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Abstract Although the high-speed railways in China have been greatly advanced in the past decades with
respect to expanding networks and increasing speed, a fixed block system, which separates the trains with
several stationary track block sections, is utilized to guarantee the safe operation of multiple trains. A moving
block system, which enables the moving authority of a high-speed train to be the real-time positioning point
of its preceding one (plus some necessary safe redundant distance, of course), is under development to further
make full use of the high-speed railway lines and improve the automation level by automatic train operation
for high-speed trains. The aim of this paper is to design a distributed cooperative control for high-speed trains
under a moving block system by giving a cooperative model with a back-fence communication topology. A
nonlinear mapping-based feedback control method together with a rigorous mathematic proof for the global
stability and ultimate bound of the closed-loop control systems is proposed. Comparative results are given
to demonstrate the effectiveness and advantages of the proposed method.
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1 Introduction

A moving block system has been proved to be an effective and efficient signal system for railway systems by
its wide practical applications in subway systems, which lays both theoretical and practical foundations
for its extension to high-speed railway systems [1-7]. Actually, fixed block and quasi-moving block
systems are implemented in high-speed railway lines in China from the viewpoint of operation safety,
where the moving authorities are calculated from the target points behind several block sections and the
section entry point of preceding trains. In the moving block system, the moving authority of a high-speed
train is calculated using the real-time location information of the preceding trains by virtue of advanced
positioning, communication, and control technologies, which enables a smaller separation distance among
trains and a more efficient utilization of railway lines.

As the foundational core function, the distributed cooperative control plays an essential role in guaran-
teeing efficient operation of multiple high-speed trains, and some previous theoretical efforts can be found
in developing the modelling and control methods for high-speed trains and subway systems. To name a
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few, in [8], the problem of planning energy-saving trajectories for multiple high-speed train movements is
studied using online distributed cooperative model predictive control. In [9], a cooperative train control
model for energy saving is designed. In [10], a cooperative scheduling model is designed for timetable
optimization in subway systems. In [11], a neural adaptive coordination control of multiple trains under
a bidirectional communication topology is proposed. In [1], a cooperative control design together with
stability analysis for multiple trains’ moving signalling systems are proposed. It can be concluded that
the studies in [8-10] require the precise information of train dynamics to formulation the optimization
problem, and the studies in [1,11] propose control methods using fixed-gain feedback cooperative con-
trol, which is not flexible under different operation situations. Inspired by these observations, this paper
proposes a distributed cooperative control for multiple high-speed trains in the mode of moving block
using a nonlinear mapping-based feedback method. The features and merits of the proposed method can
be briefly summarized as follows: (i) a linear weight model with a back-fence communication topology
is proposed for the cooperative control of multiple trains with nonlinear characteristics and uncertain
parameters; (ii) the proposed control method requires no information of the experimental parameters
of the operational resistances and external disturbances; (iii) the proposed control method adjusts the
feedback gain nonlinearly by virtue of a new continuous differentiable nonlinear mapping function, and
a Lyapunov function with non-quadratic form is utilized to rigorously prove the closed-loop stability by
the Lyapunov stability theorem.

The rest of the paper is organized as follows. Section 2 presents the formulated problem and some
necessary preliminaries. The main results, including the detailed design procedures of the proposed
control method and the rigorous stability proof, are given in Section 3. Section 4 gives comparative
simulation results to demonstrate the effectiveness and advantages of the proposed control. Section 5
concludes this paper.

2 Problem formulation and preliminaries

Without loss of generality, the dynamics of a moving train ¢ along the railway line can be captured by
the following second-order differential equation:

PDi (t) =v; (t)a

pi(t) L fi(vi) — di(X;), ®
my;

where p;(t), v;(t) and p;(¢) are the actual position, speed, and acceleration values of train i, respectively.
m; is the train mass, and F; is the force implemented on the train. f;(v;) = a; +b; - v; + ¢; - viQ is the
Davis equation that models the operational resistance forces, with a, b, and ¢ being unknown positive
constants. d;(X;) denotes the combinations of external disturbances and modelling uncertainties with
X; = [v, pi, ], meaning that the unknown term d;(X) varies with respect to the real-time speed, position
of train ¢ and time. Define u; = F;/m;, the acceleration and deceleration values of train 4, and choose u;
as the control signal to be later designed. To design a feasible controller, it is necessary to assume that
di(X;) is bounded by some unknown constant d;', that is, |d;(X;)| < d;, and it is necessary to point
out that this assumption is quite regular from the viewpoints of both theoretical analysis and practical
considerations.

