## A NOTE ON FINITE GROUPS SATISFYING PERMUTIZER CONDITION

ZHANG JIPING (张继平)

(Department of Mathematics, Peking University)
Received September 19, 1984.

Let G be a finite group, H be a subgroup of G. The permutizer of H in G is the subgroup

$$P_G(H) = \langle x \in G | \langle x \rangle H = H \langle x \rangle \rangle.$$

G is said to satisfy the permutizer condition if

$$H \leqslant P_G(H)$$
, for all  $H \leqslant G$ .

If G satisfies the permutizer condition, we call G a pc-group; clearly, all the super-solvable groups are pc-groups. It was shown in [1] that pc-groups of odd order were supersolvable. It is easy to verify that the symmetric group of degree four is a solvable pc-group, but it is not supersolvable. In general, solvable pc-groups of even order are not bound to be supersolvable. In this paper, we study the solvable pc-groups in detail and give a necessary and sufficient condition for the supersolvability of solvable pc-groups. In fact, we will prove the following theorem.

**Theorem 1.** Let G be a solvable pc-group, then

- (i) G is supersolvable iff G is  $S_4$ -free.
- (ii) G is p-supersolvable, for any odd prime p.

The symbols used in this paper are mainly taken from [1].

The following Lemma is essential in the process of proving our main theorem.

**Lemma 1.** Let P be a p-group, p a prime, H a subgroup of index  $p^n$  and X a normal complement of H which is elementary Abelian. If P contains an element Y such that  $P = \langle Y \rangle H$ , then if p is odd, n = 1; if p = 2,  $n \leq 2$ .

Proof. By [1] we know that if p is odd, the conclusion holds. Therefore we may assume that p=2. Assume that the result is false and let P be a minimal counter example, so  $n \ge 3$ . Since  $X \triangle P$ , we can choose  $1 \ne Z \in X \cap Z(P)$ , clearly, for  $H^* = H\langle z \rangle$ ,  $P = XH^* = \langle y \rangle H^*$ ,  $|P: H^*| = 2^{n-1}$ . Let  $P = P/\langle z \rangle$ ,  $\overline{H}^* = H\langle z \rangle/\langle z \rangle$ ,  $\overline{X} = X/\langle z \rangle$ ,  $\langle \overline{y} \rangle = \langle y \rangle \langle z \rangle/\langle z \rangle$ , clearly  $\overline{P}$ ,  $\overline{H}^*$ ,  $\overline{X}$ ,  $\overline{Y}$  satisfy the conditions in the lemma. By the minimality of |P| we conclude  $n-1 \le 2$ . Hence n=3, |X|=8. |X|=8. |X|=8. Heacts on |X|=8. Let |X|=8. Hence |X|=8. Let |X|=8. Hence |X|=8. Hence |X|=8. Hence |X|=8. Let |X|=8. Hence |X|=8. Hence |X|=8. Hence |X|=8. Hence |X|=8. Let |X|=8. Hence |X|=8 Hence |X|=8. Hence |X|=8 H

$$\overline{P} = P/K, \ \overline{H} = H/K, \ \overline{X} = XK/K, \ \langle \overline{y} \rangle = \langle y \rangle K/K, \ | \overline{P} \cdot \overline{H} | = 2^n,$$

by the minimality of |P|,  $n \leq 2$ , contrary to the assumption, therefore K=1.

Now we may take H as a subgroup of PSL(3,2), the sylow 2-subgroup of PSL(3.2) is not cyclic and of order 8. So  $\exp H \mid 4$ .

Since P = HX,  $y = \sigma x$ ,  $\sigma \in H$ ,  $x \in X$  obviously  $\sigma \neq 1$ ,  $x \neq 1$ ,  $O(\sigma)|4$ . Let N = [X, P], then  $N \triangle P$  and  $N \leqslant X$ . So |N||4,  $\sigma$  introduces an automorphism of N by conjugacy. Since  $|\operatorname{Aut}(N)||6$ ,  $[\sigma^2, N] = 1$ ,  $y^2 = \sigma x \sigma x = \sigma^2 \sigma^{-1} x^{-1} \sigma x = \sigma^2 [\sigma, x]$ ,  $y^4 = \sigma^2 [\sigma, x] \sigma^2 [\sigma, x] = \sigma^4 [\sigma, x]^2 = 1$  (noting that  $\exp X = 2$   $[\sigma, x] \in N$ ). Hence  $|P: H| = |\langle y \rangle|/l\langle y \rangle \cap H|$  is a factor of 4.  $n \leqslant 2$ , contrary to  $n \geqslant 3$ . The contradiction proves the lemma.

