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By using an extended Melnikov method on multi-degree-of-freedom Hamiltonian systems with perturbations, the global bifur-
cations and chaotic dynamics are investigated for a parametrically excited, simply supported rectangular buckled thin plate. 
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autonomous nonlinear system is obtained for the non-autonomous rectangular buckled thin plate. The high-dimensional 
Melnikov method developed by Yagasaki is directly employed to the non-autonomous ordinary differential equation of motion 
to analyze the global bifurcations and chaotic dynamics of the rectangular buckled thin plate. Numerical method is used to find 
the chaotic responses of the non-autonomous rectangular buckled thin plate. The results obtained here indicate that the chaotic 
motions can occur in the parametrically excited, simply supported rectangular buckled thin plate. 
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1  Introduction  

With the use of thin plates in airplanes, shuttle and large 
space station, many researchers in engineering have paid 
considerable attention to the nonlinear oscillations, global 
bifurcations and chaotic motions of the thin plates in the 
case of large deformation. These obtained results are largely 
due to the development of the theories of the nonlinear dy-
namics, bifurcations and chaotic dynamics. In the past two 
decades, the researchers have done a number of studies on 
nonlinear oscillations, bifurcations and chaos of the thin 
plates. Yang and Sethna [1] used the averaging method to 

study the local and global bifurcations of a parametrically 
excited nearly square plate. The results obtained indicated 
that the heteroclinic loops and the Smale horse exist. Based 
on research given in ref. [1], Feng and Sethna [2] made use 
of the global perturbation method developed by Kovacic 
and Wiggins [3] to study further the bifurcations and cha-
otic dynamics of a thin plate under parametric excitation 
and obtained the conditions in which the Shilnikov-type 
homoclinic orbits and chaos can occur. Chang et al. [4] 
investigated the bifurcations and chaos of a rectangular thin 
plate with 1:1 internal resonance. Sassi and Ostiguy [5] 
studied the effects of initial geometric imperfections on the 
interaction between forced and parametric nonlinear oscil-
lations for a simply supported rectangular thin plate sub-
jected to the in-plane periodic excitation. Anlas and Elbey-
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li [6] investigated the nonlinear dynamics of a simply 
supported rectangular plate subjected to transverse har-
monic excitation.  

Other results on the nonlinear oscillations, bifurcations 
and chaotic dynamics of flexible structures were also ob-
tained by several researchers. Malhotra and Sri Namach-
chivaya [7] used the averaging method and Melnikov 
method to investigate the local, global bifurcations and 
chaos of a two-degree-of freedom shallow arch subjected to 
simple harmonic excitation for the case of 1:1 internal res-
onance. Abe et al. [8] used the method of multiple scales to 
analyze the two-mode responses of a simply supported rec-
tangular laminated thin plate subjected to harmonic excita-
tion. The global bifurcations and Shilnikov type chaotic 
dynamics were investigated by Zhang et al. [9] and Zhang 
[10] for both parametrically and externally excited and 
parametrically excited simply supported rectangular thin 
plates. Yeh et al. [11] employed the criteria of the fractal 
dimension and the maximum Lyapunov exponent to study 
the bifurcations and chaotic dynamics of a simply supported 
rectangular thin plate with thermo-mechanical coupling and 
large deflection. Awrejcewicz et al. [12] used the Bub-
nov-Galerkin with high-order approximations and finite 
difference methods to investigate the complex vibrations 
and bifurcations of a thin plate-strip excited transversally 
and axially. He [13] studied nonlinear dynamic responses 
and chaotic motions of a simply supported isotropic lami-
nated thin plate subject to the in-plane and transverse 
non-uniform thermal field. Recently, Hao et al. [14] studied 
the nonlinear oscillations, bifurcations and chaos of a func-
tionally graded materials plate. Zhang et al. [15] investigat-
ed the periodic and chaotic dynamics of a composite lami-
nated piezoelectric rectangular plate. 

