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By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations, the global bifur-
cations and chaotic dynamics are investigated for a parametrically excited, simply supported rectangular buckled thin plate.
The formulas of the rectangular buckled thin plate are derived by using the von Karman type equation. The two cases of the
buckling for the rectangular thin plate are considered. With the aid of Galerkin’s approach, a two-degree-of-freedom non-
autonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate. The high-dimensional
Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion
to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate. Numerical method is used to find
the chaotic responses of the non-autonomous rectangular buckled thin plate. The results obtained here indicate that the chaotic
motions can occur in the parametrically excited, simply supported rectangular buckled thin plate.
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1 Introduction

With the use of thin plates in airplanes, shuttle and large
space station, many researchers in engineering have paid
considerable attention to the nonlinear oscillations, global
bifurcations and chaotic motions of the thin plates in the
case of large deformation. These obtained results are largely
due to the development of the theories of the nonlinear dy-
namics, bifurcations and chaotic dynamics. In the past two
decades, the researchers have done a number of studies on
nonlinear oscillations, bifurcations and chaos of the thin
plates. Yang and Sethna [1] used the averaging method to
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study the local and global bifurcations of a parametrically
excited nearly square plate. The results obtained indicated
that the heteroclinic loops and the Smale horse exist. Based
on research given in ref. [1], Feng and Sethna [2] made use
of the global perturbation method developed by Kovacic
and Wiggins [3] to study further the bifurcations and cha-
otic dynamics of a thin plate under parametric excitation
and obtained the conditions in which the Shilnikov-type
homoclinic orbits and chaos can occur. Chang et al. [4]
investigated the bifurcations and chaos of a rectangular thin
plate with 1:1 internal resonance. Sassi and Ostiguy [5]
studied the effects of initial geometric imperfections on the
interaction between forced and parametric nonlinear oscil-
lations for a simply supported rectangular thin plate sub-
jected to the in-plane periodic excitation. Anlas and Elbey-
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li [6] investigated the nonlinear dynamics of a simply
supported rectangular plate subjected to transverse har-
monic excitation.

Other results on the nonlinear oscillations, bifurcations
and chaotic dynamics of flexible structures were also ob-
tained by several researchers. Malhotra and Sri Namach-
chivaya [7] used the averaging method and Melnikov
method to investigate the local, global bifurcations and
chaos of a two-degree-of freedom shallow arch subjected to
simple harmonic excitation for the case of 1:1 internal res-
onance. Abe et al. [8] used the method of multiple scales to
analyze the two-mode responses of a simply supported rec-
tangular laminated thin plate subjected to harmonic excita-
tion. The global bifurcations and Shilnikov type chaotic
dynamics were investigated by Zhang et al. [9] and Zhang
[10] for both parametrically and externally excited and
parametrically excited simply supported rectangular thin
plates. Yeh et al. [11] employed the criteria of the fractal
dimension and the maximum Lyapunov exponent to study
the bifurcations and chaotic dynamics of a simply supported
rectangular thin plate with thermo-mechanical coupling and
large deflection. Awrejcewicz et al. [12] used the Bub-
nov-Galerkin with high-order approximations and finite
difference methods to investigate the complex vibrations
and bifurcations of a thin plate-strip excited transversally
and axially. He [13] studied nonlinear dynamic responses
and chaotic motions of a simply supported isotropic lami-
nated thin plate subject to the in-plane and transverse
non-uniform thermal field. Recently, Hao et al. [14] studied
the nonlinear oscillations, bifurcations and chaos of a func-
tionally graded materials plate. Zhang et al. [15] investigat-
ed the periodic and chaotic dynamics of a composite lami-
nated piezoelectric rectangular plate.

