
. REVIEW .

SCIENCE CHINA
Information Sciences

May 2014, Vol. 57 051101:1–051101:15

doi: 10.1007/s11432-013-5050-z

c© Science China Press and Springer-Verlag Berlin Heidelberg 2014 info.scichina.com link.springer.com

Software-as-a-service (SaaS): perspectives and
challenges

TSAI WeiTek1,2∗, BAI XiaoYing2 & HUANG Yu1

1School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,

Tempe, AZ 85287, USA;
2Department of Computer Science and Technology, Tsinghua National Lab of Information Science and Technology,

Tsinghua University, Beijing 100084, China

Received June 3, 2013; accepted August 22, 2013; published online March 11, 2014

Abstract Software-as-a-service (SaaS) has received significant attention recently as one of three principal

components of cloud computing, and it often deals with applications that run on top of a platform-as-a-service

(PaaS) that in turn runs on top of infrastructure-as-a-service (IaaS). This paper provides an overview of SaaS

including its architecture and major technical issues such as customization, multi-tenancy architecture, redun-

dancy and recovery mechanisms, and scalability. Specifically, a SaaS system can have architecture relating to

a database-oriented approach, middleware-oriented approach, service-oriented approach, or PaaS-oriented ap-

proach. Various SaaS customization strategies can be used from light customization with manual coding to heavy

customization where the SaaS system and its underlying PaaS systems are customized together. Multi-tenancy

architecture is an important feature of a SaaS and various trade-offs including security isolation, performance,

and engineering effort need to be considered. It is important for a SaaS system to have multi-level redundancy

and recovery mechanisms, and the SaaS system needs to coordinate these with the underlying PaaS system.

Finally, SaaS scalability mechanisms include a multi-level architecture with load balancers, automated data

migration, and software design strategies.

Keywords software-as-a-service, SaaS architecture, customization, multi-tenancy architecture, redundancy

and recovery, scalability

Citation Tsai W T, Bai X Y, Huang Y. Software-as-a-service (SaaS): perspectives and challenges. Sci China

Inf Sci, 2014, 57: 051101(15), doi: 10.1007/s11432-013-5050-z

1 Introduction

Software-as-a-service (SaaS) is one of three principal components of cloud computing [1], with the other

two being platform-as-a-service (PaaS) and infrastructure-as-a-service (IaaS). SaaS runs on top of PaaS

that in turn runs on top of IaaS. SaaS has not only its business model but also its unique development

processes and computing infrastructure. At the system level, unlike traditional software that runs on

operation systems, SaaS is usually deployed on a PaaS system such as GAE1), EC22), or Azure3), or

∗Corresponding author (email: wtsai@asu.edu)
1) Google App Engine. http://code.google.com/appengine/.
2) Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.
3) Windows Azure. http://www.windowsazure.com/.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:2

specialized SaaS infrastructure. To manage the software data, conventional systems often use relational

databases that support concurrent processing and give readers priority over writers. Data schemas are

usually normalized. Conversely, a PaaS system often has a large amount of data with big data solutions,

such as NoSQL databases4) and MapReduce-style parallel processing [2]. A PaaS system may favor writers

over readers, de-normalize data schema and adopt weaker consistency requirements such as eventual

consistency. Conventional systems do not address multi-tenancy issues, whereas a key feature of PaaS is

that it supports all tenant applications with one code base [3–6]5). For reliability, availability, and security,

conventional systems use security kernels and redundancy and rollback mechanisms while PaaS leverages

built-in testing, continuous validation, and automated triplicate writing and recovery as major techniques.

A PaaS infrastructure often has built-in fault-tolerant facilities and supports scalable computing. SaaS

is a new software delivery model. While SaaS can be constructed in a service-oriented manner, SaaS and

service-oriented software are different. Today’s SaaS is rather distinct from service-oriented computing

(SOC). SOC6) emphasizes a composable architecture with which to integrate heterogeneous software

systems. Hence, a service-oriented infrastructure is often composed of a stack of standard protocols for

publishing services, and for orchestrating or choreographing services dynamically. SaaS emphasizes a

customizable architecture of a massive scalable system built upon a cloud infrastructure [7–11]. Hence,

it is enabled by database and PaaS design techniques to support customization and scalability at various

levels including the user interface, workflow and persistence. While a SaaS service can be specified using

service-oriented standards such as WSDL or OWL-S, current SaaS services focus on execution and utility

services that users can use in their applications. Compared with SOC, SaaS has unique features of

customization, persistency, and scalability, following multi-tenancy architecture (MTA). MTA is a key

feature of SaaS [3–6,11]. It provides all tenants software to share the same code base with configuration

data stored in databases or data stores. In this way, hundreds of thousands of tenants may use the same

SaaS infrastructure with the same database of services. One tenant can be different from another tenant

owing to differences in their configurations, while each tenant feels like a dedicated application. SOC

software can be customized and one common customization is to use different compositions to account

for differences in configurations [12]. In SaaS, customization is often achieved by MTA database design

and uses a metadata-driven approach where metadata tables store information about tenants and the

SaaS system uses these metadata tables to search, retrieve, and update tenant information. In SaaS,

a database is often an integrated part of SaaS where a new tenant application can be composed using

services stored in the database within the SaaS system [3–5]. Upon a user request from a tenant, the

SaaS system will retrieve the related components from the database, and compose them into code that

can then be compiled into executable code. The executable code is then executed, and the resulting data

may be stored in the database, and returned to the user. Thus the SaaS application can be considered

a database-centric operation where the database is an integral part of the SaaS system. Furthermore,

well-known SaaS systems such as Salesforce.com often use a flexible schema rather than a rigid schema

commonly used in relational database management systems (RDBMS) where data of different types use

the same schema for storage. This reduces the schema design for each tenant as a SaaS may host hundreds

of thousands of tenants. Scalability refers to the ability of a system to handle a growing amount of work

with stable performance using a proportional amount of new resources. SOC software can be scaled

topologically, across multiple locations, organizations, and business units. A SaaS service may have a

large number of tenants, and each tenant may have hundreds of thousands of users, and thus a SaaS

infrastructure needs to support millions of users with scalable performance.