The target is to design a distributed cooperative control for multiple trains such that:

(1) The target is to let the headmost train 1 track a prescribed speed trajectory versus distance
accurately, and the following trains ¢ = 2,...,n track the minimum separation distance points (MSDPs)
calculated behind the preceding trains in moving block mode; the MSDPs are calculated in consideration
of the braking distance L; and proper redundant safe distance L, as shown in Figure 1;

(2) All of the closed-loop signals are guaranteed to be bounded for each train, and string stability is
also guaranteed for multiple trains in such a manner that sup; ||p; —pi—1+ (Lo + Ls)|lco < 9, Vi=2,...,n
and supy [|[p1 — prlleo < ¥, with p, and ¢ being the prescribed distance trajectory versus time and a
positive small constant, respectively.
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Figure 1 (Color online) The schematic diagram of MSDPs.

To these ends, Assumption 1 and Lemmas 1-3 are introduced.

Assumption 1. The prescribed speed trajectory versus distance is smooth enough such that the pre-
scribed distance trajectory p,, speed trajectory v, and acceleration trajectory a, versus time are all
bounded.

Lemma 1 ([12]). Consider a continuous function V(¢) > 0 defined V¢ € Rt and the bounded initial
value V(0) and a real-valued function h(t) € Loo. If V(t) < —hiV(t) + hoh(t) with hy > 0, hy are
constants, then it can be concluded that V'(¢) is bounded.

Lemma 2 ([13]). For some given positive constant v > 0 and any ¢ € R, the inequality 0 < || —
ﬁtanh(%) < K7y is always true with x = 0.2785.

Lemma 3 ([14]). A continuous differentiable nonlinear mapping function, presented as

s, if [s| < A,
N(s) = . . (2)
[log, (1 —Ina-A+1na-|s|) + Alsign(s), if |s| > A,

where a > 1, A > 0, holds the following twofold properties: (i) the function 91(s) is a continuous
differentiable strictly monotone increasing function versus its argument s, and its derivative is equal to 1
if |s| <A, and (1—Ina-A+Ina-|s|)~! otherwise; (ii) My (s) := Na(s) - s+ N(s) is a monotone increasing
function versus s, and Ms(s) - s = N(s) - s is true.

3 Main results

To develop a proper distributed cooperative control, the following MSDP error variables can be defined

for the trains:
€1 =pPr — P1,
(3)
ei =(pi—1 — pi) + (L + Ly),

where L, and Lg are the braking distance and redundant safe distance as shown in Figure 1, respectively.
It is necessary to make an assumption that p; is the distance of train ¢ without consideration of the train
length. To facilitate the design procedure and stability proof, a filtered error n; = é; + a;e; with «; being
some positive constant is defined, which is partially inspired by the robust adaptive control of automatic
train operation [15]. The convergences of e; and n; are equivalent, as briefly proved as follows.

Proof. The solution of e; in the first-order differential equation n; = é; + a;e; with 0 initial time can be
obtained as follows:

ei(t) =2+ <ei(0) - "> exp (—at), (4)

a’L ?

where ¢;(0) is the initial value of e;. It is clear that (e;(0) — Z%) exp(—at) decays as time goes on, that
is, (ei(0) — 3) exp(—at) ~ 0 after some time moment ¢ > T'. In this sense, e; ~ n;/a; after some time
moment ¢ > T'. As a result, the convergences of e; and n; are thus equivalent. The proof ends.
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Remark 1. In this study, the separation distance L; + Ls among trains is some constant value with
the following practical considerations: (i) the braking distance for some specific train is calculated using
the maximum constant speed value for safety consideration, and (ii) the hit-hard-wall mode is utilized to
separate the distance of neighbouring trains, that is, the moving authority of a train is calculated using
the real-time location information and without consideration of the braking distance of the preceding
train.