The global bifurcations and chaotic dynamics of high- 
dimensional nonlinear systems have been at the forefront  
of nonlinear dynamics for the last two decades. Several  
researchers have paid considerable attention to the devel-
opment of new methods for studying the global bifurcations 
and chaotic dynamics of high-dimensional nonlinear sys-
tems. However, due to lack of analytical methods to study 
the global bifurcations and chaotic dynamics for high- 
dimensional nonlinear systems, it is extremely challenging 
to develop theories of the global bifurcations and chaotic 
dynamics for high-dimensional nonlinear systems and to 
solve systematically engineering problems. Although there 
are many challenges and difficulties, certain progress has 
been achieved in this field in the past two decades. Based 
on the study given by Wiggins [16], Kovacic and Wiggins 
[3] developed a new global perturbation method which 
may be used to detect the Shilnikov type homoclinic and 
heteroclinic orbits for four-dimensional autonomous ordi-
nary differential equations. Yagasaki [17] extended the 
standard high-dimensional Melnikov method which can  
be utilized to study the global bifurcations and chaotic dy-
namics of high-dimensional nonlinear systems with non- 

com-pletely integrable unperturbed systems. The ref. [17]  
improved and developed the methods in refs. [18,19]. 
Furthermore, the method presented by Yagasaki [17] can 
deal with the global bifurcations and chaotic dynamics of 
high-dimensional non-autonomous nonlinear dynamical 
systems.  

The extended subharmonic Melnikov method and mod-
ified homoclinic Melnikov method were employed by 
Yagasaki [20] to analyze the periodic orbits and homo-
clinic motions in periodically forced weakly coupled os-
cillators with the perturbations. Yagasaki [21] also utilized 
a Melnikov-type global perturbation technique to investi-
gate homoclinic and heteroclinic bifurcations and chaotic 
dynamics of a two-degree-of-freedom Hamiltonian system 
with saddle-center. Recently, Yagasaki [22] developed  
a Melnikov-type global perturbation technique to study  
the homoclinic and heteroclinic orbits to invariant tori in  
multi-degree-of-freedom Hamiltonian systems with saddle 
centers.  

Besides the aforementioned research on the theories of 
the global bifurcations and chaotic dynamics of high-  
dimensional nonlinear systems, other research works on 
applying the developed theories to engineering problems 
also deserve mentioning. Feng and Liew [23] analyzed the 
existence of the Shilnikov type homoclinic orbits of the 
averaged equation which represents the modal interactions 
between two modes with zero-to-one internal resonance and 
influence of the fast mode on the slow mode. Zhang and Li 
[24] employed the global perturbation approach to investi-
gate the global bifurcations and chaotic dynamics of a 
two-degree-of-freedom nonlinear vibration absorber. Zhang 
and Tang [25] studied the global bifurcations and chaotic 
dynamics of the suspended elastic cable to small tangential 
vibration of one support which causes simultaneously the 
parametric excitation of the out-of-plane motion and the 
parametric and external excitations of the in-plane motion. 
Malhotra et al. [26] used the energy-phase method to inves-
tigate multi-pulse homoclinic orbits and chaotic dynamics 
for the motion of flexible spinning discs. Recently, Zhang et 
al. [27] studied the global bifurcations and chaotic dynamics 
for the nonlinear nonplanar oscillations of a parametrically 
excited cantilever beam. Yao and Zhang [28] utilized the 
energy-phase method to analyze the Shilnikov type mul-
ti-pulse homoclinic and heteroclinic orbits and chaotic dy-
namics of the nonlinear nonplanar oscillations of the canti-
lever beam. Yao and Zhang [29] used the energy-phrase 
method to study the Shilnikov-type multi-pulse orbits and 
chaotic dynamics of a parametrically and externally excited 
rectangular thin plate. Zhang et al. [30] studied the mul-
ti-pulse global bifurcations and chaos of a nonplanar canti-
lever beam. 

However, most studies on using the global perturbation 
method to analyze the complex dynamics of higher- dimen-
sional nonlinear systems in terms of engineering are focused 
on the autonomous differential equations. For example, in 
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refs. [9,10] the non-autonomous ordinary differential equa-
tion of motion of a rectangular thin plate with two-degree- 
of-freedom was derived by using the von Karman-type 
equation and the Galerkin’s approach. Then, the method of 
multiple scales was used to transfer the non-autonomous 
governing equation of motion to the autonomous averaged 
equation. Based on the averaged equation, the theory of 
normal form and the global perturbation method were em-
ployed to study the global bifurcations and Shilnikov type 
chaotic dynamics of the rectangular thin plate. The analyti-
cal procedure of using directly an extended Melnikov 
method to a two-degree-of-freedom non-autonomous non-
linear system is simplified without use of the method of 
multiple scales or the theory of normal form. 