2 SaaS architecture

SaaS architecture needs to address customization [8], MTA, scalability [11] and rapid development. The

four main SaaS architectures are: database-oriented architecture [13], middleware-oriented architecture,

4) NoSQL-Database.org. http://nosql-database.org/.
5) Chong F, Carraro G, Wolter R. Multi-Tenant Data Architecture. http://msdn.microsoft.com/.
6) OASIS. Web Services Standards. http://www.oasis-open.org/standards.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:3

Table 1 Summary of SaaS architectures

Database-oriented Middleware-oriented PaaS-based Service-oriented

Customization Comprehensive Same customization Custom made Comprehensive customization
customization as original software for the using ontology and
using code software specific PaaS composition

MTA De-normalization, Use the existing schema, Use namespace for Can use a variety
complex design rapid development identifying tenants of MTA design

Scalability K-level scalability K-level scalability Depending on the K-level scalability
PaaS scalability

Full-text search engine

Dynamic application generator

Tenant

defined UI

Tenant defined

objects

Shared

application UI

User interface components

Cache

Metadata

MetadataP
iv

o
t

ta
b
le

s

Bulk data processing engine

MTA query optimizer

Figure 1 Force.com MTA architecture.

PaaS-based architecture, and Service-oriented SaaS architecture [1]. Table 1 compares the implementation

of different SaaS Architecture styles.

2.1 Database-oriented SaaS

Salesforce is a representative system of database-oriented architecture7) [13], see Figures 1 and 2.

Customization. The architecture supports customization by allowing engineers to develop code and

link the code to software components such as service components of a graphical user interface (GUI).

MTA. The architecture shares databases and schemas among tenants. Because of this sharing, each

tenant uses the same schema and database as every other tenant.

Scalability. The architecture uses two-level scalability mechanisms, where the top-level scheduler

dispatches the user requests according to tenant information to different clusters (in case of Salesforce.com,

this is called portal on demand), and the second-level scheduler assigns tasks to different servers within the

same cluster where each server is stateless, but all servers share the same database. Various optimization

algorithms can be applied to the data allocation in these clusters to address scalability; furthermore,

the two-level scalability mechanism can be extended to K-level such as 3-level or 4-level with each level

addressing specific aspects. Salesforce.com has developed many mechanisms supporting the execution of

this architecture to maintain performance and reliability. Recently, it has also supported another level of

MTA, sub-tenancy, where a tenant application can support multiple sub-tenants.

7) The Force.com Multitenant Architecture: Understanding the Design of Salesforce.com’s Internet Application Develop-

ment Platform. http://www.salesforce.com/.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:4

App
server

App
server

App
server

Load balancer

Shared DB Shared DB

App
server

App
server

App
server

Load balancer

Shared DB Shared DB

POD POD

Gatewayy

Figure 2 Force.com scalability architecture.

Public, private, hybrid cloud

Databases

Corent’s multi-tenant server

Application servers

Single tenant application

(Developed with Java)

End user End user End user End user

Front-end middleware

(For load balancing)

Cockpit
Application

server

(MTS)

Application

server

(MTS)

Application

server

(MTS)

DBMS

ddlewaFront

TenantTenantTenantTenant

Applicati Applicati Applicati

Figure 3 Corent Multi-tenancy architecture. Figure 4 Corent scalability architecture.

2.2 Middleware-based approach

A representative system of the middleware-based approach is Corentech.com, see Figures 3 and 48).

Customization. Customization is not a priority for Corenttech.com as it emphasizes rapid develop-

ment. Traditional software can be updated to MTA software by changing the data access portion of the

software, and such updates can be done in hours.

MTA. A kernel is used to manage the MTA layer where each data access to a specific database is

changed to a call to the kernel, and the kernel then channels the request to appropriate databases below

the kernel. Conventional databases can be used below the kernel, and thus, migration from an existing

application to an MTA SaaS can be efficient as existing software (run on top of the kernel) requires

minimum changes, and existing databases (called by the kernel) can also be used.

Scalability. Corenttech.com uses two-level scalability mechanisms where the top-level scheduler allo-

cates requests to different clusters according to tenant information. In summary, Corenttech.com focuses

on rapid development and MTA, and existing software and databases require minimal changes while

keeping existing properties such as atomicity, consistency, isolation, and duration (ACID) properties in

8) CorentTech Multi-tenancy Server. http://www.corenttech.com/.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:5

Distributed service repository Distributed service repository

Customization & runtime repository

Publishing

Discovery

Indexing

Codegen

Recommendation

Customization

Composition

Check in/out

Monitoring

V&V

Modeling

Storage

C
o
n
ti

n
u
o
u
s

te
st

in
g
 &

 i
n
d
ex

in
g

O
n
to

lo
g
y
 &

 L
in

k
ed

 d
at

a

Development UI

Authentication
Scheduling

Provisioning

Monitoring

Recovery

Analysis

Runtime platform

Figure 5 EasySaaS architecture.

O
n
to

lo
g
y
 r

ef
er

en
ce

s

Data
model

Services

Workflow

GUIs

Figure 6 EasySaaS customization architecture.

the database. The security concern is less than that for the Salesforce.com architecture because tenants

do not share the same database or schema. Furthermore, ACID properties can be supported by the

RDBMS used in the back-end for the tenant applications.