It is known from (3) that the error variables are defined between train ¢ and its preceding one. To
realize the cooperation with its following train, the following linear weighting transformation can be
utilized to couple the distance between train ¢ and train ¢ + 1:

N; = fBini —njp1, 1=1,...,n—1,
Ny = Bunin,

with 8;, 7 = 1,...,n being positive constants. Similarly, the convergences of n; and N, are equivalent, as

(5)

briefly proved as follows.
Proof. Define N,, = [n1,n2,...,n,]T and Ny = [Ny, Na, ..., N,]T; the relationship of A, and Ny is
thus Ny = BN, with

p1 —1
B2 —1
B =
1
Br
Because S;, i = 1,...,n are positive constants, the matrix B is thus non-singular. This guarantees the

above statements. The proof ends.
Differentiating N; = B;n; — ns11, Vi=1,...,n—1 and N, = B,n,, yields

Ni = — (ﬁz —+ 1) [ (al + bjv; + cv )} + BiPi—1 + Pit1 + a;fié; — Qi41€i41, (6)
Nn = —ﬂn [un — (an —+ b nUn + Crv )} + /Bnpn 1+ Oén/Bnen (7)

The distributed cooperative control is proposed as follows:

kil (N) + 5] F

U; = + + G + bip; + ép2 + tanh [\ A+, 1=1,2,...,n—1,
e i &2 + tanh A9 (V)] d .
En[Ny (Np) + N"] Fn A
Uy = ! 5 Mn” 4 5 + an + b + Enp? 4 tanh [\, 94 (N,,)] diF,
where k;, 1 = 1,2,...,n are positive design parameters, M; are positive constants satisfying M; > k;, a;,

I;i, ¢; and (Z:r are the estimated values of the unknown parameters a;, b;, ¢; and d;r of train 7, respectively,
Fi = BiPi—1 + Piv1 + ifiéi — qip16,41 with po = py, and F,, = BrnPn—1 + anfnén. The adaptation laws
are designed as follows: '

a; = €qi [(/B’L + 1)mf( 4

) ia ]
I;i = Ep; {(51 + )9y (Ni)pi — Tiab; ]
é’i =eei [(Bi + 1)Np(N:)p; — 0i3é1),

(V) - ouad ]

ag.

7€d1{ﬂ1+1 ) tanh

an = Ean [Bn My (Nn) — On1dnl,
= €bn |:ﬂ pn - Un2l; i|7
Cn = €cn [ﬂnmf - O—n36n]7

d: = Edn

—

8, tanh (Anmf(Nn)) . an4¢iﬂ,
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where €44, €pi, €ci and €4, © = 1,2,...,n are the adaptation rate coefficients and o1, 2, ;3 and o4,
i =1,2,...,n are small positive constants.

N,
ki (Ni)+57-]

Bi+1 for

Remark 2. Tt is noted that each controller in (8) contains six parts. The terms

Fon [0 5 (N + 7% . . o
i=1,...,n—1and w are the negative feedback components, which take charge of driving

Fi

the tracking errors to converge to values as small as possible. The terms fori=1,...,n—1 and

In
Bn

Bi+1
are available information for controller design. The terms a; + b;p; + ¢&;p? for i = 1,...,n are the

on-line estimations of resistances a; + b;p; + ¢;p7. Finally, the terms tanh[\;9; (Nl)]tij' fori=1,...,n
are components to guarantee the robustness of the proposed control law against the disturbances. It is
necessary to point out that an extra feedback term I]\\/ff is added in the negative feedback components,
and the design principle of the introduction of this term is explained in Remark 3.

The above design procedures can be summarized as Theorem 1.

Theorem 1. Consider a group of high-speed trains operating in moving block mode with the dynamics
of train 7 modelled as (1). If the distributed cooperative control (8) and the corresponding adaptation
laws (9) are implemented, the twofold targets stated in Section 2 can be achieved.

