
. REVIEW .

SCIENCE CHINA
Information Sciences

February 2015, Vol. 58 021101:1–021101:24

doi: 10.1007/s11432-014-5241-2

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 info.scichina.com link.springer.com

A survey on bug-report analysis

ZHANG Jie1 , WANG XiaoYin2 , HAO Dan1*, XIE Bing1, ZHANG Lu1* & MEI Hong1

1Key Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education,
Beijing 100871, China;

2Department of Computer Science, University of Texas at San Antonio, San Antonio, USA

Received April 10, 2014; accepted September 12, 2014

Abstract Bug reports are essential software artifacts that describe software bugs, especially in open-source

software. Lately, due to the availability of a large number of bug reports, a considerable amount of research has

been carried out on bug-report analysis, such as automatically checking duplication of bug reports and localizing

bugs based on bug reports. To review the work on bug-report analysis, this paper presents an exhaustive survey

on the existing work on bug-report analysis. In particular, this paper first presents some background for bug

reports and gives a small empirical study on the bug reports on Bugzilla to motivate the necessity for work on

bug-report analysis. Then this paper summaries the existing work on bug-report analysis and points out some

possible problems in working with bug-report analysis.

Keywords survey, bug report, bug-report analysis, bug-report triage, bug localization, bug fixing

Citation Zhang J, Wang X Y, Hao D, et al. A survey on bug-report analysis. Sci China Inf Sci, 2015, 58:

021101(24), doi: 10.1007/s11432-014-5241-2

1 Introduction

As programmers can hardly write programs without any bugs, it is inevitable to find bugs and fix bugs

in software development. Moreover, it is costly and time-consuming to find and fix bugs in software

development. Software testing and debugging is estimated to consume more than one third of the total

cost of software development [1,2].

To guarantee the quality of software efficiently, many projects use bug reports to collect and record the

bugs reported by developers, testers, and end-users. Actually, with the rapid development of software

(i.e., especially open source software), vast amounts of bug reports have been produced. For example,

there are on average 29 reports submitted each day in the open-source version of Eclipse1) [3]. Although

a large number of bug reports may help improve the quality of software, it is also a challenge to analyze

these bug reports. To address this practical problem, many researchers proposed various techniques to

facilitate bug-report2) analysis.

*Corresponding author (email: haodan@pku.edu.cn, zhanglucs@pku.edu.cn)
1) https://bugs.eclipse.org/bugs/.
2) In this paper, we focus on bug reports rather than issue reports. Usually a bug report refers to a software document

that describes software bugs, whereas an issue report refers to a software document that describes various issues (e.g., bugs,

missing documentation and requested features) of a software. See Section 2 for more details.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:2

Most work on bug-report analysis focuses on how to use bug reports efficiently. As a bug report records

various information of a bug, including its stakeholders, description, and so on, some work focuses on

how to optimize bug reports [4–6] by addressing the problems in existing bug reports, e.g., misclassifying

a new feature as a bug and assign severity levels to bug reports. To collect and assign bug reports

automatically, some work focuses on how to automate bug-report triage [3,7–11] by identifying duplicate

bug reports on the same bug, predicting the priority of bug reports, and assigning bug reports with high

precision. Furthermore, to help developers fix the bugs reported by bug reports, some work focuses on

fixing bugs based on these bug reports.

To review these existing work, in this paper, we present the first survey of the current research on bug-

report analysis. According to the life-cycle of a bug report, a bug report has at least two stakeholders: the

ones who submit bug reports (i.e., reporters) and the ones who deal with bug reports (i.e., developers).

We classify the existing work on bug-report analysis based on the stakeholders of bug reports. Some work

on bug-report analysis focuses on aiding the ones who submit bug reports by improving the quality of

bug reports, i.e., bug report optimization, which includes the studies on the quality of bug reports,

identifying misclassified bug reports, and predicting the severity of bug reports. Some work on bug-report

analysis focuses on aiding the ones who deal with bug reports, i.e., usage of bug reports. In particular,

based on the aims of these work, we classify the work on usage of bug reports into two categories, bug-

report triage and bug fixing. Work on bug-report triage aims to triage bug reports automatically,

whereas work on bug fixing aims to remove the bugs reported by bug reports. In particular, work

on bug-report triage includes bug-report prioritization, duplicate bug-report detection, and bug-report

assignment, whereas work on bug fixing includes bug localization based on bug reports and link recovery

between bugs and changes. Especially, as a bug report records the document for bugs, many researchers

focus on bug fixing so as to reduce developers’ manual efforts on removing the bugs reported by bug

reports. As most of these bug localization approaches are based on information retrieval techniques, we

further classify these approaches based on the data used in information retrieval. For the work on link

recovery between bugs and changes, based on the different aims of these work, we classify these work into

work on recovery techniques and work on linkage bias revealing.