2.3 Service-oriented SaaS

EasySaaS is a representative service-oriented SaaS system, see Figures 5 and 6 [1]. Essentially, this is an

SOC approach to SaaS. Not only can tenant applications be developed in a service-oriented manner (i.e.,

by publishing, discovery, composition, deployment, and execution) but also the SaaS infrastructure can

be developed in a service-oriented manner where major SaaS infrastructure components are services, and

different SaaS infrastructures can be composed using different component services.

Customization. The architecture supports heavy customization as it allows developers to compose a

tenant application in a service-oriented manner. Furthermore, a consumer-oriented approach can be used

where existing application templates can be reused to compose applications [14]. As shown in Figure 6, a

tenant application can be composed by linking GUI, workflow, service and data components stored in the

SaaS database or new components can be constructed and stored in the database [8]. A recommendation

system can be used to suggest appropriate components according to structural and semantic information

of the tenant application and components stored. This is the grapevine approach [15].

MTA. The approach supports MTA, and a variety of MTA designs can be used including de-normaliza-

tion used by Salesforce.com or each tenant can have its own database.

Scalability. The two-level scalability mechanism can be used with other mechanisms such as auto-

mated migration.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:6

GUI Workflow Service Data

Dynamic composition

Ontology + Modeling language

Modeling language

Codegen

Static code
DB schema
DB particion+

Optimization

Simulation

MonitoringOptimi

 codede +

ion

partic

Bulk processing
Continuous indexing

ing

Monitoring point insertion

Dynamic configuration
Dynamic provisioning
Dynamic resource removal
Dynamic recovery

Figure 7 Model-based CodeGen for a PaaS.

2.4 PaaS-based approach

The PaaS-based approach depends on the underlying PaaS to support MTA SaaS including its scheduling,

fault-tolerant mechanisms, and scalability.

Customization. The customization feature needs be developed by the SaaS developer. Existing

PaaS often does not allow direct access of the underlying data store or database. Therefore, although

customization is possible, it requires considerable design as the software needs to specify various places

where customization can be made, and the number of options for each customization place can be limited

or might need to be developed manually by the SaaS developer.

MTA. Each PaaS has its MTA support features. For example, GAE provides the namespace for MTA,

each tenant is uniquely identified by an entry in the namespace and that information is used in the PaaS

to distinguish one tenant from another. Microsoft Azure has similar mechanisms.

Scalability. The salability of SaaS applications using a PaaS-based approach depends on the scalability

mechanism of the underlying PaaS. In fact, other SaaS features such as fault-tolerant computing also

depends on the corresponding mechanisms in the PaaS. For example, if each data write is at least

triplicated in the PaaS as done in GAE, each write request by the SaaS application will be triplicated

into three different chunks of 64 MB, and recovery mechanisms will operate at the chunk level where they

recover data one chunk at a time using the metadata in the PaaS.

2.5 Platform-independent SaaS development

Some existing SaaS systems were developed together with their underlying PaaS system. Thus, SaaS

developers access the PaaS internal to optimize the SaaS. However, such luxury is not extended to other

SaaS developers that use an existing PaaS system to implement SaaS.

It is possible to develop the SaaS in two stages: the first is the platform-independent SaaS model

development, to be followed by platform-dependent SaaS development in which code is generated for

a specific PaaS. This is shown in Figure 7 [11]. This is similar to the OMG approach of software

development, where there was a platform-independent phase before a platform-dependent phase.

In the first phase, a tenant application can be modeled including its overall architecture, workflows,

services, and data and once modeled, the model can be analyzed, simulated, and verified at the model

level. Once the model is verified, the model can be extended to a specific platform or PaaS such as GAE

or Azure by generating platform-specific code. For example, for GAE, it may be necessary to use the

namespace to support the MTA, and it is necessary to generate code in specific languages supported by

the underlying PaaS such as Python.

In this approach, the availability of PaaS simulators is critical as they can simulate the performance of

different PaaS for the same SaaS. Taking this approach, a common platform-independent infrastructure

can be developed where tenant application developers can compose their applications in a model-driven

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:7

manner using components stored in the repository, and according to model evaluation and simulation

using PaaS simulators, they can select an appropriate PaaS or conventional system for execution.

Recently, many innovative SaaS architectures also appeared. For example, the Workday SaaS uses an

object-oriented approach to design its software, and uses model-view-controller (MVC) architecture with

scalability mechanisms9).

3 Customization

Customization has been studied and practiced for over 40 years in terms of software families, object-

oriented design patterns, object-oriented application frameworks, and product-line engineering. The

process of customization is as follows:

• Identify those areas that are likely to be changed (variation points or variant parts), and those areas

that are likely to remain constant invariants parts.

• Place an abstraction layer around the variants parts so that actual instances that can be used are

listed as options to be selected at runtime or design time.

• Carry out this process in an iterative hierarchical manner until all potential variation points are

identified, and design a family of programs to accommodate those actual instances that can be used at

the variation points.

In SaaS, tenants can have their customized applications stored in the database, and often the appli-

cations are not stored as a unit in the database. Instead, each tenant application is decomposed into its

GUI, workflows, services, and data components, and each component is stored in the database together

with components of the same kinds. For example, a SaaS GUI database contains all the GUI components

used by all the tenants. The following is the sequence of actions taken by a SaaS when a user request

arrives:

1. When a user request arrives, first identify the tenant ID of the user, and retrieve all the components

used by the tenant if these components are not in the cache.

