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ABSTRACT

In this paper, we mainly deal with cigenvalue problems of non-self-adjoint operator.
To begin with, the generalized Rayleigh variational pri.ncip]e, the idea of which was due to
Morse and Feshbach, is examined in detail and proved more strictly in mathematics. Then, other
three equivalent formulations of it are presented. While applying them to approximate ecal-
culation we find the condition under which the above variational method ean be identified as
the sume with Galerkin’s one. After that we illustrate the generalized variational prineiple
by considering the hydrodynamic stability of plane Poiseuille flow and Bénard convection.
Finally, the Rayleigh quotient method is extended to the cases of non-self-adjoint matrix in
order to determine its strong eigenvalue in linear algebra,

I. INTRODUCTION

A comprehensive theory for the eigenvalue problems of self-adjoint operator has
long been established'™, The well known Rayleigh variational principle, which has
found its wide applications in various fields such as vibration and waves in the finite
dimensional system or continuum system without dissipation, may be employed in ap-
proximate caleulation™. Nevertheless, we often come across a coupled or dissipative
system in reality, It seems to be necessary to explore generalized eigenvalue prob-
lems of non-self-adjoint operator and corresponding variational principles.

So far as non-self-adjoint operator is concerned, it is Morse and Feshbach™ who
set up the fundamental idea in 1953. In [4] Chandrasekhar discussed the instability
of the Couette flow between two rotating coaxial ecylinders, and then followed the
study of the adjoint variational method for ordinary differential equations of high
order by Prasad™. In 1977 Shen examined the finite element method for non-self-
adjoint operators. More recently, Xu™ has solved the classical Columbus problem
and given the stability criterion for liquid-filled cavities. Based on the above achieve-
ments, the present author gave several generalized variational principles of different
forms applied to a large class of integro-differential equation system with a higher
accurate demonstration, thus making the Rayleigh variational prineciples useful and
significant in the finite element method computation. They have been applied to the
hydrodynamic stability problems and several variational relations are derived. In con-
clusion, we have developed a generalized Rayleigh quotient method in the caleulation
of strong eigenvalue for a non-self-adjoint matrix.

II. ApJoinT QPERATOR IN THE VECTOR FUNCTION SPACE

In order to investigate the eigenvalue problem and corresponding variational prin-
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ciple for a general integro-differential equation system, we must define the so-called
adjoint operator and specify its representation in the veetor function space. (Generally
speaking, an integro-differential equation system may be expressed in the operator
form as follows:

Lu=f, _ (2.1)
where
llh lm e lm |
L=|: : o, (2.2)
g!!11' luh e I:'m . o

and each element ¥; of the above matrix is ordinary integral , differential operator
or their combination. Therefore, L is a linear operator mapping one vector function
space into another and u, f are elements in the domains of definition and value, re-
spectively. Then, the formal adjoint operator of L is

e 1
L*- E E E ] . . (2'3)
A A

where [} denotes adjoint operators for ordinary integral and differential ones. It
is well known that

I #K | = | as 'ﬂg—x)
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&) — = —1) — i 24
[;},aw <] >~ L) (2:4)
N : N —
at+i+k ] * ) L " 6!+;+k
A;,, e ————— = —1)ititk, P A, ;, "
[,,z;,; ik ozr'0yia > ,,Zk( Y Oz 0yi9z* - - b

where the symbol bar means ‘‘conjugation’’, because we always need the inner produet
defined in the complex ‘domain, i.e.

