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ABSTRACT Fabricating the p-n junction and exploring the
device physics play key roles in developing various functional
devices and promoting their practical applications. Although
ultrawide bandgap semiconductors have great potentials to
fabricate high-voltage and high-efficiency power devices, the
lack of p-type Ga,O; poses a fundamental obstacle for fabri-
cating the Ga,0; p-n homojunction and impedes the devel-
opment of full Ga,0;-based bipolar devices. In this study, n-
type Sn-doped P-Ga,Os/p-type N-doped B-Ga,O; films are
prepared by a novel phase-transition growth technique com-
bined with sputter deposition. Full f-Ga,0; one-sided abrupt
p-n homojunction diodes are fabricated and the device physics
are explored in detail. The diodes possess a high rectification
ratio of 4 x 10%, a low specific on-resistance of 9.18 mQ cm? at
40 V, a built-in potential of 4.41 V, and an ideal factor of 1.78,
and also show a good rectification behavior under alternating
voltage with no overshoot and longterm stability. Our results
clear away the major obstacle to f-Ga,0; p-n homojunction,
lay the foundation for -Ga,0; homogeneous bipolar devices,
and pave the way for the evolution of high-voltage and high-
power device applications.

Keywords: gallium oxide, p-n junction, forward characteristics,
rectification ratio, specific on-resistance

INTRODUCTION

The p-n junction plays a critical role as the basic device structure
for fabricating various electronic and optoelectronic devices.
Fabricating the p-n junction and exploring the device physics
are crucial to develop functional devices and advance their
practical applications. Ultrawide bandgap semiconductors have
great potentials to fabricate high-voltage and high-efficiency
power devices, which are expected to overcome the limited
power capability of Si-based electronic devices. However, the
asymmetric doping effect in ultrawide bandgap semiconductors
makes it very difficult to achieve efficient bipolar doping,
thereby impeding the development of p-n homojunction and the
related bipolar devices [1-3]. Monolithic gallium oxide
(B-Ga,03) possesses an ultrawide bandgap (E,, ~4.85eV) and
high Baliga’s figure of merit (3444), and promises high-perfor-
mance power device applications. While n-type p-Ga,O; has
been achieved by Sn, Si or Ge doping with good modulation of

electron concentration [4], p-type Ga,O3 with good conductivity
and stability is still difficult to realize due to its large acceptor
ionization energy, low hole activation efficiency, hole-trapping
effect, self-compensation effect, and low hole mobility [5-8].
The lack of p-type Ga,Os poses a fundamental obstacle for
fabricating Ga,O; p-n homojunction and impedes the develop-
ment of full Ga,Os-based materials and devices.

Great efforts have been made to fabricate the Ga,O;-based p-n
heterojunction via combining p-type NiO, CuO, GaN, SiC, or Si
with n-type Ga,O3 [9-15]. The fabrication of ideal Ga,O;-based
p-n heterojunction diodes with superhigh electronic and
optoelectronic performance still faces some issues, such as pie-
zoelectric effects from lattice mismatch and thermal mismatch
[16,17], band offsets, electron traps from bandgap mismatch and
heterointerface-induced defects [18], differences in critical
electric field (E.), thermal conductivity, and dielectric constant
[19]. Various complex fabrication technologies have to be
developed to overcome these issues. In comparison, the p-n
homojunction is of mature and diverse fabrication technologies,
which makes it simple to design junction structures for func-
tional electronic and optoelectronic devices. Fabrication of p-
type Ga,O; and p-n homojunction is of urgency, general sci-
entific significance, technological application significance and
enormous economic benefits.