The rest of this paper is organized as follows. Section 2 presents some terms mostly used in bug-report

analysis, the life-cycle of bug reports, and some statistics of existing bug reports in practice, Section 3

further explains our classification framework on bug-report analysis, Section 4 reviews the work on bug-

report optimization, Section 5 reviews the work on bug-report triage, Section 6 reviews the work on bug

fixing, and Section 7 reviews a little work on other bug-report analysis. Finally, Section 8 concludes the

whole paper.

2 Preliminary

In this section, we explain some basic concepts and describe the life-cycle of bug reports. We also provide

some statistics as well as analysis of bug reports.

2.1 Bug-report terminology

(1) Bug. A software bug is an error, flaw, or fault in a computer program or system that produces

unexpected results or behavior. There is a distinction between “bug” and “issue”. An issue could be a

bug but not always a bug. It can also be a feature request3), task, missing documentation, and so on.

The process of finding and removing bugs is called “debugging”. Bugs may be caused by tiny coding

errors, but the results of bugs can be serious, making finding and fixing bugs a rather challenging task.

(2) Bug report. A bug report is a software document describing software bugs, which is submitted by a

developer, a tester, or an end-user [12]. Bug reports have many other names, such as “defect reports” [13],

“fault reports”, “failure reports” [14], “error reports”, “problem reports”, “trouble reports”, and so

3) The authors of this paper have collected the feature requests of the top 12 projects from sourceforge, which is available

at https://github.com/pku-sei-test/Feature-Request.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:3

UNCONFIRMED

NEW

ASSIGNED

RESOLVED

VERIFIED

CLOSED

Indeed a bug

A developer takes
possession of the
bug

The bug has
been solved

Solution worked

No occurrence of the bug is reported

Ownership is
changed

A developer takes
possession of the bug

Solution is
not satisfied

Bug is reopened

Bug is reopened

Developer has
solved the bug

Resolutions of status RESOLVED

FIXED
WONTFIX

WORKSFORME
DUPLICATE

INVALID

REOPEN

Figure 1 The life-cycle of a bug report

on. Typically a bug report is composed of its identification number, its title, when it is reported and

modified, the severity or importance, the programmer assigned to fix the bug, the resolution status (e.g.,

new, unconfirmed, resolved) of the bug, the description of the report(e.g., steps to reproduce the bug,

stack traces, and expected behavior), additional comments (e.g., discussion about the possible solutions),

attachments (e.g., proposed patches, test cases), and a list of reports that need to be addressed before

this report is resolved [11].

(3) Bug repository. Bug repositories are often used in open-source software projects to allow both

developers and users to post problems encountered with the software, suggest possible enhancements and

comment upon existing bug reports [10]. An open bug repository is open and visible for all people. As

bugs reported in bug repositories may be identified and solved by all people, the quality of the open

projects may improve [15].

(4) Bug-report triage. Bug-report triage consists of the following process: figuring out whether a bug is

a real bug, checking whether the reported bug is a duplicate of an existing bug, prioritizing bug reports,

and deciding which developer should work on the bug reports [16].

(5) Bug-report duplication. Duplicate bug reports refer to the bug reports on the same bug committed

by different reporters, as there are many users interacting with a system and reporting its bugs. Detect-

ing duplicate bug reports is a procedure of bug triage, which reduces triaging cost and saves time for

developers in fixing the same issues [8].

(6) Bug tracking system. A bug tracking system (also called defect tracking system) manages bug

reports and developers who fix bugs [16]. Bug tracking systems are designed to track reported software

bugs. Bugs are stored in a bug repository, which is the major component of a bug tracking system. To

submit and resolve bugs automatically, developers of many popular open-source projects (e.g., Mozilla,

Eclipse, and Linux kernel) use bug tracking systems (e.g., Bugzilla, Jira, Mantis, Trac).

2.2 The life-cycle of a bug report

A bug report goes through several resolution status over its lifetime. Figure 1 depicts the life-cycle of a

bug report.

When a bug is first reported, the bug report is marked as UNCONFIRMED. When a triager has verified

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:4

Unconfirmed, 8
New, 3876

Assigned, 84

Resolved, 28602

Reopened, 254

Closed, 5991

Verified, 45

Needinfor, 513

Figure 2 Number of bug reports for Apache.