2. Compose the tenant application at runtime if the application is not in the cache.

3. Compile the tenant application if it has not yet been compiled.

4. Execute the user request using the executable code produced in Step 3.

5. Return the results to the user.

Thus, in a SaaS system, components are shared among tenants, and only active or recently active

tenant applications and/or components are available either in the cache or memory. In this way, a SaaS

system can be viewed as an executable system with an heavily used database of components.

To support SaaS customization, components of different types need to be stored, and they need to

be annotated so that they can be discovered by tenant developers for customization. Common service

specification techniques such as WSDL can be used to specify those components, and once specified,

information can be stored in an ontology database for searching, discovery, and reasoning.

A tenant application may also specify its requirements in formal, semi-formal, or informal languages,

and automated tools such as text processing [16] can be used to analyze the requirements and identify

reusable components in the SaaS database. The matching can be done using a keyword search and

the semantic distance to identify relevant components. For example, the sorting keyword in the tenant

requirement document can be used to search reusable components in the SaaS database, and it may

identify GUI components that support search queries, workflows that support sorting algorithms, and a

collection of sorting services using different algorithms, and data components to store items to be sorted.

Once the components are identified, the tenant developer can make the final selection and link these

components together to form a complete program.

The performance of a SaaS database is critical as many queries will be executed at runtime to serve user

requests, and large searches will be performed in the SaaS database to identify appropriate components.

Thus, a recommendation system can be used. Typical algorithms used in recommendation systems

9) Workday innovative technology. http://www.workday.com/.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:8

Table 2 SaaS customization options

Customization options Description

Fixed variation points and

fixed options

Fixed options for tenants to choose, each options already verified by the SaaS

infrastructure before deploying.

Fixed variation points but

allow tenant-supplied op-

tions

Allow both fixed options and tenant-supplied options, each variation point may

come with a verification mechanism such as regression testing to verify options

supplied by tenants.

Allow tenants to create

their own variation points

and options

The SaaS may provide a list of templates for variation points specifying the kinds

of options allowed and their constraints, and verification mechanisms for each vari-

ation points. The variation template can be stored in the SaaS database for other

tenants to reuse.

Intelligent customization Allowing every component in the tenant application to be selected and composed

using the components in the SaaS database. Furthermore, the SaaS has a recom-

mendation system to provide various templates and suggestions for composition.

Customizable SaaS infras-

tructure

Not only can tenant applications be composed, the specific SaaS infrastructure can

be selected. Notable selections include DB selection (individual, shares, and other

options), table organization (row, column or hybrid), redundancy and recovery

(no redundancy, double redundancy, triple redundancy) distribution (centralized

redundancy within the same cluster, redundancy at multiple clusters), execution

(parallel, stay-in-memory, periodic, redundant computing).

SaaS and PaaS configura-

tion

In addition to those features provided in the above row, provide selection of PaaS

platform, execution models, redundancy management, scheduling priority, memory

and storage requirements.

include collaborative filtering [17] and content-based filtering [18,19]. Recommendation systems using

a hybrid approach are also popular [20–22]. A good summary of collaborative filtering techniques was

presented in [23].

There are many options for SaaS customization, as listed in Table 2. A SaaS maturity model was

proposed10) in 2006. The model classifies SaaS customization into four levels: ad-hoc/custom, customiz-

able or configurable, multi-tenant efficient, and scalable levels. This classification fits well with initial

SaaS implementations; however, recent SaaS development does not necessarily follow this model. In fact,

some systems have multi-tenancy support and scalability features first. Additionally, each level can be

further classified into multiple sub-levels. Customization can be further classified as follows:

Level 1 Existing customization. At this level, SaaS components can be retrieved from the database,

and tenant developers will develop code to link these components together. If the needed component

is unavailable, the tenant developer needs to develop the component, and submit for publication in the

SaaS database after validation.

Level 2 Intelligent customization. At this level, tenant developers can use techniques such as

service specification, search, discovery, and automated dependency analysis, and recommendation systems

such as the Grapevine model for an existing PaaS. However, SaaS components can be added into the

SaaS database for the development and customization of tenant applications.

Level 3 SaaS infrastructure configuration. At this level, the SaaS infrastructure can be changed,

in other words, the SaaS infrastructure may be viewed as another SaaS system, and each SaaS in-

frastructure is considered as a tenant application of the SaaS infrastructure system. For example, the

SaaS infrastructure system may provide three options for each SaaS infrastructure: one for row-oriented

processing, a second for column-oriented processing, and a third for both row-oriented processing and

column-oriented processing. A new database design approach DBaaS where each database system in-

stance can be individually customized, and DBaaS can be used at this level.

Level 4 SaaS + PaaS configuration. This level provides the most sophistication as both SaaS

infrastructure and PaaS infrastructure can be configured for optimal performance. For example, a specific

tenant may need to perform certain kinds of processing only, and the access patterns are regular. Thus,

10) Chong F, Carraro G. Architecture Strategies for Catching the Long Tail. http://msdn.microsoft.com/.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:9

Table 3 Database (DB) design for tenant isolation within a cluster

Various approaches Issues

Each tenant has a DB with its own schema. Good for tenant isolation, significant schema design ef-

fort.

Each tenant has a DB, but all tenants use a collection

of schema only, possibly one schema for one application

domain.

Good for tenant isolation, reasonable effort in schema

design.

Each tenant has a DB but all share the same schema. Good for tenant isolation, less effort in schema design.

Shared DB, but each tenant has its schema. Reasonable solution for tenant isolation, significant

schema design effort.

Shared DB and schemas. Significant effort in isolation.

Each extension is a table. Lots of join operations may be needed.

Sparse columns for tenant information Sparse tables

Hybrid solutions: for example, the SaaS has a collection

of schema, critical tenants have their own DB, but some

tenants share the same DB with the same schema, and

different clusters have different database approaches for

their own tenants.