Proof. Incorporating the open-loop dynamics (6), (7) and the proposed control law (8), the closed-loop
dynamics can be obtained as follows:

. N; s 5
N, = —k; {mf(Ni) T ﬁ} —(Bi+1) [ai + by + Ep2 + tanh (A (N)) dF — di(X)},

N, - 7 . 5
S| = [t Bt 2 v (V) 0~ 0, ))

N, = —ky, [‘)’tf(Nn) + M,

where a; = a; — a;, b; = l;i —b;, and ¢; = ¢; — ¢; are the estimated error variables. Similarly, dj‘ = ch — d;‘
is also the estimated error variable in the following analysis.
Choose the following global Lyapunov function for multiple trains:

JF 3 + 3
2eai  2ebi  2€c;  2€45

n a2 B2 G2 d+?
V= Z lm(Ni)Ni + o = — .
1=1

The derivative of (11) along (10) can be calculated as

. n ~.L. ~.L. ~,;. ~_.l’_ :'_.l’_
. [WN”NZ _+b_+_+u]
im1 Eai Ebi Eci Edi
- kN (NON;  dar by Ga dtdf
=3 k() - BN Gide | bids | Gl didy
p M; €ai  Ebi  Eci Edi
n—1 B
= > (Bi+ V)N (V) [ + bip + &b + tanh (A9 (N)) di — di(X)]
1=1
— Buy(No) [ + B + G + tanh (A3 (No)) df = d(X)]. (12)

Incorporating the adaptation laws (9) into (12) yields
N ki (N:)N;
V= [kmfc(m) - fT

w m =4 i+ g+
— 041G;0; — 042b;b; — 043C;¢; — Ui4di di ]
i=1

- z_: (Bi + 1) 95 (V) [taﬂh()\z"ﬁf(]\fi))d;r — d;(X) — tanh (A0 (N;)) ?}

— B (N,) [tanh M (Np)) dF — dp(X) — tanh (A9 (N,,)) Jj;]. (13)
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It is worth noticing that the inequalities —opnaia; = —opa; (a; +a;) < — ‘Ma’ ‘Ma , —0abib; <
b2 b2 N 2 A jad; 2 adf? .
—T2 o TR 366 < — T4 4+ TB5 and —oud) df < —T4— 4+ TE5 are always true in view of

Young S 1nequa1ity [16]. Invoking Lemma 2, one has

i(ﬁz—i-l)fﬁf( i) [sanh (A3 (V) df = di(X) — tanh (A9 () df

(Bi + 1) 9y (N3) [di(X) — tanh (A9 (N3)) df |

1

~

< Z (Bi + 1) [dF |9 (N3)| — D4 (N;) tanh (A 94 (N;)) df ]
i=1
n—1 +
<5 02785 (B + 1) df 19
, i
i=1
—BaI4(N, )[tanh(A Ny (N,)) dF — dp(X) —tanh(inmf(zvn))dﬂ
0.278583,d"
= a9y (Na) [ (X) — tanh (A9 (N)) ] < 220000 (15)
Then, Eq. (13) becomes
i k ‘JIQ ksz(NZ)Nz - O—ila? . O—Z‘QB? . 0'13612 . O'Z'4Ci,?_2
p M, 2 2 2 2
n 2 2 2 +2 - + +
0;10; O'igbi 0;3C; Ui4di 0 2785 (ﬁz + 1) d 027856ndn
. 1

From Lemma 3, it is known that kmfl\(/INi)M > kifﬁ%[\li)Ni' ki‘ﬁ?(Ni) > 0 is also true. Eq. (16) becomes

V gi 7k2‘ﬁ(NZ)NZ - O—ila? - 0'1'2512 . 0'13612 . 0'1'462,?_2 +©
- M, 2 2 2 2
n ~2 62 52 d‘+2
= Z N + 0i1€ai o + Oi2€him— + 0i3€cim—— + Oua€dim—— | + D
2€M 2ep; 2ec 2eq4;
) ki
<— min § ——,0i1€4i, 0i2Ebi, Oi3€cis Oiadi ¢ V + D, (17)
z=1,...,n MZ

2 2 2 +2 -+
v b2 iad 102785 i+1)d 02785 .
where © := >0 | (TR 4 T2 4 TG 4 T ) S 5 Td Budyy . Invoking Lemma 1,

Ai

one knows that V' (¢) is bounded, and it is easy to find that the components of V( ), including N;, a;, b;,
¢;, and d;r, are all bounded. From (17), it can be obtained that