{f, g) = j fado. (2.5)

Now it is easy to determine the adjoint operator of any linear one in the veetor fune-
tion space according to (2.3), (2.4). As for differential operator, by integral by part
or Green formula, we have

(i, Ljviy — (Uhwiy vj) = R(u;, vy). (2.6)

R(w, v;) usually is not equal to zero, whereas a certain condition for %, has to be
satisfied for boundary value problems. And then we could manage to find the corre-
sponding condition for v; so as to ensure the right-hand side of (2.6) to be zero. In

this case, we have
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(u, Lv) = 2{u;, Lijvj)
= Z(t?;uh W) = <L*u’ I’J), (27)

and the operators L and L* are really adjoint to each other. If the boundary condi-
tion specified for the original problem is Gu|;= 0, and the corresponding one obtained
for v is G*|,; =0, then the problem

Lu= 0,
Gu|r=0 (2.8)
is adjoint to the problem
L*v =0,
G*vlr— 0. _ (2.9)

It is ev1dent that the term ‘‘adjoint’’ is reciprocal, i.e.
(L*)* = L. (2.10)

Iff L = L* and G = G*, we take fhe boundary value problem to be self-adjoint.

III. GENERALIZED EIGENVALUE PROBLEM FOR \ION -SELF-ADJOINT OPER ATOR

A rather general class of physical prob]ems mlght be redu(*ed to the- followmw
generalized eigenvalue problem for non-self-adjoint operator:

o

(4 — J.B)u -0,

IG“!]‘"O, Y o (3.])
where - -
e in ‘ :.: - ) Qipy B2, °* “ @1y
Sye . ,
NByay Qaay """ Qn

bur blz’ "t bml
B=|: =+ (3.2)
blu! bzm e ban

Both of them are linear operators in the vector functions spaee u is the e]ement in the
same space and A is the eigenvalue. Thus, the adjoint elgenvalue problem of (3. 1)
is

| "(A*—pB‘*)u=0,"
oL Gle=0. (33)

The relatwns between ﬂle elgenvalues and elgenfunctlons for the. p.roblems (.i 1). and
(3.3) are as follows: . ,
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Lemma 1. If A, B are completely continuous operators in a wvector function
space, and the problem (3.1) has an eigenvalue A, then 7, must be one of the eigen-
values of the problem (3.3).

Proof. We prove the lemma by reduction to absurdity. Suppose that I, is not
the eigenvalue of the problem (3.3). According to the complete continuity of the
operators A and B and the Fredholm alternative principle, the inhomogeneous problem

(A*— 121, B v =
G| =0 (34)

must have unique nonzero solution for any nonzero element f. For the eigenfunction
U, corresponding to the eigenvalue A, of (3.1), we have

<“’nr f)= (uu, (4* — 1, B*)v)
= {((A — 1, By, v) = 0. (8.5)

It follows that %, =0, which contradicts the assumption that A, is the eigenvalue of
(3.1). Consequently, 1, must be cne of the eigenvalues of (3.3). The proof is com-
pleted.

Lemma 2. The eigenfunctions u, v corresponding to non-conjugate eigenvalues
for the problems (3.1) and (3.3) respectively are orthogonal in the followimg sense:

(v, Bu) =0, (3.6.a)
or
(B*v, u) = 0. (8.6.b)
Proof. Substracting the inner products by left multiplying (3.1) with v and
right multiplying (3.3) with &, we immediately obtain
(v, 1Bu) — (uB*v, u) =0, (3.7)
ie. '
(2 — #){v, Bu) = 0. (3.8)
Then we come to the conclusion that (v, Bu) = (B*», u) = 0 due to 23 7. The
proof is thus finished.

Lemma 3. The eigenfunctions u, v corresponding to non-conjugate and monzero
eigenvalues of the problems (3.1) and (3.3) respectively are orthogonal in the follow-
ing sense:

(v, Au) =0, (3.9.2)
or ' '
(A*v, u) = 0. (3.9.b)

Because of 4 5= 0, the problems (3.1) and (33 are equivalent to the following
adjoint pairs of eigenvalue problems: - :
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( B - —1— A) u= UJ
A .
'(B* —-lA*)v=0.
7
G'v|r= (}. (3.11)

According to Lemma 2, we readily get Lemma 3,

Lemma 4. If the eigenfunction system for a generalized eigenvalue problem of
non-self-adjoint operator is complete®, we have the following generalized Fourier expan-

ston :
f= Z ay Wy = Z ﬁkvk, (3‘12)
1 1

where the coefficients ay, By are
ax = (vi,B F), fp=<(f,B u). (3.13)
Here the eigenfunction systems {w}, {wy} have been normalized, i.e.