The global bifurcations and chaotic dynamics of high-
dimensional nonlinear systems have been at the forefront
of nonlinear dynamics for the last two decades. Several
researchers have paid considerable attention to the devel-
opment of new methods for studying the global bifurcations
and chaotic dynamics of high-dimensional nonlinear sys-
tems. However, due to lack of analytical methods to study
the global bifurcations and chaotic dynamics for high-
dimensional nonlinear systems, it is extremely challenging
to develop theories of the global bifurcations and chaotic
dynamics for high-dimensional nonlinear systems and to
solve systematically engineering problems. Although there
are many challenges and difficulties, certain progress has
been achieved in this field in the past two decades. Based
on the study given by Wiggins [16], Kovacic and Wiggins
[3] developed a new global perturbation method which
may be used to detect the Shilnikov type homoclinic and
heteroclinic orbits for four-dimensional autonomous ordi-
nary differential equations. Yagasaki [17] extended the
standard high-dimensional Melnikov method which can
be utilized to study the global bifurcations and chaotic dy-
namics of high-dimensional nonlinear systems with non-
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com-pletely integrable unperturbed systems. The ref. [17]
improved and developed the methods in refs. [18,19].
Furthermore, the method presented by Yagasaki [17] can
deal with the global bifurcations and chaotic dynamics of
high-dimensional non-autonomous nonlinear dynamical
systems.

The extended subharmonic Melnikov method and mod-
ified homoclinic Melnikov method were employed by
Yagasaki [20] to analyze the periodic orbits and homo-
clinic motions in periodically forced weakly coupled os-
cillators with the perturbations. Yagasaki [21] also utilized
a Melnikov-type global perturbation technique to investi-
gate homoclinic and heteroclinic bifurcations and chaotic
dynamics of a two-degree-of-freedom Hamiltonian system
with saddle-center. Recently, Yagasaki [22] developed
a Melnikov-type global perturbation technique to study
the homoclinic and heteroclinic orbits to invariant tori in
multi-degree-of-freedom Hamiltonian systems with saddle
centers.

Besides the aforementioned research on the theories of
the global bifurcations and chaotic dynamics of high-
dimensional nonlinear systems, other research works on
applying the developed theories to engineering problems
also deserve mentioning. Feng and Liew [23] analyzed the
existence of the Shilnikov type homoclinic orbits of the
averaged equation which represents the modal interactions
between two modes with zero-to-one internal resonance and
influence of the fast mode on the slow mode. Zhang and Li
[24] employed the global perturbation approach to investi-
gate the global bifurcations and chaotic dynamics of a
two-degree-of-freedom nonlinear vibration absorber. Zhang
and Tang [25] studied the global bifurcations and chaotic
dynamics of the suspended elastic cable to small tangential
vibration of one support which causes simultaneously the
parametric excitation of the out-of-plane motion and the
parametric and external excitations of the in-plane motion.
Malhotra et al. [26] used the energy-phase method to inves-
tigate multi-pulse homoclinic orbits and chaotic dynamics
for the motion of flexible spinning discs. Recently, Zhang et
al. [27] studied the global bifurcations and chaotic dynamics
for the nonlinear nonplanar oscillations of a parametrically
excited cantilever beam. Yao and Zhang [28] utilized the
energy-phase method to analyze the Shilnikov type mul-
ti-pulse homoclinic and heteroclinic orbits and chaotic dy-
namics of the nonlinear nonplanar oscillations of the canti-
lever beam. Yao and Zhang [29] used the energy-phrase
method to study the Shilnikov-type multi-pulse orbits and
chaotic dynamics of a parametrically and externally excited
rectangular thin plate. Zhang et al. [30] studied the mul-
ti-pulse global bifurcations and chaos of a nonplanar canti-
lever beam.

However, most studies on using the global perturbation
method to analyze the complex dynamics of higher-dimen-
sional nonlinear systems in terms of engineering are focused
on the autonomous differential equations. For example, in
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refs. [9,10] the non-autonomous ordinary differential equa-
tion of motion of a rectangular thin plate with two-degree-
of-freedom was derived by using the von Karman-type
equation and the Galerkin’s approach. Then, the method of
multiple scales was used to transfer the non-autonomous
governing equation of motion to the autonomous averaged
equation. Based on the averaged equation, the theory of
normal form and the global perturbation method were em-
ployed to study the global bifurcations and Shilnikov type
chaotic dynamics of the rectangular thin plate. The analyti-
cal procedure of using directly an extended Melnikov
method to a two-degree-of-freedom non-autonomous non-
linear system is simplified without use of the method of
multiple scales or the theory of normal form.