Recently, intrinsic weak p-type B-Ga,O; films with a room-
temperature hole concentration of ~2 x 10" cm™ and a Hall
resistivity of 10* Q cm are fabricated by annealing p-Ga,O; in
oxygen atmosphere [20]. By introducing metal acceptor dopants
(Mg, Cu, Se, Zn, etc.), the fabricated B-Ga,Os films are semi-
insulting [21-29], which cannot meet the requirements for
fabricating high-performance Ga,0O3 p-n homojunction devices.
N-doped B-Ga,O; films with good p-type conductivity and
stability are demonstrated recently [30,31]. In this study,
B-Ga,0O; films with an n-type Sn-doped P-Ga,Os/p-type N-
doped B-Ga,Os; structure are prepared by the growth of ~1.2-um
thick N-doped B-Ga,O; thin film via a phase-transition tech-
nique, followed by sputter deposition of ~1-um thick Sn-doped
B-Ga,0s5 thin film. The as-fabricated one-sided abrupt B-Ga,0Os
thin film p-n homojunction diodes possess a high rectification
ratio of 4 x 10% a low specific on-resistance (Ronsp) Of
9.18 mQ cm? at 40 V, an extremely high forward current density
of 4.32 x 10> A cm™2 at 40 V, a built-in potential (V};) of 4.41V,
a junction depletion width of 0.8 pm, and an ideal factor of 1.78,
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and also show a good rectification behavior under alternating
current (AC) voltage with no overshoot and longterm stability.
Our results clear away the major obstacle to B-Ga,O; p-n
homojunction, lay the foundation for p-Ga,O; homogeneous
bipolar devices, and pave the way for the evolution of high-
voltage and high-power device applications.

EXPERIMENTAL SECTION

Materials growth and device fabrication

N-doped B-Ga,O; films were prepared by thermal oxidation of
the undoped GaN films at 1150°C, during which a multi-step
phase transition from (0001) GaN to (201) B-Ga,O; and an in-
situ N doping in B-Ga,O; were achieved. At the intermediate
growth stage of B-Ga,O; films, the GaN films were partially
oxidized with distinct p-Ga,O3/GaN interfaces. Sample SP with
the p-Ga,05/GaN interfaces was prepared for growth evolution
analysis. The growth rate, crystalline quality, and N doping of p-
Ga,0; films were controlled by oxygen pressure and Ar gas
purge. More details for the growth of N-doped B-Ga,Os films
could be found in literature [30].

To fabricate the Ga,O5; homojunction diode, a pattern was first
made on N-doped B-Ga,Os; films by ultraviolet lithography
(SUSS MAG6) followed by development. Then, Sn-doped Ga,Os;
films were deposited on the N-doped (-Ga,O; films by radio-
frequency magnetron sputtering (RFMS, DETECH DE500)
using a Sn-doped Ga, 05 ceramic target wafer (Sn:Ga = 1:99 wt%,
purity 99.99%, ZhongNuo Advanced Material Technology Co.,
Ltd.). The as-deposited Sn-doped Ga,O3/N-doped p-Ga,Os films
were annealed in an oxygen atmosphere at 900°C for 120 min
for the B phase crystallization of Sn-doped Ga,Oj; layer. Then,
the electrode patterns were both made on the Sn-doped B-Ga,0O;
layers and the N-doped (-Ga,O; layers of Sn-doped B-Ga,05/N-
doped B-Ga,O; films by ultraviolet lithography. Ti (50 nm)/Au
(100 nm) electrodes were deposited on the as-photoetched Sn-
doped B-Ga,03/N-doped B-Ga,Os films by electron beam eva-
poration (EBE, DETECH DE400). After a lift-off process, Sn-
doped B-Ga,0;3/N-doped B-Ga,O; homojunction diodes were
achieved.

N-doped B-Ga,0O; top-gate field effect transistor (FET) was
fabricated by depositing 200-nm HfO, gate insulator layer and
Ti (50 nm)/Au (100 nm) electrodes on N-doped P-Ga,O; films
by ultraviolet lithography, atomic layer deposition (Picosun R-
200) and EBE. Sn-doped B-Ga,O; back-gate FET was fabricated
by depositing ~500-nm Sn-doped B-Ga,Os and Ti (50 nm)/Au
(100 nm) electrodes on the silicon-on-insulator substrate by
RFMS and EBE.