In this paper, we will study the global bifurcations and 
chaotic dynamics on the non-autonomous system of a par-
ametrically excited, simply supported buckling rectangular 
thin plate by using directly an extended high-dimensional 
Melnikov method. The non-autonomous nonlinear system 
of two-degree-of-freedom for the rectangular thin plate is 
derived by using the von Karman type equation and the Ga-
lerkin’s approach. The extended high-dimensional Melni-
kov method is directly utilized to investigate the global bi-
furcations and chaotic dynamics of the rectangular buckled 
thin plate. Thus, the simplification procedures on the equa-
tion of motion for the rectangular buckled plate are reduced 
twice in this paper as compared with the research given in 
refs. [9,10]. Actually, the method of multiple scales and the 
theory of normal form, which are respectively used to ob-
tain and simplify the averaged equation of the rectangular 
thin plate, are not utilized in this paper. Two cases of the 
buckling for the rectangular thin plate are considered. To 
our best knowledge, few papers have studied the global bi-
furcations and chaotic dynamics of rectangular buckled thin 
plates by using the Melnikov method in the buckling cases. 
In refs. [9,10], the authors only investigated the chaotic dy-
namics of the non-buckled rectangular thin plates. The the-
oretical analysis indicates that the chaotic motions can occur 
in the parametrically excited simply supported buckling 
rectangular thin plate. It is also found from the numerical 
results that there exist chaotic motions of the simply sup-
ported rectangular buckled thin plate subjected to the 
in-plane excitation. 

2  Formulation 

In this section, we will give a brief outline of the Melnikov 
method on non-autonomous multi-degree-of-freedom Ham-
iltonian systems with the perturbations. Consider a Hamil-
ton system with the perturbations: 

 2( ) ( , , ),   ,nx JDH x g x t x     R  (1) 

where 0 1,   2: nH R R  is the Hamiltonian of the 

unperturbed system, functions H and 2: ng   R R R  
2nR  are sufficiently smooth functions, the function g(x, , 

) is 2 period with respect to ,   R  is the parameter 

of the system and J is a 2n×2n symplectic matrix: 

 
0

0
n

n

I
J

I

 
   

 (2) 

with In and 0 are n×n identity and zero matrices, respectively.  
We suspend system (1) over the space 2 1n R S  as fol-

lows: 

 ( ) ( , , ),x JDH x g x     (3a) 

 ,   (3b) 

where 1 / 2 S R  is the circle of the length 2. 
When =0, system (1) becomes an n-degree-of-freedom 

Hamiltonian system: 

 ( ).x JDH x  (4) 

In order to apply the extended high-dimensional Melni-
kov method to a specific system, the following assumptions 
[17] are given for the unperturbed system (4). 

(1) There exists a saddle-center at x=x0 such that the ma-
trix 2

0 0( )A JD H x  has nh pairs of eigenvalues whose real 

parts have the same magnitude but opposite signs, and nc 
pairs of pure imaginary eigenvalues, where .h cn n n   

(2) The saddle-center has an (l1) parameter family of 
the homoclinic orbits ( , )hx t        1 2 1( , , , )l A, 

where hl n  and A is an open subset of Rl1, such that the 

l vectors in R2n given by  

  ( , ) ( ( , ))
h

hx
t JDH x t

t
 




  

 and ( , )
h

j

x
t 





, 1, 2, , 1j l   (5) 

are linearly independent for tR  and   A . 
Define the following set 

2 1 1
0 0{( , ) | , }.nx R S x x S        

It is known that 0 is a periodic orbit of the unperturbed 
system (4) in full 2n+1 dimensional phase space. It is an 
invariant manifold which has n+1 dimensional stable mani-
fold and unstable manifold 0( )sW   and 0( )uW  , and the 

manifolds 0( )sW   and 0( )uW   intersect a l+1 dimen-

sional homoclinic manifold denoted by  

1 1 1
0 0{( , ) | ( , ), , ( , , ) } .h lx x x t t t R R S               

In this paper, the system is not required to be completely 
integrable. However, the following assumption 3 has to be 
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satisfied.  
(3) The variational equation of the homoclinic orbit 
( , )hx t    