In this paper, we will study the global bifurcations and
chaotic dynamics on the non-autonomous system of a par-
ametrically excited, simply supported buckling rectangular
thin plate by using directly an extended high-dimensional
Melnikov method. The non-autonomous nonlinear system
of two-degree-of-freedom for the rectangular thin plate is
derived by using the von Karman type equation and the Ga-
lerkin’s approach. The extended high-dimensional Melni-
kov method is directly utilized to investigate the global bi-
furcations and chaotic dynamics of the rectangular buckled
thin plate. Thus, the simplification procedures on the equa-
tion of motion for the rectangular buckled plate are reduced
twice in this paper as compared with the research given in
refs. [9,10]. Actually, the method of multiple scales and the
theory of normal form, which are respectively used to ob-
tain and simplify the averaged equation of the rectangular
thin plate, are not utilized in this paper. Two cases of the
buckling for the rectangular thin plate are considered. To
our best knowledge, few papers have studied the global bi-
furcations and chaotic dynamics of rectangular buckled thin
plates by using the Melnikov method in the buckling cases.
In refs. [9,10], the authors only investigated the chaotic dy-
namics of the non-buckled rectangular thin plates. The the-
oretical analysis indicates that the chaotic motions can occur
in the parametrically excited simply supported buckling
rectangular thin plate. It is also found from the numerical
results that there exist chaotic motions of the simply sup-
ported rectangular buckled thin plate subjected to the
in-plane excitation.

2 Formulation

In this section, we will give a brief outline of the Melnikov
method on non-autonomous multi-degree-of-freedom Ham-
iltonian systems with the perturbations. Consider a Hamil-
ton system with the perturbations:

x=JDH(x)+eg(x, ot 1), xR™", (1)

where 0<e<1, H:R*™ — R is the Hamiltonian of the
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unperturbed system, functions H and g:R*xRxR —
R*" are sufficiently smooth functions, the function g(x, &,
) is 27 period with respect to 8, x € R is the parameter

of the system and J is a 2nx2n symplectic matrix:

J 0 1, )
-1, 0
with I, and 0 are nxn identity and zero matrices, respectively.

We suspend system (1) over the space R*' xS' as fol-
lows:

x=JDH(x)+¢eg(x, 0, u), (3a)
0=, (3b)

where §'=R/2n is the circle of the length 2.
When &£=0, system (1) becomes an n-degree-of-freedom
Hamiltonian system:
X = JDH (x). “)

In order to apply the extended high-dimensional Melni-
kov method to a specific system, the following assumptions
[17] are given for the unperturbed system (4).

(1) There exists a saddle-center at x=x, such that the ma-

trix A, =JD’H(x,) has n, pairs of eigenvalues whose real

parts have the same magnitude but opposite signs, and n,
pairs of pure imaginary eigenvalues, where n, +n_ = n.

(2) The saddle-center has an (I-1) parameter family of
the homoclinic orbits x"(t,a) a=(a,,a,, ", q, ) €A,
where [<n, and A is an open subset of R, such that the

I vectors in R*" given by

h
9% (1, @)= IDH( (1, @)
ot

h
and P (@), j=1,2,0-1 )
oa.

J
are linearly independent for re R and a€A.
Define the following set

7o ={(x,0) e R xS"' | x=x,,0€S"}.

It is known that y is a periodic orbit of the unperturbed
system (4) in full 2n+1 dimensional phase space. It is an
invariant manifold which has n+1 dimensional stable mani-

fold and unstable manifold W*(y,) and W*“(y,), and the
manifolds W*(y,) and W*“(y,) intersect a /+1 dimen-

sional homoclinic manifold denoted by 7~
I'={(x,0)|x=x"(t, @), 0=1+06,,(t, 2, 6,) e R'xR"" xS'} .

In this paper, the system is not required to be completely
integrable. However, the following assumption 3 has to be
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satisfied.
(3) The variational equation of the homoclinic orbit

At )
E=JD’H(X"(t, )& (©6)

has [ linearly independent bounded solutions so that |&(7)|
exponentially tends to zero as t — .