For conclusion, we narrate the definition of p-supersolvability, we say a solvable group G to be p-supersolvable, if every p-principal factor of G is of order p. p-supersolvability is quite analogous to supersolvability (cf. [2]).

Proof of Theorem 1. (i) We only prove the "if" part. Suppose that the result is false and let G be a minimal counter example. Clearly, the properties of G are inherited by its quotient subgroups. If  $\Phi(G) \neq 1$ , then  $G/\Phi(G)$  is supersolvable, and so is G. But it is impossible, so  $\Phi(G) = 1$ . If G has two different minimal normal subgroups  $N_1, N_2$ , by the supersolvability of  $G/N_i$ , we infer that  $G/(N_1 \cap N_2)$  $\approx G$  is supersolvable. But that is contrary to the assumption. So G has only one minimal normal subgroup N. It is not hard to prove that N = F(G), the fitting subgroup of G. Hence  $C_G(N) = N$ . Since  $\Phi(G) = 1$ , there exists a maximal subgroup M such that G = NM. Obviously,  $M \cap N \triangle M$ ,  $M \cap N \triangle N$ ,  $M \cap N \triangle$ MN = G,  $M \cap N = 1$ . Since G is a solvable pc-group, there exists an element Y of G such that  $G = \langle y \rangle M$ . Let  $|N| = p^n$ , y may be chosen to be of order  $p^m$ . There exists  $H \in Syl_p(M)$  such that  $P = \langle y \rangle H = NH \in S_y l_p(G)$ . By Lemma 2,  $n \leq 2$ . If n = 1, G is supersolvable because of the supersolvability of G/N. Hence Since  $C_G(N) = N$ , M acts on N by conjugacy. But |Aut(N)| = 6and G is a pc-group. It is easy to show that |M| = 6 and  $G \approx S_4$ , which is contrary to the assumption. The contradiction proves the (i) part. (ii) In a similar way, we can prove (ii).

**Corollary 1.** Let G be a solvable pc-group, then the sylow 2-subgroup Q of G' is normal in G and G/Q is supersolvable.

*Proof.* By Theorem 1, G is p-supersolvable for odd prime P. Then G' is p-nilpotent (see [2], Th. 1, p. 716). Therefore  $Q \triangle G$ . Since G/Q is also a solvable pc-group and has an Abelian sylow 2-subgroup, G/Q is  $S_4$ -free. By Theorem 1, G/Q is supersolvable.

**Corollary 2.** Let G be a solvable pc-group, p the largest prime factor of |G|. If p > 3, then the sylow p-subgroup P of G is normal in G. Hence the  $\{2,3\}'$ -Hall subgroup H of G is a normal subgroup of G. Moreover, H is supersolvably embedded in G, i. e. the principal factors of G which lie in H are of prime orders.

*Proof.* We employ the induction on |G|. If  $\Phi(G) \neq 1$ , then  $P\Phi(G)/\Phi(G)$  is normal in  $G/\Phi(G)$ ,  $P\Phi(G)\Delta G$ . Since  $P\Phi(G)$  is nilpotent, P is the characteristic subgroup of  $P\Phi(G)$ , so  $P\Delta G$ , if  $\Phi(G) = 1$ . Let N be a minimal normal subgroup of G, M a subgroup of G such that G = MN,  $M \cap N = 1$ . Similar to the way used

in the proof of Theorem 1, we have |N| = q or 4, q is a prime. Since PN/N is normal in G/N,  $PN\Delta G$ ,  $|\operatorname{Aut}(N)| = q - 1$  or 6. Hence  $P \leq C_G(N)$ . If q = p, then  $N \leq P$ . If q < p, P char PN. In both cases, we have  $P\Delta G$ . Noticing the p-supersolvability of G, we can easily arrive at the remainder conclusion.

Corollary 4 shows that if we want to study the supersolvability of the solvable pc-group, it is enough to study the supersolvability of the pc-group of order  $2^n3^m$ .

The author would like to acknowledge his gratitude to Profs. X. F. Tuan and Xu Mingyiao for their comments and advice.

## REFERENCES

- [1] Weistein, M., Between Nilpotent and Solvable, Polygonal Publishing House, 1982.
- [2] Huppert, B., Endiche Gruppen I, Springer-Verlag, 1967.