Various tradeoffs in these hybrid solutions, one key is

to reduce the number of schemas needed, so to reuse

database software.

the SaaS infrastructure can be configured so that the SaaS database is optimized for such processing,

and the PaaS infrastructure is also configured to process these tasks in the most efficient manner.

Levels 3 and 4 represent a configurable SaaS infrastructure for configurable tenant applications, with

two levels of customizations.

4 Multi-tenancy database design

Most SaaS architecture use databases to support MTA. The issue is the selection of appropriate database

management systems and the schema design. Table 3 lists considerations of database design choices for

MTA-associated SaaS; specifically, the table describes whether each tenant has its own database, tenants

share a database but each has its own schema, or tenants share a database and the same schema.

If each tenant has its own database, there is a benefit for tenant isolation as the firewall is created at

the database level to ensure tenant isolation. For this design option, several alternatives are possible to

minimize the engineering effort.

1. One choice is that while each tenant has its own database, all the tenants share the same schema,

and thus the software needed will be the same.

2. Another choice is to allocate individual databases for large and/or critical tenants. Small tenants

and/or tenants that do not have strict security requirements can share databases and even the same

schema.

3. Another choice is that each database assigned to a tenant is a customized database from a DBaaS

(database as a service). In this way, the DBaaS will maintain one database code base, but multiple

database instances can be created, each for a specific tenant.

If tenants share the same database but each tenant has its own schema and thus private tables, then

there is a reasonable compromise between having an individual database for each tenant versus everything

being shared. However, designing individual schema will require much more effort, unless the design of

database schemas according to user requirements can be automated. This approach may require tenant

developers to design a schema, which will need to be verified by SaaS infrastructure engineers before

it can be deployed. Note that MTA SaaS systems require high performance, and database processing

software requires tuning and experimentation before its performance is acceptable. Thus, asking tenant

developers to develop a schema appropriate for specific SaaS and PaaS infrastructure may be an issue.

There are several ways to address this issue.

1. One way is that a collection of schemas with trade-offs can be offered to tenant developers, and

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:10

they can pick their own schema from the collection. In this way, the number of MTA database software

applications will be limited.

2. Another way is to take advantage of the multi-level scalability structure. Each cluster can have its

own database approach; i.e., one cluster may share a common database and schema, while another has

individual databases and a collection of schemas for its tenants.

If tenants share both a database and schema, the number of database processing software applications

will be minimized, but the data of one tenant may occupy the same table as the data of other tenants.

With the multi-level scalability structure, the number of tenants occupying the same database is reduced,

but all tenants in the same cluster share the same database and schema, and there can still be a large

number of tenants in a cluster. As all tenants in all clusters use the same schema, database processing

software can be optimized for the entire SaaS system, thus saving effort.

Other database design approaches are possible, e.g., having private tables for each tenant, providing

tenant customization as extensions to tables, using a sparse table to store tenant information, and using

a multi-dimensional database to store tenant information.

While many solutions have been proposed for MTA database design with supporting data, few designs

have been subjected to experiment in a realistic SaaS infrastructure with a PaaS. Thus, the conclusions are

preliminary at best. Furthermore, it is necessary to consider scalability, reliability including redundancy

and recovery mechanisms, performance issues, customization, and engineering effort while designing MTA

at the same time. The use of in-memory databases, NoSQL databases, new SQL databases and XML-

based databases in the context of MTA SaaS are also interesting problems.

5 Redundancy and recovery (R&R) mechanisms

Modern SaaS systems often have extensive built-in R&R mechanisms at multiple levels. Specifically,

Salesforce.com has the following R&R mechanisms11).

• Data centers. Multiple data centers interconnected by high-speed networks are capable of backing

up each other in case of the failure of one center.

• Network level. There are multiple network carriers with redundant routers, and fail-over configured

firewalls. There are redundant hubs and switches at virtual local area networks (VLAN).

• SaaS level. There are multiple load balancers with their own loads balanced, and clustered Web,

application, application programming interface (API), search, cache, index, and batch Servers.

• Database level. Oracle RAC EE runs on four-way clustered nodes with excess capacity to carry the

load when a node fails.

• Storage level. There are multiple paths that ensure reliability by connecting four DBMS servers, and

alternative paths to storage directors, and the storage systems have built-in redundancy.

One interesting trade-off is the R&R mechanism at the SaaS or PaaS level, knowing that there are a

variety of SaaS and PaaS interactions. For example, the SaaS PaaS interaction in the approach taken

by Corenttech.com will be different from the corresponding interaction in the approaches taken by SOA

SaaS and Salesforce.com.

Most PaaS systems provide their own R&R mechanisms. For example, in GAE, each data write is

written at least three times to ensure reliability, and critical components and data have more redundancy.

However, not all the R&R mechanisms are open for SaaS developers to use. For example, some of the

R&R mechanism of GAE is at the chunk level where binary data are stored, and GAE uses its metadata

table to interpret the data.

Most PaaS systems use metadata to identify appropriate data and determine appropriate actions to

act on the data, and thus, metadata are critical to PaaS operations. Thus, a PaaS system often has

extensive backup mechanisms for the metadata tables. Similarly, many SaaS systems use metadata to

identify data and to determine actions to act on the data, and thus, metadata are critical. Additionally,

11) C. Moldt. Behind-the-Scenes at Salesforce.com. http://salesforce.vo.llnwd.net/.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:11

in [24], SaaS metadata information is duplicated into SaaS data tables to ensure that metadata are not

easily lost.