We also assume the following condition.

(4) There exists a permutation ¢ on 2n symbols so that
n, <o(j)<n,+2n,  for n, < j<n,+2n,.

For the perturbed system (3), the following assumptions
are given.

(5) System (3) has a hyperbolic periodic orbit y, which is
O(¢)-close to and has the same period as periodic orbit j, of
the unperturbed system, thatis |y, —y|=O(¢).

(6) The eigenvalues of the perturbed system correspond-
ing to center part of the unperturbed system are all either
positive or negative.

For n.=0, assumption (5) immediately follows from as-
sumption (1) and assumptions (4) and (6) will be unneces-
sary. Generally, it is difficult for one to verify assumption
(3). This is equivalent to the conditions which ensure the
existence of the normal hyperbolic invariant manifold for
the system as compared with the method given in ref. [16].
Then, the following proposition can be obtained

Proposition 1 Suppose that system (1) satisfies the
assumptions (1)—(6). The extended high-dimensional
Melnikov function is of the form:

M@, a)= f v DH(x"(t, @) - g(x"(t, @), ot + 8)dt, (7a)

h
X

M @.a0=[" J%“j(t,a)'g(xh(t,a),a)t+t9)dt,
j=12,--1-1 (7b)

Then, there exists a point (8, a) =(6,, ¢,) so that
M(@6,,,)=0 and detDM(6,, o) #0. ®)

Therefore, for ¢>0 sufficiently small, the manifolds
W?*(y.) and W*“(y,) intersect transversely near ", @),

wt+6,).

The transverse intersection of the stable and unstable
manifolds allows us to determine the existence of transverse
homoclinic orbits in the perturbed system. Based on the
Smale-Birkhoff theorem, the presence of transverse homo-
clinic orbits implies that the system has the chaos in the
Smale horseshoe sense, namely, there exists chaotic mo-
tions in system (1).

3 Equation of motion of a thin plate

We consider a simply supported rectangular thin plate at

Sci China-Phys Mech Astron

September (2012) Vol. 55 No. 9

four edges, whose edge lengths are a and b and thickness is
h, respectively. The thin plate is subjected to in-plane exci-
tation which can be expressed in the form P=P,—P cosQt.
We establish a Cartesian coordinate system shown in Fig-
ure 1 such that the coordinate Oxy is located in the middle
surface of the thin plate. It is assumed that the u, v and w
represent the displacements of a point in the middle plane of
the thin plate in the x, y and z directions, respectively. From
van Karman type equation for the thin plate [31], we obtain
the governing equation of motion for the rectangular thin
plate as follows:

DViw+phos 2229 R F
P or 840y 0y ox
2 2
2w o0 0y, )
0x0y 0x0y ot
2 LEPC R}
Vip=Ep|| 22 | WO (10)
0x0y Ox™ 0y
. . . En’ .
where p is the density of the thin plate, D=—F7—7——— is
12(1-v?)

the bending rigidity, E is the Young’s modulus, v is the
Possion’s ratio, ¢ is the stress function, and x is the damp-
ing coefficient.

We assume that the boundary conditions of the simply sup-
ported at four edges rectangular thin plate can be written as:

2
at x=0 and x=a, w= 0 v::O;
Ox
2
at y=0 and y=b, w:g Z-o. (11)

The boundary conditions satisfied by the stress function
¢ may be expressed in the following form:

p 2 2 2
u=f 1 a—f—vaf oW lavss, a2
o | E\Oy Ox 2\ 0x ’

and

ba2¢,
hf Pdy=p atx=0and x=a, (13)
an

9}
7

i 7
/)
y

z

Figure 1 The model of a rectangular thin plate and the coordinate system
are given. P=Py—PcosQt.
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b 2 2 2
v:f Lo O 1[ow) lyco,  (14)
o| E\0x Oy 2\ 0y

o A2
fa‘”dx 0, at y=0 and y=b, (15)
0 0x*

and

where 0, is the corresponding displacement in the x direc-
tion at the boundary.