Materials characterization and device measurement

Microstructures of the Ga,O;/GaN interface were studied by
high-resolution transmission electron microscopy (HRTEM)
combined with the selected area electron diffraction (SAED).
Surface chemical information of B-Ga,O; was studied by X-ray
photoelectron spectroscopy (XPS). Valence band (VB) photo-
emission was studied by ultraviolet photoelectron spectroscopy
(UPS) and XPS. Spatial and depth distributions of Ga, O, N, Sn,
and Al elements were analyzed by secondary-ion mass spectro-
metry (SIMS). The crystalline structure was investigated by X-
ray diffraction (XRD). The vibration modes of p-Ga,O; were
studied by Raman spectroscopy. Carrier type, carrier con-
centration and carrier mobility of N-doped and Sn-doped -
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Ga,03 were investigated by van der Pauw Hall effect measure-
ments. Current-voltage (I-V) characteristics, capacitance-vol-
tage (C-V) characteristics, and time-dependent electric
characteristics were characterized using a semiconductor para-
meter analyzer (PRIMARIUS FS-Pro).

Simulation method

A stable 120-atom supercell of N-doped B-Ga,O; was con-
structed and investigated using density functional theory (DFT)
calculations, as implemented in the Vienna Ab Initio Simulation
Package, within the generalized gradient approximation by
Perdew-Burke-Ernzerhof. The supercell of N-doped B-Ga,O;
with nitrogen impurities at O(III) substitutional site is defined as
B-Ga,05:Noam (Fig. S1). A screened hybrid functional of Heyd-
Scuseria-Ernzerhof (HSE) is employed to examine the forma-
tion energies and thermodynamic transition levels of f-Ga,Os:
No. In the HSE(a,u) function, the Fock-exchange mixing para-
meter o and the screening parameter y are set as 0.35 and
0.18 A1, respectively. The formation energies of B-Ga,03:Ng
formed through phase transition from GaN can be given by

Ef(N qo) = Etot(Nqo) — Eio(GaN,Os(1—x2) + nUN — npo + q(EVBM +
Er + Econr) (0 < x<1), where E,,(N) denotes the total energy of

the supercell for f-Ga,Os crystal containing an N impurity in
charge state g, Eioi(GaN,Os(1_y)2) is the total energy of a supercell
for the GaN,O;(_y,, crystal, yy is the chemical potential of N
atoms in the GaN unit cell, o is the chemical potential of O
atoms, Eypy is the energy level of VB maximum (VBM), Eg is the
Fermi level referenced to Evgym, and E.,r is an electrostatic cor-
rection associated with spurious electrostatic interactions in a
finite-sized charged supercell. The thermo-dynamic transition
levels €(0/—) of phase from GassO7N> to B-Ga,03:Ng™ are given
bY Ef[No_(Ga4sO71N1)> Er = 0] — E'f[N?)(Ga48070N2), Er = 0],
where Ef[NO_(Ga43071N1), EF = 0] and Ef[NOO(Ga4gO70N2), EF = 0]
denote the formation energies of Np with the negative and zero
charge states, respectively.

Silvaco technology computer-aided design (TCAD) was used
to simulate the B-Ga,O; p-n junction. A structure composed of a
1.0-um thick p-type B-Ga,O; layer (hole concentration: 1.50 X
10% cm™), a 1.2-pm thick p-type B-Ga,Os layer (electron con-
centration: 1.69 x 10'® cm™), two Ohmic contact electrodes and
the sapphire substrate was modeled (Fig. S2a). The I-V char-
acteristics and band diagram were obtained.