One way to improve the R&R mechanisms is to annotate the data stored in each chunk and to store the

annotation in the chunk in addition to the metadata table. In this way, as additional space will be used to

store tenant information, less space is available to store other data, but each chunk can identify the tenant

information without the metadata table. The Workday SaaS takes this approach and applies a role-based

security model to each chunk. This tenant-aware concept can be applied to many resources in the PaaS

system, including storage and networks. Each packet in transmission may store the associated tenant

information, and routing and scheduling can be done according to tenant information. Cisco, VMware

and NetApp have started a joint project where a cloud infrastructure can be made tenant-aware. Tenant

awareness can be achieved at multiple levels:

• each tuple with a tenant ID;

• each table with tenant IDs;

• each chunk with tenant IDs;

• each message with tenant IDs;

• each machine with tenant IDs;

• each clusters with tenant IDs; and

• each load balancer with tenant IDs.

This is similar to the capability-base system where each data packet or message in transmission or

data packet in stable storage or memory, large or small, is tagged with its ID.

While the underlying PaaS system may provide excellent R&R mechanisms, a SaaS system may need

its own R&R mechanisms. Specifically, a SaaS-level R&R mechanism may contain information more

relevant to the SaaS and tenant developers. For example, SaaS components such as ontology, data and

metadata tables can be duplicated to ensure reliability [6].

6 Scalability

In MTA SaaS, each SaaS component may be shared by multiple organizations (tenants). Each tenant

may have hundreds or thousands of users, and thus number of concurrent accesses from users can be

high.

There are generally two solutions to scale a software system: scale-up and scale-out. Scale-up (i.e.,

vertical scaling) means running the application on a machine with a better configuration, including more

computing resource, more memory, higher disk bandwidth and larger disk space. Scale-out (i.e., horizontal

scaling) means running the application distributed on multiple machines with similar configurations.

Because the resources of a single machine cannot be increased infinitely, and the increase in cost is not

proportional to the increase in resource, scale-out is necessary.

Scalable design principles for application servers include divide-and-conquer, asynchrony, encapsula-

tion, concurrency, and parsimony [25]. Divide-and-conquer means the system tasks should be divided

into smaller tasks with single functions, and a system should be well partitioned into components. Asyn-

chrony means work can be done on a resource-available basis, and this may imply distributed and/or self

scheduling and background processing. Encapsulation means system components and architecture such

as layers are well encapsulated. Concurrency means tasks can be done in parallel taking advantages of

the distributed nature of hardware and software. Parsimony means that the design considers the cost

efficiently.

Other common techniques include system partitioning, service-based layered architecture, pooling and

multiplexing, queuing and background processes, data synchronization, distributed session tracking, and

intelligent load distribution. For example, staged event-driven architecture (SEDA) shows how these

principles can be used to develop a scalable architecture. The original complex event processing is divided

into different stages (divide and conquer) and encapsulated with queues for interacting each stage, and

each stage can be executed asynchronously and tracked and monitored.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:12

Table 4 Scalability factors

Factors Issues

Levels of scalability mechanisms Adding one level increase scalability, and each layer addresses one issue, with

automated scaleup/down at each layer.

Automated migration Support load balancing, need DB design to support migration, and optimiza-

tion algorithms are needed.

Tenant-awareness Consider tenant-specific customization (optimized clustering those tenants

sharing processes or GUIs), tenant-aware automated migration (asynchronous

migration first and index construction later).

Fault-tolerance and recovery Detection of failed nodes, incremental recovery, minimize data movement,

rapid and distributed recovery.

Architecture and DB access System structuring by SOA, partitioning by functionality, API design.

Several important factors affect the scalability of the SaaS application, as listed in Table 4, including

levels of scalability mechanisms, automated migration, tenant awareness, workload support, recovery and

fault-tolerance, software architecture, and database access.

Levels of the scalability mechanism. A typical SaaS application has three tiers-storage, applica-

tion and presentation - and each processor can handle all three. However, SaaS systems often add one

or more load balancers at the cluster level to route tenant requests to different processors for processing;

furthermore, several more load balancers are responsible for routing tenant requests to different clusters.

With these load balancers, a SaaS system can add new clusters into the system when the load increases,

and each cluster can have additional processors, without changing the overall system architecture. Sim-

ilarly, one can remove one processor from a cluster, and/or remove a cluster from the system when the

load decreases.

Scalability of multiple levels provides the SaaS application with flexibility and control. Each level can

be scaled independently without affecting or being affected by the scaling mechanisms and operations at

other levels. Furthermore, scalability mechanisms at different levels may use different techniques as each

level has its own constraints and objectives. For example, a SaaS can be scaled with respect to tenants

at the top level, and each cluster is tasked to handle certain tenants only. When new tenants arrive at

the system, although no cluster can handle any more tenants, a new cluster can be created. This has the

advantage of simple tenant management; if some tenants are heavily loaded (while other tenants are not

so heavily loaded), their requests are still handled by the same clusters. Another approach commonly

used in a SaaS system is to make each server stateless in a cluster, and the cluster load balancers can

then route any tenant requests to any lightly loaded servers or processors.

K-level scalability structure is a natural extension of two-level scalability structure, and each level can

address multiple issues at a time; possible issues related to tenants, tasks, application domains, security,

geographical locations, and primary/backup storage.

Automated migration. Tenant data need to be migrated occasionally for better performance. Sev-

eral issues need to be considered. First, it is necessary to determine if the migration will be done online or

offline. Online migration (i.e., the migration will take place while the applications are still in operation)

is more difficult than offline migration, where the migration takes place when the SaaS shuts down its

services for maintenance. Although online migration can provide 24/7 services for SaaS customers, the

added complexity of online data migration is high. Second, it is necessary to determine the data to be

moved for scalability. One strategy is to move the minimum amount of data (to minimize the band-

width demand) and to move it to the closest node (to minimize latency delay), but other approaches are

possible. For example, one strategy is to move the indices with the tenant data, whereas an opposite

strategy is to move the tenant data only. The second option requires reconstruction of indices after data

migration. Third, the storage design should take tenant data into consideration. For example, all the

data belonging to the same tenant should be grouped together for migration.