<I‘J.‘,B¢lj> = 63'1- (314)

IV. GENERALIZED RAYLEIGH VARIATIONAL PRINCIPLE

By virtue of the properties of the adjoint eigenvalue problems, we first prove the
variational principle 1 more strictly and then present other three equivalent formula-

tions:

Variational Principle 1. For gem?al:izr:tl cigenvalue problems (3.1), (3.3), the
functions u, v, which make the functional

J(u, v) = %}2 (41)

to be stationary, among the function class satisfying the conditions Gul|r = 0, G*v|r =0,
must be the eigenfunctions of the problems (3.1), (3.3) respectively. And the value
of functional J is the very eigenvalue of (3.1) corresponding to the above eigenfunc-
tion u. oo

Proof. U, v, are assumed to be the functions making the functional J stationary.
Let

(v, dut,) (4.2)

1=J(uo! v0)='<v BlI‘)’

then we produce

1) See [8] for the conditions of completeness.
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(8vy, Awy) + (v, Aduy)  (wy, Au,)({dwy, Bu,) + {v,, Bsu,))
{v,, Bu,) (v,, Bu,)*

<5Un, (4 — 13)“0) + <(A* — AB*)v,, 6“0) (4.3)
<”u, Bu,)

@J =

According to the fundamental theorem in variational calculus, we arrive at
(4 — 1B)u, = 0,
(A4* —iBY)v,= 0.  (44)

Considering Gu|r = 0, G*v|, = 0 and Lemma 1, we come to the conclusion that u, and
Vo are the eigenfunction of (3.1) and (3.3) respectively and A is the eigenvalue
of (3.1) corresponding to u,.

Variational Principle 2. For generalized eigenvalue problems (3.1) (3.3), the
functions u, v, which make the functional

I(a, v) = ¥ Bw (4.5)

(v, Au)

to be statwonary, among the function class satisfying the conditions Gu|r = 0,
G*0|r = 0, must be the eigenfunctions of the problems (3.1), (3.3) corresponding to
the monzero eigenvalue respectively. And the value of the functional I is the reciprocal
of the very eigenvalue of (3.1) corresponding to the above eigenfunction u.

Proof. Because of 220 and 120, the problems (3.1), (3.3) can be reduced to

(B—%A)u—(), (4.6)

G*vi, = 0. 4.7)
Following the variational prineiple 1, the variational principle 2 is proved.

Variational Principle 3. For the generalized eigenvalue problems (3.1), (3.3),
the functions u, v, which make the functional.

P(u,v) = (v, Au). (4.8)
to be stationary under the constraint
(v, Bu) = ] (4.9)

among the function class satisfying the conditions Gu|=0, G*v|;=0, must be the
eigenfunctions of the problems (3.1), (8.3) respectively.

Proof. By means of Lagrange multiplier method, we assume
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P'(a,v) = P(u,v) + 1(1 — {v, Ba)). : - (4.10)
Provided that &, v are the funetions making the functional P’ stationary,

8P = (bv,, Au,) + (v,, Adu,) — 2({6w,, Bu,) + {v,, Bou,))
= (80,, (A — 1B)w,) + ((A* — 1B*)v,, 6a,) = 0. (411)

It follows that #, and v, are the eigenfunctions of (3.1), (3.3), and the Lagrange
multiplier A happens to be the very eigenvalue of (3.1) corresponding to &,.

Variational Principle 4. For the gén-emh'éed etgenvalue problems (3.1), (3.3),
the functions u, v, which make the functional. .

Q(u, v) = (v, Bu) (4.12)
to be stationary under the constraint
(v, Au) =1 (4.13)

among the function class satisfying the conditions Ga|r =0, G*v|, =0, must be
the eigenfunctions of (3.1) and (3.3) corresponding to the nonzero eigenvalue respec-
tivaly.

Proof. We might do it following the variational principle 2. The process of it is
omitted.