RESULTS AND DISCUSSION

n-type Sn-doped P-Ga,0;/p-type N-doped B-Ga,0; films

HRTEM images of Sample SP obtained at different locations of
the B-Ga,0s/GaN interface show multi-step structural phase
transitions (P63;mc— P6smc-like—R3c—C2/m-like—C2/m) from
GaN layer to a-GaN,O3(1_y)» layer and eventually to monolithic
N-doped B-Ga,Os layer (Fig. 1a). The curve of formation energy
versus the chemical potential of O atoms Apuo (Fig. 1b) with Auo
between 0 eV (O-rich) and —3.69 eV (Ga-rich) indicates a good
solubility of N dopant in B-Ga,Oz:Noam. The (0/—) transition
level of the Noum) acceptor is as low as 0.36 eV (Fig. 1c), indi-
cating the feasibility to achieve p-type N-doped B-Ga,O; films
via the phase-transition technique. In the following discussion,
completely converted N-doped p-Ga,O; films without a GaN
bottom layer were employed for materials characterization and
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devices fabrication.

N-doped B-Ga,O; films with a Ga/O ratio of 0.66 were
investigated by XRD, Raman, HRTEM, SAED and XPS (Figs S3
and S4). The positive Hall coefficient indicates the N-doped f-
Ga,0; films are p-type (Fig. 2a). XPS and UPS VB analyses
further evidence the p-type conductivity of the N-doped p-
Ga,0; films. The surface VBM locates at 0.79 eV (0.80 eV) by
XPS (UPS) analysis with Ep at 0 eV (Fig. S5). B-Ga,O; usually
exihibits a band bending at the surface due to the complex
surface states [32,33]. Thus the VB structure extracted from XPS
and UPS is usually different from that of the bulk. The Hall hole
concentration and mobility of the N-doped B-Ga,Os films are
~1.50 x 10" cm™ and ~7.99 cm? V™! s7!, respectively (Table S1).
The average energy difference (§,) between Ep and VBM is
calculated to be 0.243 eV from equation: & = Er — Ey =
kg TIn(Ny/p), where Ey is the level of VBM, kg is the Boltzmann
constant, T is the temperature, and Ny is the VB effective density
of states. The Ny is calculated to be 1.73 x 10" cm™ from the

m, kgT
2nh?

N-doped B-Ga,O; is 0.78mq [34,35]. The acceptor energy level
was further estimated by temperature-dependent Hall mea-
surement using the linear regression formula of In(p) versus
1000/T. The acceptor ionization energy is ~0.24 eV, which is
close to the calculation results (Fig. S6). Typical p-type I-V
characteristics are observed for the N-doped B-Ga,O; films FET's
with an on/off ratio of 2.4 x 10° at a drain-source voltage (Vps)
of 20 V (Fig. 2b), which further evidences the fabrication of the
p-type N-doped B-Ga,O; films. The leakage current character-
istic of the N-doped B-Ga,O; films FETs indicates a good gate
insulation (Fig. S7).

The XRD pattern of the Sn-doped Ga,0;/N-doped Ga,O;
films shows identified diffraction peaks of -Ga,Oj; crystal (201),
(400), (002), (112), (402), and (603) planes, indicating the for-

32
equation: N,=2 ] , where hole effective mass (m:) of
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(a) HRTEM images of Sample SP obtained at different locations of the f-Ga,03/GaN interface. (b) Formation energy versus chemical potential of O

mation of pure B-Ga,Os films (Fig. 2c). SIMS elemental map-
pings of Ga (brown), O (red), Sn (pink), N (blue), and Al (green)
over the same film indicate the fabrication of a Sn-doped -
Ga,03/N-doped B-Ga,0s structure (Fig. 2e). Annealing-induced
mutual diffusion of low-concentration Sn and N impurities is
observed [36,37]. SIMS line profiles (Fig. 2d) indicate that in the
top of the Sn-doped B-Ga,O; layer the average Sn and N con-
centrations are about 2 x 10”7 cm™ and 1 x 10' cm™, respec-
tively, whereas in the bottom of the N-doped B-Ga,O; layer the
average N and Sn concentrations are about 3 x 10'® cm™ and 1 x
10' cm™, respectively. A 200-nm interface with a significant
decrease of Sn concentration from 2 x 10" to 2 x 10'® cm™ and
an increase of N concentration from 2 x 10'¢ to 4 x 10”7 cm™
(red region, Fig. 2e) is formed between Sn-doped B-Ga,Os and
N-doped B-Ga,O:s.