Tenant awareness. The storage design needs to be tenant-aware to support customization, maintain

tenant isolation, and facilitate data migration. Tenant awareness can be supported by two types of

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:13

traceability: forward and backward traceability. Forward traceability means that given a data item to

be queried or inserted, the system knows which tenant owns the data item and where to query/insert

the data item by tracing forward from the tenant table. Backward traceability means given a stored

data item, the system can trace back from the data item to the tenant table. If the system supports

only forward traceability, the system can perform data migration by tracing the tenant table. However,

if the system also provides backward traceability, data may be moved autonomously and asynchronously

upon detection of the need for data migration. Providing both types of traceability for each data item is

expensive, but providing both for a group of data items, especially those belonging to the same tenant,

will be useful in autonomous data migration.

Workload support. Different workloads require different scalability mechanisms. For an on-line

analytical processing (OLAP) workload, a high portion of the requests are reading data from the system.

In this case, the system should be able to scale in case of a high volume of read operations. For the

an on-line transaction processing (OLTP) workload, write operations are dominant. In this case, the

system should be able to distribute the write operations to avoid a bottleneck at a single node. For a

mixed workload where the proportions of read and write operations are close, the architecture needs to

be designed to ensure there is no bias towards either type of operation because the bias may result in

poor scalability.

Recovery and fault-tolerance. Recovery and fault-tolerance mechanisms also the system scalability.

First, the system should be able to detect the failures of nodes. When a node fails, the system should

automatically scale down without significant performance degradation. When the failed node comes back,

the system should automatically scale out and recover its previous working status.

Software architecture. It is necessary to avoid coupling in the architecture so that each part of the

application can be independently scaled, without affecting other parts of the software system. SOC can

be leveraged to decouple such a large software system to provide scalability. Many scalable systems, such

as DynamoDB12), adopts SOC.

Database access. Accessing a database is often time consuming, and thus likely to be the bottleneck

of a SaaS application. Access to a database can be either direct or indirect. Direct access to a database

allows applications to connect directly to the database, and perform necessary operations. Indirect

access to a database goes through APIs exposed by certain database services wrapped on the underlying

database. Indirect access allows the software and database to have their own scalability mechanism.

Such design can be critical to the system performance and development. For example, Amazon requires

that 1) everything wrapped as a service and 2) there is no direct database access. According to Amazon’s

Chief Executive Officere, “all teams will henceforth expose their data and functionality through service

interfaces”, and only via these interfaces. This means that there is no direct linking, no direct reads of

another team’s data store, no shared-memory model, and no back-doors whatsoever. The only commu-

nication allowed is via service interface calls over the network. Additionally, service interfaces must be

well designed from an external point of view with any exceptions. Furthermore, “anyone who doesn’t do

this will be fired.”

7 Conclusion

Because of its unique architecture, SaaS has had a significant impact on both software engineering and

databases. Specifically, SaaS introduces new software lifecycle models that are distinct from traditional

software lifecycle models. SaaS has two distinct lifecycle models. One for tenant application development

given a SaaS infrastructure running on top of a PaaS, and the other is the lifecycle model for the SaaS

infrastructure giving a specific PaaS or allowing both the SaaS and PaaS to be developed concurrently.

Tenant applications are often integrated with a database. Tenant applications are developed online

using components stored in the SaaS databases if components are available. If the tenant application

is developed in a platform-independent manner, a tenant application model needs to be verified and

12) Amazon Architecture. http://highscalability.com/amazon-architecture.

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:14

simulated before it can be used to generate platform-dependent code for a specific PaaS for execution.

The development of SaaS infrastructure is much more involved than the development of tenant ap-

plications, as it involves the development of a system to support tenant applications on the Web using

components stored in SaaS databases. Furthermore, it needs to compile tenant applications and execute

them in a target PaaS system, and monitor the progress. In case of failures, the SaaS needs to perform

recovery and reconfiguration. The SaaS also needs to address the scalability of tenant applications using

the resource and capabilities provided by the underlying PaaS.

As most tenants will reuse components stored in SaaS databases, tenant application requirements may

need to specify items stored in the SaaS databases. For example, if the SaaS database stores object-

oriented items such as classes, instances, and methods, a tenant application may need to specify its

requirements using the same terms. If the SaaS database contains SOC items, tenant applications need

to specify their requirements in terms of services, workflows, services and data using vocabulary from an

ontology system. Thus, the SaaS system imposes a specific way of tenant software development. Note

that testing methods for SaaS are different [26–30].

The SaaS also has a significant impact on database management systems. Salesforce.com demonstrated

that a de-normalized but relational database can serve a huge number of users with satisfactory perfor-

mance and security. It also demonstrated that, using this approach, each tenant can still enjoy its own

customization, and data can be reliably stored in the SaaS and recovered in case of system failures.

Acknowledgements

This project was sponsored by United States National Science Foundation Project DUE (Grant No. 0942453),

National Science Foundation China (Grant No. 61073003), National Basic Research Program of China (Grant

No. 2011CB302505), and Open Fund of the State Key Laboratory of Software Development Environment (Grant

No. SKLSDE-2009KF-2-0X). It is also supported by Fujitsu Laboratory.