Unconfirmed, 256
New, 50565

Assigned, 10584

Resolved, 218244

Reopened, 1750
Closed, 98059

Verified, 43405

Figure 3 Number of bug reports for Eclipse.

that the bug is not duplicate and indeed a new bug, the status is set to NEW. Then the triager assigns

the bug report to one proper developer, and the status is changed to ASSIGNED. Then the assigned

developer reproduces the bug, localizes it and tries to fix it. When the bug has been solved, the bug

report is marked as RESOLVED. After that, if a tester is not satisfied with the solution, the bug should

be reopened with the status set to REOPEN ; if a tester has verified that the solution worked, the status

is changed to VERIFIED. The final status of a bug report is CLOSED, which is set when no occurrence

of the bug is reported.

Note that there are more than one possible sequent status for the status RESOLVED. If a developer

makes necessary code changes and the bug is solved, the status will be changed from RESOLVED to

FIXED. If the developer does not fix the bug due to some reason, the status will be set to WONTFIX. If

the problem could not be reproduced by the developer, the status will be changed to WORKSFORME.

If the developer finds that the report is a duplicate of an existing bug report, the status will be changed

to DUPLICATE. If the bug reported by the bug report is not an actual bug, the status will be changed

to INVALID.

2.3 Statistics of bug reports

In this section, we take the most popular bug tracking system—Bugzilla4) as a subject and study the

bug reports in this system. Bugzilla is a bug tracking system that keeps track of bugs for individual

or groups of developers. In this section, we choose Bugzilla as the subject because it has been used by

at least 1268 companies, organizations, and projects, among which there are some well-known large free

software projects, such as Mozilla, Linux kernel, Apache, and Eclipse.

As Bugzilla has a large number of projects, we use the bug reports of only Eclipse5) and Apache6),

because these two projects are well known large open source systems and are widely used in empirical

research. For each project, we recorded its following data from Nov, 31st to Dec 15th, 2013: (1) the total

number of bug reports, (2) the proportion of different resolutions, (3) the number of daily generated bug

reports, and (4) the number of daily handled bug reports. These results are shown by Figures 2–7.

Figures 2 and 3 presents the total number of bug reports for Apache and Eclipse, respectively. As a bug

report has eight possible status in its life-cycle, we use different patterns to distinguish the eight status.

Until Dec 15th, 2013,Apache project has received more than 39300 bug reports totally, and Eclipse has re-

ceived more than 422800. From Figures 2 and 3, forApache, 4222 (UNCONFIRMED+NEW+ASSIGNED

+REOPEN-ED) bug reports need to be further handled, which accounts for 10.72% of total number; for

Eclipse, 63155 (UNCONFIRMED+NEW+ASSIGNED+REOPENED) bug reports need to be further

handled, which accounts for 14.94% of total number. That is, developers have to handle a large number

of bug reports.

4) http://www.bugzila.org.
5) http://www.eclipse.org.
6) http://www.apache.org.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:5

20000

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

FIX
ED

IN
VALID

W
ONTFIX

LATER

REM
IN

D

DUPLIC
ATE

W
ORKSFORM

E

M
OVED

17702

7925

3154

452 76

3324
2002

3

Figure 4 Number of resolutions for Apache.

250000

200000

150000

100000

50000

0

FIX
ED

IN
VALID

W
ONTFIX

DUPLIC
ATE

W
ORKSFORM

E

M
OVED

NOT-E
CLIP

SE

233376

22990 28970
45688

25165
20 3499

Figure 5 Number of resolutions for Eclipse.

1 5 9 13 17 21 25 29 33 37 41

Days

14

12

10

8

6

4

2

0

N
u
m

b
er

 o
f

b
u
g
 r

ep
o
rt

s Increased

Handled

Figure 6 Number of bug reports submitted and handled

every day for Apache.

1 5 9 13 17 21 25 29 33 37 41

Days

N
u
m

b
er

 o
f

b
u
g
 r

ep
o
rt

s

Increased

Handled

200

180

160

140

120

100

80

60

40

20

0

Figure 7 Number of bug reports submitted and handled

every day for Eclipse.

Figures 4 and 5 presents the number of resolutions of bug reports for Apache and Eclipse, which show

the quality of the reports. The horizonal axis depicts the possible resolutions of bug reports defined by

Bugzilla. In particular, “Fixed” depicts that the bug reports actually record bugs and the recorded bugs

have been fixed, whereas the other resolutions (e.g., “Invalid”, “Duplicate”, and “Later”) depict the bug

reports whose bugs have not been fixed due to some reasons (e.g., invalid bug reports, duplicate bug

reports, or leaving the bug for later). The vertical axis depicts the total number of bug reports of the

same resolution status. From Figures 4 and 5, of all the handled bug reports, 2224 (6.42%) bug reports

of Apache and 45688 (12.70%) of Eclipse are DUPLICATION, whereas 7925 (22.88%) bug reports of

Apache are INVALID and 2002 (5.78%) bug reports of Eclipse are WORKSFORME (i.e., developers

cannot reproduce the bug). That is, the quality of bug reports is not good enough.