From the above-mentioned variational prineciples, it is easy to see that if A is self-
adjoint operator and B is identity one, then we are able to derive the original Rayl-
eigh variational principle without difficulty. Since the eigenvalue of non-self-adjoint
boundary value problems need not be real, we have not shown any extremum property
above in contrast to self-adjoint operators. '

Now we intend to do some approximate calculation applying the variational prin-
ciple 3. Assume

u= i ci¢i;

i=1

v= Z didb;, (4.14)

i=1
where {¢;}, {¢;} are the base function systems satisfying the boundary conditions
of (3.1) and (3.3) respectively. Substituting (4.14) into (4.10) and letting OP'/8d;=0
we get the linear algebraic equation system for ¢ as,

(2 —218) e=0, (4.15)
where the elements of the matrices o7, 8 of order n X n are

a;j = <§5n A¢!>!

bij = {¢:, Bd;), (4.16)
and ¢ = (¢, ¢, ..., ¢,)7, in which the symbol T means ‘‘transpose’’. Then the equation

for determining the eigenvalues is
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o —AZ| =0. (437)
Likewise, substituting (4.14) into (4.10) and letting 8P’ / 8C; = 0, we have the linear
algebraic equation system for d as,

(AT~ uB)d = 0. (4.18)

It is evident that 1 = f&.

Remark that even if the operators A4, B are non-self-adjoint, it might be assumed
¢, =¢,; with G = G*, and the above technique is equivalent to Galérkin method. For
this reason, we say that the above variational principles are the theoretical basis, which
underlies the Palérkin method.

V. APPLICATIONS IN HYDRODYNAMIC STABILITY

(1) The linear stability of the plane Poisenille flow eould be reduced to the
eigenvalue problem of Oir-Sommerfeld equation as follows:

((D* — &)t — wRI(U — 0)(D* — o) — DTU)}p = 0, (5.1)
$(1) = ¢'(£1) =0, (52)

where D = d/dy is differential operator, a is wavenumber, E is Reynolds number, and
¢ is eigenvalue with its real part indicati'ng phase velocity and its imaginary part
multiplied by @ indicating the growth rate of disturbances, U = (1—y®) represents
the velocity profile of the basic flow, ¢ is the complex amplitude of the disturbance
stream funection.

In [8], several numerical methods have been mentioned. According to the general-
ized variational prineiple, we might solve the above problem numerieally as well.

We first find the formulation of the corresponding adjoint problem:
- {(D* = &) + deR[(D* — &*)(U —¢) — D*U]Jp* =0, (5.3)
(£ =¥ (1) =0. (54)
On account of the variat.ional prineiple 1, it is concluded that the eigenvalue ¢ is the

stationary value of the funetional,

i '(1 FH(D* — &) — iR [U(D*—a?)—DU 1o} dy
J(p*, ¢) = —i= - e )
oR L F*(D* — oD)dy.

The eigenfunctions of the problems (5.1), (5.2) and (5.3), (5.4) constitute a biothogonal
function system, i.e.

[ 810 — @)sy = 5. (5.6)

An alternative formulation could be derived according to the variational principle 3
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in a similar way.

(2) Seceing that the principle of stability exchange holds true for Bénard con-
vection, we are able to derive the following eigenvalue problem:

(D* — a)'w — 6 = 0,

(D? — a*)8 = —Ra’*w, (5.7)
with the boundary conditions
w-ez[]! (z=0, 1)
Dw=0 or Dw=0, (2=0,1) (5.8)

where w is the disturbance velocity in z direction, 8 is disturbance temperature, ¢ is
wavenumber, B = —gafd*/kv denotes Rayleigh number, in which g represents the aec-
celeration of gravity, k is thermal conduectivity, v is kinetie viscosity, @ is the thermal
expansivity, 8 is the temperature gradient. The Rayleigh number implies the com-
parison of the unstable effects of buoyance due to heat expansion with the stable ones
due to viscosity.