 2 ( ( , ))hJD H x t    (6) 

has l linearly independent bounded solutions so that |(t)| 
exponentially tends to zero as .t   

We also assume the following condition. 
(4) There exists a permutation  on 2n symbols so that 

( ) 2h h cn j n n    for 2 .h h cn j n n    

For the perturbed system (3), the following assumptions 
are given. 

(5) System (3) has a hyperbolic periodic orbit  which is 
O()-close to and has the same period as periodic orbit 0 of 
the unperturbed system, that is | | ( ).O     

(6) The eigenvalues of the perturbed system correspond-
ing to center part of the unperturbed system are all either 
positive or negative.  

For nc=0, assumption (5) immediately follows from as-
sumption (1) and assumptions (4) and (6) will be unneces-
sary. Generally, it is difficult for one to verify assumption 
(3). This is equivalent to the conditions which ensure the 
existence of the normal hyperbolic invariant manifold for 
the system as compared with the method given in ref. [16]. 
Then, the following proposition can be obtained 

Proposition 1  Suppose that system (1) satisfies the 
assumptions (1)–(6). The extended high-dimensional 
Melnikov function is of the form: 

 1( , ) ( ( , )) ( ( , ) , )d ,h hM DH x t g x t t t     



    (7a) 

1( , ) ( , ) ( ( , ) , )d ,
h

h
j

j

x
M J t g x t t t     









  

  

 1, 2, , 1.j l   (7b) 

Then, there exists a point 0 0( , ) ( , )     so that 

 0 0( , ) 0M     and 0 0det ( , ) 0.DM     (8) 

Therefore, for >0 sufficiently small, the manifolds 
( )sW 

 and ( )uW 
 intersect transversely near ( ( , ) ,hx t   

0 ).t   

The transverse intersection of the stable and unstable 
manifolds allows us to determine the existence of transverse 
homoclinic orbits in the perturbed system. Based on the 
Smale-Birkhoff theorem, the presence of transverse homo-
clinic orbits implies that the system has the chaos in the 
Smale horseshoe sense, namely, there exists chaotic mo-
tions in system (1). 

3  Equation of motion of a thin plate 

We consider a simply supported rectangular thin plate at 

four edges, whose edge lengths are a and b and thickness is 
h, respectively. The thin plate is subjected to in-plane exci-
tation which can be expressed in the form P=P0P1cosΩt. 
We establish a Cartesian coordinate system shown in Fig-
ure 1 such that the coordinate Oxy is located in the middle 
surface of the thin plate. It is assumed that the u, v and w 
represent the displacements of a point in the middle plane of 
the thin plate in the x, y and z directions, respectively. From 
van Karman type equation for the thin plate [31], we obtain 
the governing equation of motion for the rectangular thin 
plate as follows: 

 

 

 

    
   

    

  
  

    

2 2 2 2 2
4

2 2 2 2 2

2 2

2 0,

w w w
D w h

t x y y x

w w

x y x y t

 

(9)

 

 
22 2 2

4
2 2

,
w w w

E h
x y x y


              

 (10) 

where  is the density of the thin plate, 
 

3

212 1

E h
D





 is 

the bending rigidity, E is the Young’s modulus,  is the 
Possion’s ratio,  is the stress function, and  is the damp-
ing coefficient. 

We assume that the boundary conditions of the simply sup-
ported at four edges rectangular thin plate can be written as: 

 at x=0 and x=a, 
2

2
0;

w
w

x


 


  

 at y=0 and y=b, 
2

2
0.

w
w

y


 


 (11) 

The boundary conditions satisfied by the stress function 
 may be expressed in the following form: 

 
22 2

2 2
0

1 1
d ,

2

a

x

w
u x

E xy x

  
      

            
  (12) 

and 

 
2

2
0

d
b

h y p
y




  at x=0 and x=a, (13) 

 

Figure 1  The model of a rectangular thin plate and the coordinate system 
are given. P=P0P1cost. 
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22 2

2 2
0

1 1
d 0,

2

b w
v x

E yx y

 
      

            
  (14) 

and 

 
2

2
0

d 0,
a

x
x




  at y=0 and y=b, (15) 

where x is the corresponding displacement in the x direc-
tion at the boundary. 