Figures 6 and 7 presents the number of bug reports submitted or handled every day for Apache and

Eclipse, whose horizonal axis depicts each day from Nov, 31th to Dec 15th, 2013. From this figure,

for Apache, the number of newly increased and handled bug reports is not so large. In particular, 2.8

bug reports were generated on average every day, and 2.2 bug reports were handled. For Eclipse, the

number of newly increased and handled reports is larger. In particular, every day, 60 bug reports are

generated and 50 bug reports are handled on average. That is, handling bug reports is usually as efficient

as reporting bug reports. However, for Eclipse, sometimes the largest number of increased bug reports

everyday is 180. That is, sometimes it is costly for developers to triage and fix bug reports due to the

existence of a large number of bug reports.

As shown by Figures 4 and 5, the quality of bug reports is far from good, and thus, many researchers

work on optimizing bug reports. Considering the large number of bug reports shown by Figures 2–5, it

is tedious and costly for developers to triage bug reports and fix bugs reported by bug reports, and thus

many researchers worked on automating bug-report triage and bug fixing.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:6

Table 1 Classification scheme

Primary classification Secondary classification Bug-report status

4 Bug-report optimization

4.1 Content optimization of bug reports

From UNSOLVED to NEW
4.2 Work on bug-report misclassification

4.3 Prediction on bug-report severity

4.4 Discussion

5 Bug-report triage

5.1 Bug-report prioritization

From NEW to ASSIGNED
5.2 Detection of duplicate bug reports

5.3 Bug-report assignment

5.4 Discussion

6 Bug fixing

6.1 Bug localization based on bug reports

From ASSIGNED to RESOLVED
6.2 Recovering links

6.3 Bug-fixing time prediction

6.4 Discussion

3 Classification scheme

In our survey, we employ the classification scheme from two perspectives: the reporters’ perspective and

the developers’ perspective. From the reporters’ perspective, there are some research on improving the

quality of bug reports. From the developer’s perspective, there are many research on automating bug-

report triage and fix. That is, we classify the existing research related to bug report into three categories:

bug-report optimization (in Section 4) , bug-report triage (in Section 5), and bug fixing (in Section 6).

As Table 1 shows, on bug-report optimization, we will introduce the approaches that researchers adopt-

ed to improve the quality of bug reports, including optimizing bug-report (in Subsection 4.1), avoiding

bug-report misclassification (in Subsection 4.2), and predicting bug-report severity (in Subsection 4.3);

on bug-report triage, we will introduce the current techniques to automate the process of bug triage,

including prioritizing bug reports (in Subsection 5.1), checking duplication of bug reports (in Subsec-

tion 5.2) and assigning bug reports to developers (in Subsection 5.3); on bug fixing, we will introduce the

research on bug-report based bug fixing, including localizing bugs (in Subsection 6.1), recovering links

between bug reports and the corresponding fixing changes (in Subsection 6.2), and predicting bug-fixing

time (in Subsection 6.3). At the end of each of the three general categories, we will shortly discuss the

existing problems as well as the possible future research directions.

4 Bug-report optimization

Bug reports play an important role in software development. As the quality of bug reports influences the

time of bug fixing, bug-report optimization becomes important. However, in practice, many bug reports

do not have high quality. For example, according to Subsection 2.3, of the total bug reports, 22.88%

bug reports of Apache are invalid. To reduce invalid bug reports and improve the quality of bug reports,

researchers investigated the following main ways to improve the quality of bug reports: (1) study on the

content of bug reports, (2) techniques on reducing bug-report misclassification, and (3) techniques on

predicting the severity of bug reports.

4.1 Content optimization of bug reports

As discussed in Section 2, a typical bug report may include much information, including the bug’s severity

or importance, the programmer assigned to fix the bug, its resolution status, steps to reproduce the bug,

expected behavior, stack traces, proposed patches and test cases. However, due to the practical concern,

it is tedious and impossible to include as much information as possible in the bug reports. Therefore, it

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:7

is necessary to investigate the essential information for a bug report and researchers usually studied this

problem by performing some investigations.