Likewise, we might derive the corresponding adjoint eigenvalue problem:
(D? — a?)'w* ' ~ —Ra6*,
— w* 4+ (D — a?)6* = 0, (5.9)
with the same boundary conditions as (5.8),

w*-8*==0) (z=’0y1)
Dw* =0 or Dw*=10. (2=0,1) (5.10)

Then the operators 4, B corresponding to (3.1) are

A ((D’ —Oa‘)z (D:_l a=))’ (5.11)

B—(O : g). (5.12)

—a

In the light of the variational principle 1, the eigenvalues of the Bénard problem are
the stationary values of the funectional,

1
— j [D*wD*w* + 2a’Dw*Dw + a'ww* — w*@—DODI*—a’66* ] dy
0

J(6, 0%, w, w*) = -
a’j 6*wdy
o

(5.18)

We might obtain other variational formulations in a similar way.

VI. Gexeravizep RavreieH QuoTiENT METHOD

For self-adjoint matrices, the convergence could be accelerated by wusing the
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Rayleigh quotient method, which will be extended to the ecases of Non-self-adjoint
matrieces.

If a non-self-adjoint matrix 4 has a complete eigenvector system {m.}, k=1,2, ...,
N, then its adjoint counterpart must have another complete one {v:}"”. As a resuit, an
arbitrary vector 2z, in the same space may be expressed as follows:

Zy= au, + o, + - - - + optty (6.1)
Zy=pw, + g, + - + By, (6.2)
which lead to the following wvector sequences:
P, = A¥z, = o fu, + aifw + - - - + aydluy, (6.3)
Qi = A**zy = 2w, + Biifv, + -+ + Bylfoy. (6.4)
When {w.} and {w;} are orthogonal and normalized, we have

= QAP _ @B A + ot + - - - + anBua ) (6.5)
(Qk! Pk) O’:Fxlfk + a;ﬁzl?‘ + -+ “m‘ﬁr\ilﬂt

my

Suppese that A4, is the strong eigenvalue of the matrix 4, ie.
|11|>>MM(|lzlr“s1:“‘s|1N[)— (6-6)
It is clear that

1, =1 =] ! . 6.7
' kll]}’ " kl_?:" (Qi‘n ] k) ( )

If the absolute value of A, is not much greater than those of other eigenvalues, the
convergence can be improved by eigenvalue shift technique.

In order to determine the next strong eigenvalue A., Z, should be seleected to be
orthogonal to #, or v, so that a, or B8, is equal to zero. It follows from (6.5) that

= i — 1im (Qe.A4P) 6.8
! *I']':E'mk ‘flﬂ <Qth> (€8)

When only one or two strong eigenvalues are required, the above method is su-
perior to the usual LR, QR™ method with much less numerical work.
Ezample. We have computed the eigenvalues of the following matrix:
v oo
9 1
NE) (6.9)

1—2—0
0o 0

5

When choosing z, = (1, 1, 1), we obtain
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k Approximate Eigenvalue
4.99999957 + 8.56071269X 107"
8 4.99999996 + 8.52044476X 107"
9 4.99999999 + 8.53278719X 107"
10 4.99999999 + 8.53540864X107''¢
Exact 5

When choosing z,=(1, 0, 0), we obtain the next strong eigenvalue with g, =0,

Br=0. With the help of eigenvalue shift, we may arrive at

k Approximate Eigenvalue
6 1.41420319 + 0.70710441 ¢
7 1.41421271 + 0.70710567 ¢
8 1.41421357 + 0.70710659 <
9 1.41421356 ++ 0.70710676 ¢
. 10 1.41421356 + 0.70710678 ¢
Exact _ 1.41421356 + 0.70710678 <

Thus, it is concluded that the result of the tenth iteration is sufficiently accurate

and the convergence is rapid enough. If the eigenvalue shift method is not applied,
more than twenty iterations would be needed so that the same accuracy might be
achieved owing to the slight difference between the absolute values of the eigenvalues.

The author is much grateful to Prof. H. 8. Tan for his guidance. My sincere

thanks are also due to my friend S. C. Xu for helpful discussien.
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