References

1 Tsai W T, Huang Y, Shao Q H. EasySaaS: a SaaS development framework. In: Proceedings of IEEE International

Conference on Service-Oriented Computing and Applications, Irvine, 2011. 1–4

2 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107–113

3 Aulbach S, Grust T, Jacobs D, et al. Multi-tenant databases for software as a service: schema-mapping techniques.

In: Proceedings of ACM International Conference on Management of Data, New York, 2008. 1195–1206

4 Bezemer C P, Zaidman A, Platzbeecker B, et al. Enabling multi-tenancy: an industrial experience report. In:

Proceedings of IEEE International Conference on Software Maintenance, Timisoara, 2010. 1–8

5 Elmore A J, Das S, Abbadi A El. Towards an elastic and autonomic multi-tenant database. In: Proceedings of

International Workshop on Networking Meets Databases, Athens, 2011

6 Tsai W T, Shao Q H, Huang Y, et al. Data partitioning and redundancy management for robust multi-tenancy SaaS.

Int J Softw Inform, 2010, 4: 437–471

7 Nitu M. Configurability in SaaS (software as a service) applications. In: Proceedings of the 2nd India Software

Engineering Conference, Pune, 2009

8 Tsai W T, Shao Q H, Li W. Oic: ontology-based intelligent customization framework for SaaS. In: Proceedings of

IEEE International Conference on Service-Oriented Computing and Applications, Perth, 2010. 1–8

9 Gao J, Pattabhiraman P, Bai X Y, et al. SaaS performance and scalability evaluation in clouds. In: Proceedings of

IEEE 6th International Symposium on Service Oriented System Engineering, Irvine, 2011. 61–71

10 Krebs R, Momm C, Konev S. Architectural concerns in multi-tenant SaaS applications. In: Proceedings of the 2nd

International Conference on Cloud Computing and Service Science, Shanghai, 2012. 426–431

11 Tsai W T, Huang Y, Bai X Y, et al. Scalable architectures for SaaS. In: Proceedings of IEEE International Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops, Shenzhen, 2012. 112–117

12 Tsai W T, Xiao B N, Paul R, et al. Global software enterprise: a new software constructing architecture. In: Proceed-

ings of IEEE International Conference on and Enterprise Computing, E-Commerce, and E-Services, San Francisco,

2006. 55

13 Wong T, Kao L, Kaufman M. Salesforce.com for Dummies. Wiley. com, 2010

14 Tsai W T, Xiao B N, Chen Y N, et al. Consumer-centric service-oriented architecture: a new approach. In: Proceedings

of SEUS-WCCIA, Gyeongju, 2006. 175–180

Tsai W T, et al. Sci China Inf Sci May 2014 Vol. 57 051101:15

15 Tsai W T, Huang Y, Bai X Y. Grapevine model for template recommendation and generation in SaaS applications.

In: Proceedings of the 3rd Asia-Pacific Symposium on Internetware, Tempe, 2011

16 Huang A. Similarity measures for text document clustering. In: Proceedings of the 6th New Zealand Computer Science

Research Student Conference, Christchurch, 2008. 49–56

17 Goldberg D, Nichols D, Oki B M, et al. Using collaborative filtering to weave an information tapestry. Commun ACM,

1992, 35: 61–70

18 Lang K. Newsweeder: learning to filter netnews. In: Proceedings of the 12th International Conference on Machine

Learning, Take Tahoe, 1995. 331–339

19 Mooney R J, Roy L. Content-based book recommending using learning for text categorization. In: Proceedings of

ACM Conference on Digital libraries, New York, 2000. 195–204

20 Miranda T, Claypool M, Gokhale A, et al. Combining content-based and collaborative filters in an online newspaper.

In: Proceedings of ACM SIGIR Workshop on Recommender Systems, Berkeley, 1999. 60

21 Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations. In:

Proceedings of the National Conference on Artificial Intelligence, Alberta, 2002. 187–192

22 Schein A I, Popescul A, Ungar L H, et al. Methods and metrics for cold-start recommendations. In: Proceedings of

ACM Conference on Research and Development in Information Retrieval, New York, 2002. 253–260

23 Su X, Khoshgoftaar T M. A survey of collaborative filtering techniques. Adv Artif Intel, 2009, 2009: 4

24 Tsai W T, Shao Q H, Huang Y, et al. Towards a scalable and robust multi-tenancy SaaS. In: Proceedings of the 2nd

Asia-Pacific Symposium on Internetware, New York, 2010

25 Roe C, Gonik S. Server-side design principles for scalable internet systems. IEEE Softw, 2002, 19: 34–41

26 Bai X Y, Li M Y, Chen B, et al. Cloud testing tools. In: Proceedings of IEEE 6th International Symposium on Service

Oriented System Engineering, Irvine, 2011. 1–12

27 Yu L, Tsai W T, Chen X J, et al. Testing as a service over cloud. In: Proceedings of IEEE International Symposium

on Service Oriented System Engineering, Nanjing, 2010. 181–188

28 Gao J, Bai X Y, Tsai W T. Cloud-testing: issues, challenges, needs and practice. Softw Eng, 2011, 1: 9–23

29 Tsai W T, Li W, Sarjoughian H, et al. SimSaaS: simulation software-as-a-service. In: Proceedings of the 44th Annual

Simulation Symposium, 2011, San Diego, 77–86

30 Tsai W T, Huang Y, Shao Q. Testing the scalability of SaaS applications. In: Proceedings of IEEE International

Conference on Service-Oriented Computing and Applications, Irvine, 2011. 1–4

	Introduction
	SaaS architecture
	Database-oriented SaaS
	Middleware-based approach
	Service-oriented SaaS
	PaaS-based approach
	Platform-independent SaaS development

	Customization
	Multi-tenancy database design
	Redundancy and recovery (R&R) mechanisms
	Scalability
	Conclusion