Sn-doped B-Ga,O; films with a Ga/O ratio of 0.69 were
investigated by XPS (Fig. S8). The negative Hall coefficient
indicates the Sn-doped P-Ga,Os films are n-type (Fig. 2f). The
Hall electron concentration and mobility of the Sn-doped -
Ga,0; films are ~1.69 x 10°cm™ and ~38.09 cm? V7's7!,
respectively (Table S1). The average energy difference (&,)
between Er and conduction band maximum (CBM) is calculated
to be 0.148 eV from equation: &, = Ec — Er = kg TIn(Nc/n), where
Ec is the level of CBM, and N¢ is the CB effective density of
states. The N is calculated to be 5.02 x 10" cm™ from equation

m kT
2mh?

according to other calculation results [38,39]. Typical n-type I-V
characteristics are observed for the Sn-doped P-Ga,O; films
FETs with an on/off ratio of 4.5 x 10° at a Vpg of 20 V, which
further evidences the fabrication of n-type Sn-doped B-Ga,Os
films (Fig. 2g). Thus, the fabrication of full f-Ga,Os films with
the n-type Sn-doped B-Ga,Os/p-type N-doped P-Ga,Os struc-
ture has been demonstrated.

32
NC=2[ ] , where electron effective mass (m, ) is 0.342m;
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Figure 2 (a) Hall voltage versus magnetic field curve from van der Pauw Hall effect measurement of the N-doped B-Ga,Os thin films. (b) Drain-source
current (Ips) versus gate-source voltage (Vgs) characteristic curve of the N-doped B-Ga,O; films top-gate FET in linear and log scale at a drain-source voltage
(Vps) of 20 V. (c) XRD spectrum of the Sn-doped B-Ga,O3/N-doped B-Ga,Os films on the sapphire substrate. (d) SIMS depth profile of the Sn-doped B-Ga,O5/
N-doped B-Ga,O; films showing the concentrations of Sn and N. (e) SIMS elemental mappings of Ga (brown), O (red), Al (green), Sn (pink), N (blue)
components, and the layer structure of the -Ga,O; film. (f) Hall voltage versus magnetic field curve from van der Pauw Hall effect measurement of the Sn-
doped B-Ga,Os5 thin films. (g) Ips versus Vgs characteristic curve of the Sn-doped p-Ga,O; back-gate FET in linear and log scale at a Vps of 20 V.