We mainly consider the nonlinear oscillations of the rec-
tangular thin plate in the first two modes. Thus, we write w 
in the following form: 

      1 2

3 3
, , sin sin sin sin ,

x y x y
w x y t u t u t

a b a b

   
   (16) 

where ( ) ( 1 , 2)iu t i   are the amplitudes of the first two 

modes, respectively.  
Substituting eq. (16) into eq. (10), considering the 

boundary conditions (12)–(15) and integrating, we obtain 
the stress function as follows: 

  20 02
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(17)

 

where 
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(18)

 

In order to obtain the dimensionless equation of motion, 
we introduce the transformations of the variables and pa-
rameters: 
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 
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 
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 (19) 

where  is a small parameter.  
For simplicity, we drop overbar in the following analysis. 

By means of the Galerkin’s method, substituting eqs. (16) 
and (17) into eq. (9) and integrating, we obtain the govern-
ing equation of motion of the rectangular thin plate for the 
dimensionless as follows: 

 3 2
1 1 1 1 1 1 1 1 2 1 22 cos 0,x x g x x f t x x x            (20a) 

 3 2
2 2 2 2 2 2 1 2 2 1 22 cos 0,x x g x x f t x x x            (20b) 
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



   (21) 

 
2 2

2* *
2 2 2

(9 1)
,p





   1

1
,

2k kf h p  1 , 2,k    

where ( 1 , 2)kg k   are two linear stiffness coefficients of 

the thin plate, * ( 1 , 2)kp k   are the critical forces corre-

sponding to two buckled modes at which the thin plate loses 
the stability, *

k ( 1 , 2)k   are the natural frequencies of 

the two buckled modes, and ( 1 , 2)kf k   are the ampli-

tudes of parametric excitation. 
It is found from the aforementioned analysis that the 

buckling load is *
0 .c kp p  In this paper, we restrict our 

attention to the case in which the applied static load is larger 
than the buckling load, namely, 0 0 .c kp p h  In the fol-

lowing analysis, the two cases of the buckling of the rec-
tangular thin plate will be considered. 

4  Global perturbation analysis 

Introducing the coordinate transformations x1=y1, 1 2x y , 
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x2=y3, 2 4x y  on eq. (20), we obtain the following equiv-

alent form of system (20): 

 1 2 ,y y  (22a) 

 3 2
2 1 1 1 1 2 1 3 2 1 12 cos ,y g y y y y y y f          (22b) 

 3 4 ,y y  (22c) 

 3 2
4 2 3 1 3 2 1 3 4 3 22 cos ,y g y y y y y y f          (22d) 

 .    (22e) 

Let =0 in eq. (22), the unperturbed system is of the 
form: 

 1 2 ,y y  (23a) 

 3 2
2 1 1 1 1 2 1 3 ,y g y y y y     (23b) 

 3 4 ,y y  (23c) 

 3 2
4 2 3 1 3 2 1 3 .y g y y y y     (23d) 

The Hamiltonian function of system (23) is obtained as: 

 

2 2 2 2
2 4 1 1 2 3

4 4 2 2
1 1 1 3 1 3

1 1 1 1

2 2 2 2
1 1 1

 .
4 4 2

H y y g y g y

y y y y 

   

  
 

(24)
 

It is found that the point T(0 , 0 , 0 , 0)y   is an equilib-

rium of system (23) at which there exists (0 ,  0 ,H  

0 , 0) 0.  Two cases of the buckled for the rectangular thin 

plate will be considered in the following analysis. 
We first consider the case of 1 2, 0.g g   It is known 

that the buckling of both modes for the rectangular thin 
plate simultaneously occurs in this case. 