D

. k. *
MiNj=1,...,n {ﬁ, Oi1€ai, 0i2€bi;s 0i3Eci, Ui45di}

V(t) < V(0) exp(—Mt) +

After some time moment 7', one has lim;s7_,o V(0) exp(—9t) =~ 0, where the variable 9 := min;—y .,
{I\]i_;i,o'ilgai,o'igfbi,Uiggci,gizlfdi}, that is, V() < % ultimately. According to the property of the non-
linear mapping function 9(-) given in Lemma 3, one knows that DM(N;)N; = N2 if [N;| < A, or clse,
N(N;)N; = [log,(1 — InaAt + Ina|N;|) + A]|N;| = A|N;|. From the definition of V', one knows that
M(N;)N; <V is always true, and as a result,

D
|N'L| g . ki = %1
ming=1,....n {E’ Oi1€ais 0i2€bi, 043€ci, Ui45di}
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is thus true if |NZ| < A, or else, if |NZ| > A holds,
D

. k;l
min;=1,....n {E’ Oi1€ais 0i2€bi, 043Eci, Ui45di} -A

|Nz| < = %2.

In conclusion, the ultimate bound of the error variable N; is obtained as |N;| < max{Bz, min{B;, A}}.
This bound value can be adjusted to be sufficiently small by choosing proper control parameters, that is,
the string stability of multiple trains is achieved. The proof is completed.

Remark 3. If the control in (8) is modified as follows:

u; = ki (Vi) + i JraZerzszrczpz + tanh [A; 95 (V. )]d+ i=1,2,....,n—1,
61’“"1 ﬁz+1 (18)
knNy(Ny) | Fan

Uy = 3 + ﬂ_ + ay, + bnpn + énpi + tanh [\, 0N (NV,,)] ci;'{,

Eq. (17) will become as follows after some similar derivations:

n ~2 72 ~2 7+2
0105 O'igb- 0;3C; 0"4di
<Y | —kMG(N) - ’2 -5~ . 5|+ (19)

i=1

By choosing the proper design parameters k;, o1, 02, 0;3 and o4 with consideration of the initial
values of N;(0), one can also find the proper parameter selection principle to guarantee the semi-definitive
property of the Lyapunov function V. By introducing k;<% 3 as the numerator in the first term with
M; > k; in the proposed distributed cooperative control (8), one obtains the nonlinearity (17) that
facilitates the acquisitions of the ultimate bound of the error variables NV;, a;, 51-, ¢;, and &j

4 Comparative simulation results

This section presents comparative simulation results to demonstrate the effectiveness and advantages of
the proposed control law in Theorem 1. To provide an unprejudiced comparison, the following linear-gain-

based control (labelled as LGC for short) can be developed using the similar forgoing design procedures,
trivially:

k;N;
wm S ﬂil i+ bipi + 692 + tanh (LN dF, i=1,2,.. .01,

k/’ ]: A .2 7+
Uy = L R bnpn + énpy, + tanh (A, N,) d,),

5n Br
ai [(Bi + 1)N; — 04144),
b = Ebi |:(6’L + 1 Nip; — Uz’26i]a
=eei [(Bs Nip7 — 0i3éi], (20)
T =cq [(Bi+1) tanh()\ N;) — ai4ch'],

an = Ean [6 - Unlan]

= €bn |:ﬁ npn - O—nQIA)ni|7
Cn = Ecn [ npn Un3én]7
& = can [ﬂn tanh (A Ny,) — an4¢iﬂ,

where the variables and parameters are defined the same as in the main results in Section 3. The
prescribed trajectory for the headmost train is given in Figure 2(a).

The initial speed values for all trains are set as 0, and the relative initial distance values are set as
(i — 1) x 6500 m for train i, i = 1,2,3,4,5. The coeflicients of the Davis equation are set as a; = 0.85,
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Figure 2 (Color online) Prescribed trajectories and disturbance used in the simulations. (a) Prescribed speed v, and
distance pr; (b) disturbance d(t).
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Figure 3 (Color online) Simulation results using Theorem 1. (a) Position errors; (b) speed errors; (c) acceleration errors;
(d) position values versus time.

