则表示的指标,则有

$$\alpha = (kp + 2)\beta$$

每一个线性指标在 β 中出现一次,因此 β 包含 p 个线性指标, α 包含 (kp+2)p 个线性指标. 但是

$$\alpha = 1 + (kp + 1)\chi_1 + \sum_{\sigma} (kp + 2)\chi_2^{\sigma} + \sum_{\psi} \psi(1)\psi,$$

这里 ϕ 跑遍所有p-最高类指标.指标 $1+(kp+1)\chi_1+\sum (kp+2)\chi_2$ 包含了1+(kp+1) $+\frac{1}{2}(p-1)(kp+2)\cdot 2 = p(kp+2)$ 个线性指标,即 α 中的全部线性指标. 因此, $\sum_{i} \phi(1)\phi(1)$ 不再包含线性指标, 也就是说,

$$v = 0, s = 0.$$

$$\phi_i = \pm \varphi_i + u\Phi,$$

$$\phi = t\Phi.$$

令 G 中的实类数为 h, G 中二阶元的总数为 m 根据 R. Brauer 和 K. Fowler 的结果(见 文献 [9, 定理(21)]), 我们有

$$k_1-1 \ge m(m+1)/g$$

显然, $m \ge p(kp+1)$,因此

$$k_1 - 1 \ge p(kp+1)(p(kp+1)+1)/p(kp+1)(kp+2)$$

= $(p(kp+1)+1)/(kp+2)$.

令非例外的 p-最高类指标的总数为 f,就有

$$1+1+\frac{1}{2}(p-1)+k+j \ge (p(kp+1)+1)/(kp+2)$$

可见, 当 ρ 充分大时, f > 0. 也就是说, 确实存在一个 G 的不可约指标 ϕ , 使 $\phi = \iota \Phi$,

$$\psi(1) = i\Phi(1) = ikp.$$

因为 ϕ 是不可约的,故 $\phi(1)|g$,

$$tkp|p(kp+1)(kp+2),$$

 $k|2, k=1 \text{ if } k=2.$

当 k=1 时根据 R. Brauer^[1] 的结果, $G \cong LF(2, p+1)$; 当 k=2 时,我们已证明 p-Sylow 子群的中心化子就等于自身,故 Nagai^[2] 的结果可以使用, $G \cong LF(2, 2p+1)$.

参 考 文 献

- [1] Brauer, R., 1943 Ann. of Math., 44, 57-79.
- [2] Nagai, O., 1956 Osaka Math. J., 8, 107—117.
- [3] Harada, K., 1967 Ill. J. Math., 11, 647-659.
- [4] Brauer, R., 1942 Amer. J. Math., 64, 401-420.
- [5] Brauer, R. and Tuan, H. F., 1945 Bull. Amer. Math. Soc., 51, 756-766.
- [6] Brauer, R. and Feit, W., 1959 Proc. Nat. Acad. Sci., 45, 361-365.
- [7] Brauer, R. and Reynolds, W. F., 1958 Ann. of Math., 68, 713-720.
- [8] Wiclaudt, H., 1940 J. Reine und Angew. Math., 182, 180-193.
- [9] Brauer, R. and Fowler, K., 1955 Ann. of Math., 62, 565-583.
- [10] Feit, W., 1960 Institute on Finite Groups, at California, pp. 67-70.