It is observed that the singular point (0 , 0 , 0 , 0)O  is a 

saddle point of system (23) whose eigenvalues are 

1g    and 2 ,g    respectively. Therefore, it is 

observed that assumption 1 holds.  
The homoclinic orbits are calculated as follows: 

1
1 1 1 1

1 1

( )

2 2
sech , sech tanh , 0 , 0 ,

hy t

g
g t g g t g t

 



 
   
 

(25)
 

and 

2
2 2 2 2

1 1

( )

2 2
0 , 0 , sech , sech tanh .

hy t

g
g t g g t g t

 



 
   

 
(26)

 

Therefore, it is known that assumption 2 holds when l=1. 

For eq. (25), the variational equations of the homoclinic 
orbits are obtained as: 

 1 2 ,   (27a) 

  2
2 1 1 1 16 sec h ,g g g t    (27b) 

 3 4 ,   (27c) 

 21
4 2 2 1 3

1

2
sec h .

g
g g t  


 

  
 

  (27d) 

For eq. (26), the variational equations of the homoclinic 
orbits are obtained as: 

 1 2 ,   (28a) 

 22
2 1 2 2 1

1

2
sec h ,

g
g g t  


 

  
 

  (28b) 

 3 4 ,   (28c) 

     2
4 2 2 2 36 sec h .g g g t  (28d) 

Introduce the following transformations on eq. (28): 

,ig t   1 1,   2 2 ,ig   3 3 ,   4 4 ,ig   

where i=1 in eq. (27) and i=2 in eq. (28).  
Then, each of eqs. (27) and (28) can be reduced to two 

independent two-dimensional systems which are of the 
form 

 1 2 ,   (29a) 

 2
2 1( sec h ) .t      (29b) 

Thus, eq. (29) has the same form as that in ref. [17]. In 
eqs. (27a) and (27b), we have =g1 and 16g  . In eqs. 

(27c) and (27d), there are =g2 and 1 2 12g   . It is 

known from ref. [17] that these solutions which satisfy as-
sumption (3) are possible if and only if =1 and =2, or =1, 
4 and =6. Therefore, we let g2=1 and 1 2 12 2, 6g    , or 

g2=4 and 1 2 12 6g    . In eqs. (28a) and (28b), we have 

=g1 and 2 2 12g   . In eqs. (28c) and (28d), there are 

=g2 and 26 .g   Thus, we let g1=1 and 2 2 12g     

2 , 6,  or 1 4g  and 2 2 12 6g    . Assumption 3 holds 

based on ref. [17] when g1=1, g2=1 and 1 2   or 

2 13   and l=1. Assumption (5) immediately follows 

from assumption (1). Assumptions (4) and (6) do not have 
any meaning here. 

The extended high-dimensional Melnikov function of the 
homoclinic orbit (25) is obtained as follows: 
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2 2 1 1
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1 1
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1 1
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1

1
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( ) [ 2 cos( )]d

2
tanh d(tanh )

sh8
 sin sin d( )

ch

42
sin csc h .

32

M y y y f t t

g
g t g t

g tg
f t g t

g t

g
f

g

 

(30)

 

In addition, the extended high-dimensional Melnikov 
function of the homoclinic orbit (26) is obtained as follows: 

 

4 4 3 2

3 22
2

2
1 12

( ) [ 2 cos( )]d

42
sin csc h .

32

M y y y f t t

g
f

g

  




 




    

   
     

 


 

(31)

 

The control parameters may be chosen as f1 and f2. From 
Proposition 1, it can be seen that if there are the conditions 

3 2
1

1 2

1

2
sh

3 2

g
f

g

  
 
    

 and 
3 2
2

2 2

2

2
sh ,

3 2

g
f

g

  
 
    

 (32) 

the manifolds ( )sW   and ( )uW   intersect transversely. 

In the second case, it is found that there exists the condi-
tion 1 2 0g g  . Let 1 0g   and 2 0g  . It is known that 

the buckling of the first-order mode and the non-buckling of 
the second-order mode for the rectangular thin plate simul-
taneously occur in this case. 

If the square root of g2 is equal to , then, the reso-
nance occurs so that the method given in ref. [17] can not be 
applied. Therefore, the square root of g2 is not near . It is 
found that the singular point (0 , 0 , 0 , 0)O  is a sad-

dle-center of system (23) whose eigenvalues are 1g    

and 2 ig    , respectively. Thus, assumption 1 holds. 