We mainly consider the nonlinear oscillations of the rec-
tangular thin plate in the first two modes. Thus, we write w
in the following form:

w(x, y,t)zu

where u,(t) (i=1, 2) are the amplitudes of the first two

3Zy +uy(1) sin—— 3

(1) sin sin s1n— (16)
a

modes, respectively.

Substituting eq. (16) into eq. (10), considering the
boundary conditions (12)—(15) and integrating, we obtain
the stress function as follows:

2
+ @, (1) cos T

2
(p(x, v, t)=¢7zo(t)cos Zx

+ @4, (t) cos @
a

+ @ (1) cOS—— on Y+ @, (1) cosﬂcos 21y
b a
+¢24(t)coschos4ny
a
+@,,(t)cos 4 coszﬂ
+¢44(t)cos4nxcos4ny—lpy2, A7)
a a 2
where
91’Eh Eh
Py()= 32/12 uf, Pyt )——2’422, ¢60(t):288—/12”22’
(t)—ﬂthuz )= A’Eh .
Pos 288 1 25} < +1>2 142>
(18)
25A°Eh 25A°Eh
(ﬂ24(l):ﬁ“1”2’ 0,1 = N 2 ity
16(4* +4) 16(447 +1)
A’Eh
¢44(Z):——2M1M2, A=—
16(47 +1)

In order to obtain the dimensionless equation of motion,
we introduce the transformations of the variables and pa-
rameters:

3 (ab)l/z . 3 b2
X = 1 u, (i=1,2),p, :%po’
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_ ab’ — ab h
P ST ()
121 VZ h2 2 1/2
&= (=) R A (19)
ab ab\ ph

where ¢£is a small parameter.

For simplicity, we drop overbar in the following analysis.
By means of the Galerkin’s method, substituting eqs. (16)
and (17) into eq. (9) and integrating, we obtain the govern-
ing equation of motion of the rectangular thin plate for the
dimensionless as follows:

¥, +eux, — g x, +2¢x, f, cosQt + e, x; +a,x,x; =0, (20a)
¥,+ex, — g,x, +2¢&x, f, cosQt + Bx; + fB,x; x, =0, (20b)
where
_2\72 g4 22
]=12(1 VORE A +§1’ ﬁ1=3(1 v)h (8112+L2j,
ab 164 4ab A
a, :ﬁz
CRA-VR| 172 62517 625
ab (14 22) 16(4+22) 16(1+42%)
N2
8 :(hkpo _(wk) ) and
1, k=1, . a2 9+ AY)?
h, :{9’ k=2, Py :<a’1) T (21)
a2 (O +1)?° 1
)2 :<a)2> :T’ fe :Shkpl’ k=1,2,

where g,(k=1, 2) are two linear stiffness coefficients of

the thin plate, p, (k=1,2) are the critical forces corre-
sponding to two buckled modes at which the thin plate loses
the stability, a)k (k=1, 2) are the natural frequencies of
the two buckled modes, and f,(k=1,2) are the ampli-

tudes of parametric excitation.

It is found from the aforementioned analysis that the
buckling load is p,, = p,. In this paper, we restrict our
attention to the case in which the applied static load is larger
than the buckling load, namely, p, > p,,/h, . In the fol-
lowing analysis, the two cases of the buckling of the rec-
tangular thin plate will be considered.

4 Global perturbation analysis

Introducing the coordinate transformations x,=y;, %, =y,,
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X=ys, X, =y, oneq.(20), we obtain the following equiv-
alent form of system (20):

Vi =Y (22a)

Vo = &V AV, — @V Y — ey, =26y, fcosf,  (22b)
V3=V (22¢)

Vi =8,V —Bys ¥ vy —euy, =26y, f,cos0, (22d)
0=Q. (22e)

Let £=0 in eq. (22), the unperturbed system is of the
form:

V=Y (23a)
Yy =8N~ — L) Ys (23b)
V3 = Vys (23c)
V=&Y =By s (23d)

The Hamiltonian function of system (23) is obtained as:

1, 1,1 1

H =5y§ tYiT e Egzyi
+10!1y14 +1/J’1y;‘ +lyf yi. 24
4 4 2

It is found that the point y =(0,0,0, 0)" is an equilib-
H(0, 0,
0,0)=0. Two cases of the buckled for the rectangular thin

rium of system (23) at which there exists

plate will be considered in the following analysis.