by = 0.004, ¢; = 0.00016, ag = 0.8, by = 0.002, 3 = 0.0002, a3 = 0.9, by = 0.003, 3 = 0.00018, ay = 0.7,
bs = 0.0025, ¢y = 0.0004, a5 = 0.75, b5 = 0.0035, and ¢5 = 0.00025. An unknown external disturbance
term d(t) is given in Figure 2(b) for simulation requirements. To better simulate the unknown terms,
di(X;) are set as d;(X;) = a; sin(0.1¢) + b; sin(0.2t)v; + ¢; sin(0.01¢)v? + Pyd(t) with Py = 1, Py = 1.1,
Ps = 1.2, Py = 0.9, and P5; = 1.15, respectively. The control parameters are optionally chosen as
follows: k; = 35, m; = k; +5, 5; =1, \; =5, A =1,a =10, €4 = €pi = €ci = €qi = 10_5, and
;1 = 040 = 033 = 0.01. The initial estimated values of a;, I;i, ¢, and ch' are set as 0, 0.8, 0.001, and
0.0001, respectively.



Ning B, et al.

Sct China Inf Sci

December 2018 Vol. 61 120202:9

~y
5
5
g e,using LGC 1
E -------- e,using Theorem 1
I I I I I I I I
400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T T
g
= M
o
5 e,using LGC
2]
= | " 1 .1 e, using Theorem 1 4
I I I
400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T T
g
B
5]
E e, using LGC 1
E e, using Theorem 1

400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T T
0 < ]
E 005 | N
o ~0.10 e,using LGC 7
a
E —0.15 100 _§OO 200 e, using Theorem 1 N
-0.20 I I I I I I I I ]
400 600 800 1000 1200 1400 1600 1800 2000
T T T T T T T
0 e ]
E 002} | N
5 i
=
o —0.04 e using LGC N
2 .
E -0.06 100 _gOO 350 200 T e using Theoem 1 -
—0.08 I I I I I I I
600 800 1000 1200 1400 1600 1800 2000
1(s)

Figure 4 (Color online) Comparative results.

Remark 4. The settings of the initial values of a;, Bi, ¢; and ch' are used in the control signals’
calculations directly. In this sense, one cannot set these values at will because large settings of these
variables may result in an input saturation problem. Actually, the initial values of a;, l;i, ¢; and a?,:r can
be set as some rough estimations or zeros for simplicity in practical applications.

The simulation results obtained from Theorem 1 are shown in Figure 3. It is observed that the relative
distance errors among 5 trains are guaranteed to be small with a descending error amplitude from train 1
to train 5, which is the achievement of the string stability stated above. The speed and acceleration
tracking performance are shown in Figures 3(b) and (c), and it is clear that the tracking performance is
satisfactory; in particular, the performance is satisfactory under the situation that the reference speed
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trajectory v, and acceleration trajectory a, are unknown to trains 2 through 5 in moving block mode.
Figure 3(d) shows the plots of the distances of the 5 trains versus operating time. It can be concluded
that the proposed control method in Theorem 1 guarantees satisfactory performance. The comparative
results between the LGC and Theorem 1 are shown in Figure 4. It is observed that the Theorem 1
guarantees better tracking performance. The effectiveness and advantages of the proposed distributed
cooperative control for multiple high-speed trains are thus well demonstrated.

5 Conclusion

In this paper, a distributed cooperative control method for multiple high-speed trains is developed under
moving block mode. The target is to maintain the minimum distance tracking between a train and its
preceding one, which is calculated from real-time moving authority information in practice. Different
from the practical operation mode, this paper has proposed a virtual marshalling modelling method
to guarantee the string stability of multiple trains, which is achieved by coupling the information of a
train with its neighbouring trains, that is, the preceding and following trains. The proposed distributed
cooperative control method requires no information of the system parameters and adjusts the control
parameters adaptively online. The closed-loop signals are guaranteed to be bounded by a rigorous math-
ematical proof using Lyapunov stability. Comparative simulation results are presented to demonstrate
the effectiveness and advantages of the proposed method.

In future work, the hit-soft-wall mode will be considered to separate the distance of neighbouring trains
with the braking distance calculated using the real-time speed of a train, which complicates the open-loop
dynamics by considering the braking distance of a train and its preceding one. Besides, we will validate
the effectiveness of the proposed method in practical testing systems.
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