The homoclinic orbits of y1 and y2 are the same as those of 
eq. (25) in the first case, namely 

1
1 1 1 1

1 1

( )

2 2
sec h , sec h tanh , 0 , 0 .(33)

hy t

g
g t g g t g t

 



 
   
 

 

Therefore, assumption (2) holds when l=1. For the first 
case, assumption (3) holds. Next, we will verify that as-
sumptions (4)–(6) hold. The two-dimensional subspace  

4
1 2{ | 0}R      is invariant under the flow of system 

(27) and consists of the eigenvalues 2i g  . Therefore, it 

is found that assumption (4) holds. 

In the following analysis, we verify that assumptions (5) 
and (6) hold. It is known that 1 (0 , )xA D g   is a constant 

matrix. We obtain the following relations: 

 

  


  

 
 
 
 
  
 

 
   
 
    

1
0

2

1
1

2

0 1 0 0

0 0 0
,

0 0 0 1

0 0 0

0 0 0 0

2 cos 0 0
,

0 0 0 0

0 2 cos 0

g
A

g

f
A

f

 

(34)

 

 1
0 1

2 2

0 1 0 0

2 cos 0 0
.

0 0 0 1

0 2 cos

f
A A

f g

  


  

 
    
 
    

 (35) 

Eigenvalues of the function 0 1A A A    correspond-

ing to y3 and y4 are 2 2
3,4 2i 4 ,g         respec-

tively.  
The corresponding high-dimensional Melnikov function 

is the same as eq. (30) 

 

  




 




    

   
   
 
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 2 2 1 1
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(36)

 

Choose f1 as the control parameter. From Proposition 1, it 
can be seen that if the follow condition holds: 

 
3 2
1

1 2

1

2
sh ,

3 2

g
f

g

  
 
    

 (37) 

and 2 ,g    then, the manifolds ( )sW   and 

( )uW   of system (22) with g2<0 intersect transversely 

based on Proposition 1.  

5  Numerical results 

To verify the aforementioned theoretical analysis, we use 
the fourth-order Runge-Kutta algorithm to explore the ex-
istence of the chaotic motions for the parametrically excited 
simply supported rectangular buckled thin plate. Eq. (22) is 
used to do numerical simulations.  

Figure 2 demonstrates the existence of the chaotic mo-
tion of the non-autonomous rectangular buckled thin plate  
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with two buckled modes when the parameters respectively 
are 1 3.6,g   

2 4.5,g   0.56,   1 6.36  , 2  8.48, 

1 6.56,   1 92,f   2 86,f   =1. The initial conditions 

are given as 0
1 0.9501,y  0

2 0.2311,y  0
3 0.6068,y   

0
4y  0.4860. Figure 3 is another type of chaotic motion of 

the non-autonomous rectangular buckled thin plate with 
two buckled modes when the parameters are g1=3.6, 
g2=4.2, 0.36,   

1 9.36,   
2 11.48,   

1 8.56  , f1= 

89, f2=86, =1. The initial conditions are the same as those 
in Figure 2. 

Figure 4 indicates that the chaotic motion of the non- au-
tonomous rectangular buckled thin plate with the first-order 
buckled mode and the second-order non-bucked mode  

occurs, which is the same as that in case 2. The non- reso-
nance condition is considered, that is, the square root of g2 
is not near . The parameters of eq. (22) are chosen as 
g1=3.6, 2 3.2g   , 0.36  , 1 9.36  , 2 6.48  , 

1 8.56  , 1 89f  , 2 96f  , =1. The initial conditions 

are given 0
1 0.9501y  , 0

2 0.2311y  , 0
3 0.6068y  , 0

4y   

0.4860. Figure 5 illustrates the existence of  the chaotic 
motion of the non-autonomous rectangular buckled thin 
plate with the first-order buckled mode and the se-
cond-order non-buckled mode when the parameters are 
chosen as g1=3.6, g2=3.2, 0.36,   

1 9.36,   
2   

10.48,  
1 8.56,   f1=79, f2=76, =1. The initial condi-

tions are the same as those in Figure 4. 