Full f-Ga,0; p-n homojunction diode

Fig. 3a shows a schematic for the f-Ga,O; p-n homojunction
diodes with Pad 1/2 on Sn-doped B-Ga,O; and Pad 3/4 on N-
doped B-Ga,0s. The I-V curve with the applied voltage V,,, on
Pads 1 and 2 indicates the formation of Ohmic contact between
Pad 1/2 and n-type Sn-doped B-Ga,Os, and the I-V curve with
the applied voltage V,, on Pads 3 and 4 indicates the formation
of quasi-Ohmic contact between Pad 3/4 and p-type N-doped B-
Ga,0; (Fig. 3b). The 1/C*-V curves show that the Schottky
barriers are too weak to be detected for both n-type contacts and
p-type contacts (Fig. 3c). The forward current versus voltage
curve of the f-Ga,O; p-n homojunction diodes with the applied
voltage V,, on Pads 3 and 1 shows a large forward current
density of 4.32 x 10° A cm™ at 40 V (Fig. 3d), which is con-
sistent with the simulation results using vertical cross-section
area for the current density calculations (Fig. S2). The Royp is
~9.18 mQ cm? at 40 V (Fig. 3d), close to that of p-NiO/n-Ga,Os
heterojunctions [9,11,12,14,40-42]. The rectification ratio is ~4
x 10* at a wide voltage range (Fig. 3e), which is close to the
rectification ratios of ZnO p-n junctions, some Ga,O;-based p-n
heterojunctions, and two-dimensional van-der-Waals p-n junc-
tions [43-50]. The ideal factor # is estimated to be ~1.78 from
Shockley diode equation I = I[exp(V/ksT) — 1]. The p-Ga,05
p-n homojunction diode was retested after exposure in air for
6 months. The diode shows longterm stability with almost no
changes of the I-V characteristics (Fig. 3f). The reverse current
of the B-Ga,O; p-n homojunction diode is 5.17 x 10 A cm™ at
—5V bias and increases to 0.11 A cm™2 at —40 V bias, which
mainly originates from high-density threading dislocations and
the related defects leading to large tunneling current at high
reverse bias and can be further suppressed by structure opti-
mization, such as introducing insulating interface layer or field
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plate structures [41,43,47]. Limited by the semiconductor para-
meter analyzer we used, the reverse breakdown characteristic is
measured from 0 to —200 V. No reverse breakdown character-
istic is observed at —200 V, indicating that the breakdown vol-
tage of the B-Ga,O; p-n diode is larger than 200 V (Fig. S9a).
The rectifying performance was further explored by applying
100 Hz AC square wave (Fig. 3f) and sine wave (Fig. S9b) from
—30 to 30 V on the diode. The time-dependent input voltage and
rectified output current characteristics of the B-Ga,Os p-n diode
show good rectification behavior without overshoot during
voltage on. The rectification ratio is ~6.60 x 10* under the low
frequency AC voltage, and the rise and decay time are 50 and
10 ps, respectively.

Band structure analysis of the -Ga,0; p-n homojunction diode
Fig. 4a shows the junction capacitance (C,) versus applied vol-
tage curve of the 3-Ga,O; p-n diode. The depletion capacitance
dominates at the region of V < Vi; and diffusion capacitance
dominates at the region of V' > V. Depletion capacitance is in
parallel with diode resistance and diffusion capacitance is in
series with diode resistance. C-V characteristic contains junction
characteristics of p-Ga,O; p-n diode, such as Vi,;, depletion
width and carrier concentration. C, grows from 1 nF cm™ at
reverse bias to 4 nF cm™ at Vi, which is a small capacitance
variation due to the thin film thickness and depletion layer. Low
depletion capacitance improves the speed of switching device.
The Vi in the f-Ga,Os p-n diode is estimated to be 441V
from the 1/C,*>-V plot (Fig. 4b), based on junction C-V equa-

N, N -1
tion: C=A,25v£—de)(Vbi—V) 2, where ¢ is the dielectric
a d

constant, N, is the free hole concentration, Ny is the free electron
concentration, and q is the charge of an electron. By extracting
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Figure 3 (a) Schematic of the n-type Sn-doped B-Ga,O;/p-type N-doped B-Ga,Os; homojunction diode (V). (b) I-V and (c) C-V curves with the applied
voltage Vi, on Pad 1/2 and the applied voltage V},, on Pad 3/4. (d) Forward current density and Ronp versus applied voltage curve. (e) Current density versus
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Figure 4 (a) C,-V and (b) 1/C,>-V characteristics of the f-Ga,O; p-n homojunction diode.

the slope of 1/C,>-V, the hole and electron concentrations are
estimated to be ~1.14 x 10'® and ~1.14 x 10'® cm™, respectively,
in agreement with the Hall measurements. A depletion width is
calculated to be 0.8 um in the p-Ga,O; p-n diode. The p-type
and n-type depletion widths (W, and W,) are calculated to be
734.8 and 65.2nm, respectively, derived from equations

[2eV (N, +
W= %j\w and N, W,=NW,, where W is the width of
d

depletion region, N, is the Hall hole concentration of ~1.50 x
10" cm™3, and Ny is the Hall electron concentration of ~1.69 x
10" cm™. p-type N-doped B-Ga,Os layer contributes more to
the depletion region than n-type Sn-doped layer P-Ga,Os
because of the low hole concentration.