We first consider the case of g,, g, >0. It is known
that the buckling of both modes for the rectangular thin
plate simultaneously occurs in this case.

It is observed that the singular point O(0,0,0,0) is a
saddle point of system (23) whose -eigenvalues are
ﬂ:i\/gT and A==,/g,, respectively. Therefore, it is
observed that assumption 1 holds.

The homoclinic orbits are calculated as follows:

Y=
/2 /

(i isech\/gTI, + iglsech\/(?lttanh\/(ngt,O,OJ,(ZS)
al al

and

YD) =

2
[0,0,i /%sech\/gz, + /%gzsecm/gzttanh gzt].(26)
1 1

Therefore, it is known that assumption 2 holds when /=1.
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For eq. (25), the variational equations of the homoclinic
orbits are obtained as:

S =S (27a)

& =(8,~6g,sech’Jg,1) &, (27b)
& =&, 27¢)

&, :£g2 —a, %sechz\/;ltjf3. (27d)

For eq. (26), the variational equations of the homoclinic
orbits are obtained as:

& =5, (28a)
e
52 = 8T sech”y/g,? 51» (28b)
o,
53 =&y (28¢c)
& = (8,68, 50cn’ Jg,1) &, (284)

Introduce the following transformations on eq. (28):

T:J;it’ & =n, 52:772\/;;’ & =15, 54:774\/371'7

where i=1 in eq. (27) and i=2 in eq. (28).

Then, each of eqs. (27) and (28) can be reduced to two
independent two-dimensional systems which are of the
form

41 2527

¢, =(A-xksech’)¢,.

(29a)
(29b)

Thus, eq. (29) has the same form as that in ref. [17]. In
eqs. (27a) and (27b), we have A=g, and x=06g,. In eqgs.

(27¢) and (27d), there are A=g, and x=2g,a,/a,. It is

known from ref. [17] that these solutions which satisfy as-
sumption (3) are possible if and only if A=1 and x=2, or A=1,
4 and x=6. Therefore, we let g,=1 and 2g,@,/a, =2,6, or

g:=4 and 2g,a,/a, =6. In egs. (28a) and (28b), we have
A=g; and k=2g,a,/a, . In egs. (28c) and (28d), there are
A=g> and k=6g,. Thus, we let g=1 and 2g,a,/a, =
2,6, or g, =4and 2g,a,/a, =6. Assumption 3 holds
based on ref. [17] when g=1, g»=1 and o =a, or
o, =3a, and I=1. Assumption (5) immediately follows

from assumption (1). Assumptions (4) and (6) do not have
any meaning here.

The extended high-dimensional Melnikov function of the
homoclinic orbit (25) is obtained as follows:
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M©) = [ yl-y, =2y, cos(Cu + Ok

32

2 +o0
= —gl—yf tanh® \[g, 7d(tanh? \[g, 1)

a,

+oo shy/g,t
+8if1 sin Hf sin Qt il d(/g,?)
0

Q ch’ \/g71t

O’n

=t

(30)

32
A sin@csch[ On ]—%

2\/871 3,

In addition, the extended high-dimensional Melnikov
function of the homoclinic orbit (26) is obtained as follows:

a,

M(0) = f : Vol g2y, =2, f, cos(Qr + O)1dr

2
:i2Qn

(€29

4 3/2
fZSinﬁcsch( Qn ]— re,

2Je, ) 3B

The control parameters may be chosen as f; and f,. From
Proposition 1, it can be seen that if there are the conditions

3/2 32
218, sh[ Qn ] and f, > 248 sh{&], 32)
1

30 2\/; 30 2\/g

the manifolds W*(y,) and W"(y,) intersect transversely.

1

fi>

In the second case, it is found that there exists the condi-
tion g,g,<0. Let g, >0 and g, <0. It is known that
the buckling of the first-order mode and the non-buckling of
the second-order mode for the rectangular thin plate simul-
taneously occur in this case.