 

 

Figure 2  Chaotic motion of the rectangular buckled thin plate is obtained in case 1. (a) and (c) represent the phase portraits on the planes (y1, y2) and (y3, 
y4), respectively; (b) and (d) respectively depict the waveforms on the planes (t, y1) and (t, y3); (e) and (f) represent three-dimensional phase portraits in spac-
es (y1, y2, y3) and (y3, y4, y1), respectively. 
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Figure 3  Another type of chaotic motion of the rectangular buckled thin plate is obtained in case 1. (a)–(f) are the same as Figure 2. 

Based on the numerical results, it is observed from Fig-
ures 5(e) and 5(f) that the shape of the phase portraits in 
three-dimensional spaces (y1, y2, y3) and (y3, y4, y1) indeed 
indicates the existence of the multi-pulse chaotic motion for 
the non-autonomous rectangular buckled thin plate. 

6  Conclusions  

It is known that the global perturbation method developed 
by Kovacic and Wiggins in ref. [3] can be only used to deal 
with the global bifurcations and single-pulse chaotic dy-
namics of high-dimensional autonomous nonlinear dynam-
ical systems. In order to directly investigate the global bi-
furcations and chaotic dynamics of high-dimensional non- 

autonomous nonlinear dynamical systems, Yagasaki [17] 
presented a method to deal with high-dimensional non-  
autonomous nonlinear dynamical systems. In this paper, the 
global bifurcations and chaotic dynamics of a parametrical-
ly excited, simply supported rectangular buckled thin plate 
are investigated by using an extended Melnikov method of 
multi-degree-of-freedom Hamiltonian systems with pertur-
bations developed by Yagasaki. The global perturbation 
analysis is directly based on the non-autonomous nonlinear 
system of the rectangular buckled thin plate. It is known 
from the aforementioned analysis that assumption 6 for the 
perturbed system is further simplified in order to determine 
conveniently the eigenvalues of the perturbed system cor-
responding to the center part of the unperturbed system. The 
Melnikov function is calculated to give the conditions under  
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Figure 4  Chaotic motion of the rectangular buckled thin plate is obtained in case 2. (a)–(f) are the same as Figure 2. 

which the chaotic motions of the non-autonomous rectan-
gular buckled thin plate occur. The chaotic motions of the 
non-autonomous rectangular buckled thin plate are also 
found by numerical simulations. Directly using the extended 
high-dimensional Melnikov method to analyze the global 
bifurcations and chaotic dynamics of the non-autonomous 
nonlinear dynamical systems are advantageous in avoiding 
transforming the non-autonomous nonlinear systems to the 
autonomous averaged equation.  

The two buckled cases are considered for the rectangular 
thin plate, which can not be analyzed by using the method 
in refs. [9,10]. In the first case, the buckling of both modes 
simultaneously occurs for the rectangular thin plate sub-
jected to the in-plane excitation. In the second case, the 
buckling of the first-order mode and the non-buckling of the 
second-order mode simultaneously occur for the rectangular 
thin plate subjected to the in-plane excitation. The numeri-

cal results also illustrate that chaotic motions exist for the 
simply supported rectangular buckled thin plate subjected to 
the in-plane excitation in the two cases of the buckling. It is 
seen from the numerical results that the shape of 
three-dimensional phase portraits in the spaces (y1, y2, y3) 
and (y3, y4, y1) indeed shows the existence of chaotic motion 
for the rectangular buckled thin plate subjected to the 
in-plane excitation. 

It is difficult to keep good agreement between the theo-
retical results and numerical simulations. Up to now, we did 
not find reports in the open literature which were consistent 
between the theoretical results and numerical simulations. 
The Melnikov method is a qualitative method for analyzing 
the chaotic motions of nonlinear systems. In this paper, the 
theoretical analysis qualitatively shows that the chaotic mo-
tions can occur in the parametrically excited, simply sup-
ported rectangular buckled thin plate for two cases of the  
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Figure 5  Another type of chaotic motion of the rectangular buckled thin plate is obtained in case 2. (a)–(f) are the same as Figure 2. 

buckling and numerical simulations quantitatively demon-
strate that the chaotic motions exist in the system. 
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