Fig. 5a shows the schematic energy band diagrams for the
isolated p-type N-doped B-Ga,O; and n-type Sn-doped B-Ga,Os.
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The electron concentration is much larger than the hole con-
centration (Table S1) and thus the simulated band diagram
(Fig. S10) shows an abrupt change at the n-type region, which
preliminarily confirms that the p-Ga,O; p-n homojunction is a
one-sided abrupt p-n junction. Fig. 5b shows the energy band
diagram for the B-Ga,O; p-n homojunction. The electron affi-
nity and the bandgap of B-Ga,0O; are typically 4.00 and 4.85 eV,
respectively [51,52]. The average Ep, and Ep, of the p-type N-
doped B-Ga,O; and n-type Sn-doped B-Ga,Os locate at 0.243
and 4.702 eV with VBM at 0 eV, respectively. The V; is 4.459 V
as estimated from &, and &, which is close to the C-V measured
Vi of 4.41 V. Fig. 5¢ shows the simplified energy band diagrams
and carrier characteristic under bias conditions. Under low
forward bias (0 < V < Vi), the electric field within the p-n
junction, depletion layer width, and the potential barrier (V}; —

March 2024 | Vol.67 No.3
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Figure 5 Schematic band diagrams of (a) p-type and n-type p-Ga,O;, and (b)

mechanisms of p-Ga,O3 p-n homojunction under different biases.

V) for the majority carriers across the junction decreases with
the increase of the applied voltage V. Under high forward bias
(V > Vi), a small increase in the applied voltage results in a
significant increase of current flow across the junction (Fig. 3d).
The charge carrier injection may also lead to trapping/de-trap-
ping of holes and excitons, which is enhanced by the N acceptor
impurities induced VB engineering and delocalization effect
(Fig. S11), and charge carrier recombination within the p-n
junction diode. The ideal factor # of ~1.78 (Fig. 3e) indicates the
presence of charge carrier recombination current as well as
diffusion current. Under reverse bias the electric field within the
p-n junction, depletion layer width, and the potential barrier (V4
+ V) increases with the increase of reverse bias voltage V. As a
result, the reverse current I, is very low mainly contributed by
the thermionic minority carrier injection [10]. Further increase
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of the reverse bias and electric field within the p-n junction may
result in the de-trapping/trapping of holes and excitons, gen-
erating an additional reverse current i,. The high reverse leakage
current at high reverse bias is attributed to minority carrier drift,
de-trapping/trapping of holes and excitons, thermionic emis-
sion, Shockley-Read-Hall recombination and Variable-Range
Hopping [53] which originate from impurities, defects and
dislocations.

CONCLUSIONS

N-doped B-Ga,O; films is constructed by a from-GaN-to-B-
Ga,0; structural phase transition technique, which is followed
by sputter deposition of Sn-doped B-Ga,Os thin film on the N-
doped B-Ga,0s; films. The n-type Sn-doped P-Ga,Os/p-type N-
doped B-Ga,O; thin films are demonstrated by the TEM, XRD,
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DFT calculations, Hall, and FET I-V analyses. The Hall electron
concentration and hole concentration are 1.69 x 10'® and 1.50 x

10"

cm™, respectively. The full B-Ga,O; thin film one-sided

abrupt p-n homojunction diodes fabricated on the Sn-doped p-
Ga,05/N-doped B-Ga,0s; films show a high rectification ratio of
4 x 10% alow Rongp of 9.18 mQ cm?, and a high forward current
density of 4.32 x 10> Acm™2 at 40 V, a Vi,; of 4.41 V, a junction
depletion width of 0.8 um, an ideal factor of 1.78, good rectifi-
cation behavior under AC voltage without overshoot, and
longtime stability. The first demonstration of full f-Ga,0O; thin
film one-sided abrupt p-n homojunction diodes lays the foun-
dation for f-Ga,0O3; homogeneous bipolar devices and paves the
way for the evolution of high-voltage and high-power device
applications.
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