If the square root of —g, is equal to Q, then, the reso-
nance occurs so that the method given in ref. [17] can not be
applied. Therefore, the square root of —g5 is not near Q. It is
found that the singular point 0(0,0,0,0) is a sad-

dle-center of system (23) whose eigenvalues are A = i\/;1

and A=+,/-g,i, respectively. Thus, assumption 1 holds.

The homoclinic orbits of y; and y, are the same as those of
eq. (25) in the first case, namely

y'() =

/2 /
(i isech\/gTI, + ig1 secthTttathgﬁt,0,0}(%)
al al

Therefore, assumption (2) holds when /=1. For the first
case, assumption (3) holds. Next, we will verify that as-
sumptions (4)—(6) hold. The two-dimensional subspace

{EeRY|& =& =0} is invariant under the flow of system

(27) and consists of the eigenvalues =*i\/—g, . Therefore, it

is found that assumption (4) holds.
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In the following analysis, we verify that assumptions (5)
and (6) hold. It is known that A =D _g(0, 8) is a constant

matrix. We obtain the following relations:

0 1 0 O
& 0 0 0
Y=o 0 0 1
0 0 g, O
0 0 0 o0
—2¢ f, cos@ —&u 0 0
EAl = , 34
' 0 0 0 0 G
0 —2¢f,cos0 0 -—sgu
0 1 0 o0
—2¢ f, cosd —&u
+e4A = . (35
Ay +eA 0 0 0 (35)
0 —2¢f,cos0 g, —&u

Eigenvalues of the function A, = A, +¢&A, correspond-

ing to y; and y, are A, =-guti\-4g, —-&’ i’ respec-

tively.
The corresponding high-dimensional Melnikov function
is the same as eq. (30)

M) = fjw yo[—Ly, =2y, f, cos(Qt + )]dt

O’n

=t

4072
flsinecsch{ n J 28,

I8 (36)
28,

3
Choose f; as the control parameter. From Proposition 1, it
can be seen that if the follow condition holds:

3/2
£ > 248 sh( n J (37

a

1 1

30°n 2Jg_1

and —/g, #Q), then, the manifolds W*(y,) and

W"(y,) of system (22) with g,<0 intersect transversely
based on Proposition 1.

5 Numerical results

To verify the aforementioned theoretical analysis, we use
the fourth-order Runge-Kutta algorithm to explore the ex-
istence of the chaotic motions for the parametrically excited
simply supported rectangular buckled thin plate. Eq. (22) is
used to do numerical simulations.

Figure 2 demonstrates the existence of the chaotic mo-
tion of the non-autonomous rectangular buckled thin plate
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with two buckled modes when the parameters respectively
are g, =36, g,=45 u=056, o =636, a,=848,

B, =656, f =92, f, =86, Q=1.The initial conditions
y! =0.9501, y)=0.2311, y)=0.6068,
y; =0.4860. Figure 3 is another type of chaotic motion of

are given as

the non-autonomous rectangular buckled thin plate with
two buckled modes when the parameters are g,;=3.6,
g:=4.2, n=036, a =936, a,=11.48 S =856, fi=

89, £,=86, Q=1. The initial conditions are the same as those
in Figure 2.

Figure 4 indicates that the chaotic motion of the non- au-
tonomous rectangular buckled thin plate with the first-order
buckled mode and the second-order non-bucked mode
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occurs, which is the same as that in case 2. The non-reso-
nance condition is considered, that is, the square root of —g,
is not near (). The parameters of eq. (22) are chosen as
g1=36, g,=-32, u=036, =936, a,=648,
B, =856, f,=89, f,=96, Q=I1. The initial conditions
are given y) =0.9501, y; =0.2311, y; =0.6068, y; =
0.4860. Figure 5 illustrates the existence of the chaotic
motion of the non-autonomous rectangular buckled thin
plate with the first-order buckled mode and the se-
cond-order non-buckled mode when the parameters are
chosen as g,=3.6, g,=—3.2, =036, « =936, a,=
1048, B, =8.56, fi=79, f,=76, Q=1. The initial condi-

tions are the same as those in Figure 4.

Vi
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Figure 2 Chaotic motion of the rectangular buckled thin plate is obtained in case 1. (a) and (c) represent the phase portraits on the planes (y, y,) and (ys,
ya), respectively; (b) and (d) respectively depict the waveforms on the planes (7, y;) and (¢, y3); (e) and (f) represent three-dimensional phase portraits in spac-

es (y1, y2.y3) and (y3, ya, 1), respectively.
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Figure 3 Another type of chaotic motion of the rectangular buckled thin plate is obtained in case 1. (a)—(f) are the same as Figure 2.

Based on the numerical results, it is observed from Fig-
ures 5(e) and 5(f) that the shape of the phase portraits in
three-dimensional spaces (yi, ¥2, y3) and (3, y4, 1) indeed
indicates the existence of the multi-pulse chaotic motion for
the non-autonomous rectangular buckled thin plate.

6 Conclusions

It is known that the global perturbation method developed
by Kovacic and Wiggins in ref. [3] can be only used to deal
with the global bifurcations and single-pulse chaotic dy-
namics of high-dimensional autonomous nonlinear dynam-
ical systems. In order to directly investigate the global bi-
furcations and chaotic dynamics of high-dimensional non-

autonomous nonlinear dynamical systems, Yagasaki [17]
presented a method to deal with high-dimensional non-
autonomous nonlinear dynamical systems. In this paper, the
global bifurcations and chaotic dynamics of a parametrical-
ly excited, simply supported rectangular buckled thin plate
are investigated by using an extended Melnikov method of
multi-degree-of-freedom Hamiltonian systems with pertur-
bations developed by Yagasaki. The global perturbation
analysis is directly based on the non-autonomous nonlinear
system of the rectangular buckled thin plate. It is known
from the aforementioned analysis that assumption 6 for the
perturbed system is further simplified in order to determine
conveniently the eigenvalues of the perturbed system cor-
responding to the center part of the unperturbed system. The
Melnikov function is calculated to give the conditions under
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Figure 4 Chaotic motion of the rectangular buckled thin plate is obtained in case 2. (a)—(f) are the same as Figure 2.

which the chaotic motions of the non-autonomous rectan-
gular buckled thin plate occur. The chaotic motions of the
non-autonomous rectangular buckled thin plate are also
found by numerical simulations. Directly using the extended
high-dimensional Melnikov method to analyze the global
bifurcations and chaotic dynamics of the non-autonomous
nonlinear dynamical systems are advantageous in avoiding
transforming the non-autonomous nonlinear systems to the
autonomous averaged equation.

The two buckled cases are considered for the rectangular
thin plate, which can not be analyzed by using the method
in refs. [9,10]. In the first case, the buckling of both modes
simultaneously occurs for the rectangular thin plate sub-
jected to the in-plane excitation. In the second case, the
buckling of the first-order mode and the non-buckling of the
second-order mode simultaneously occur for the rectangular
thin plate subjected to the in-plane excitation. The numeri-

cal results also illustrate that chaotic motions exist for the
simply supported rectangular buckled thin plate subjected to
the in-plane excitation in the two cases of the buckling. It is
seen from the numerical results that the shape of
three-dimensional phase portraits in the spaces (1, y2, ¥3)
and (y3, ¥4, y1) indeed shows the existence of chaotic motion
for the rectangular buckled thin plate subjected to the
in-plane excitation.

It is difficult to keep good agreement between the theo-
retical results and numerical simulations. Up to now, we did
not find reports in the open literature which were consistent
between the theoretical results and numerical simulations.
The Melnikov method is a qualitative method for analyzing
the chaotic motions of nonlinear systems. In this paper, the
theoretical analysis qualitatively shows that the chaotic mo-
tions can occur in the parametrically excited, simply sup-
ported rectangular buckled thin plate for two cases of the
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Figure 5 Another type of chaotic motion of the rectangular buckled thin plate is obtained in case 2. (a)—(f) are the same as Figure 2.

buckling and numerical simulations quantitatively demon-
strate that the chaotic motions exist in the system.
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