Bettenburg et al. [5] first studied the quality of bug reports in 2007. They conducted a survey on

some developers7) of Eclipse and gave a tool to measure the quality of bug reports according to their

content. Their results showed that steps to reproduce and stack traces are considered most important

by developers, and errors in steps to reproduce and incomplete information are most harmful. In the

next year, Bettenburg et al. [4] expanded their survey to three projects (Apache, Eclipse, and Mozilla).

They collected more data (i.e., 466 responses, including 156 from developers and 310 from reporters) and

got more convincing results. For developers, the most widely used information of bug reports includes

steps to reproduce, expected behavior, and stack traces, and the most important information they think

includes steps to reproduce, stack traces, and test cases. For users, few of them added stack traces and

test cases to their bug reports, though they consider steps to reproduce and test cases most helpful to

developers. They also trained a new tool by building supervised learning models using the quality ratings

of bug reports from developers. The tool not only measures the quality of a new bug report, but also

suggests reporters how to enhance their bug reports. Hooimeijer and Weimer [6] also presented a model

to measure bug-report quality, but they divided bug reports into “cheap” and “expensive” by predicting

whether bug reports can be resolved within a given time. Their research was performed based on the

assumption that “in general, reports of higher quality are dealt with more quickly than those of lower

quality”. This assumption, however, is not so reasonable, as many bug reports are addressed quickly not

because of their quality, but because of the urgent problems they describe. Xie et al. [17] conducted an

empirical study on Gnome and Mozilla to understand how the projects leverage non-developer volunteers

(called triager) to improve the quality of bug reports. They found the primary impact of triager involves

filtering reports, filling missing information and determining the relevant product. They pointed out that

triagers were good at filtering invalid reports but had difficulty in accurately pinpointing the relevant

product.

Furthermore, Breu et al. [18] performed a questionnaire on 600 bug reports from Mozilla and Eclipse.

From the questionnaire, the information needs change over the life-cycle of a bug report. Furthermore,

similar to Bettenburg et al. [4], they suggested users to provide screenshots, stack traces, and steps to

facilitate reproducing as well.

For the research on specific bug report fields, Lamkanfi et al. [19] noticed that bug reports may contain

errors such as wrong components, so they proposed a data-mining technique to predict wrong components

for a particular bug report. Herraiz et al. [20] held the opinion that the reports of Bugzilla are too complex,

so they classified bug reports by the close time and by levels of severity, and found that there are more

clusters for the latter division standard. They finally concluded that the severity of bug reports can be

reduced from seven options to three.

In the view of the whole bug report, Wu et al. [21] mentioned that the bug reports are often incomplete,

so they proposed BUGMINER, which derived useful information from bug-report databases, and used

the information to check the completion of a given bug report. Xia et al. [22] mentioned that the contents

of bug reports may be changed due to several reasons. To investigate the problem, they first asked some

bug reporters and developers the reasons of changing the contents, and then conducted an empirical

study on four open-source projects (i.e., OpenOffice, Netbeans, Eclipse, and Mozilla). From their study,

fixing a changed bug report takes more time. Rastkar et al. [23] generated the summaries for bug reports

as they thought that an accurate summary can help developers quickly get to the right bug report when

they make use of existing bug reports for analysis.

Instead of focusing on the contents of bug reports, Ko et al. [24] performed a linguistic analysis of

200000 bug report titles from five projects (i.e., Eclipse, Firefox, Apache, Linux, and OpenOffice)

to study how people describe software problems and suggested new designs for more structured report

forms. In particular, they applied a probabilistic part-of-speech tagger [25] to all report titles, by counting

the nouns, verbs, adverbs, and adjectives that appeared in those titles, and proposed several design ideas

motivated by their results, such as soliciting more structured titles.

7) Actually, they asked 336 developers, but received only 48 responses.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:8

4.2 Work on bug-report misclassification

In 2008, Antoniol et al. [26] raised the problem of bug-report misclassification, which is to distinguish

bugs from non-bugs. Furthermore, they built three classifiers (i.e., alternating decision trees, Naive Bayes

classifiers, and logistic regression) to distinguish bugs from other issues (e.g., enhancement and refactor-

ing) on Mozilla, Eclipse, and JBoss, whose precision is from 77% to 82%. Pingclasai et al. [27] proposed

another approach to automatically classifying bug reports—topic modeling. Also, they compared three

classification models (i.e., decision tree, Naive Bayes classifier, and logistic regression) to find the most

effective one. According to their results, Naive Bayes classifier is the most efficient classification model.

Later, Herzig et al. [28] manually inspected more than 7000 issue reports from two tracking systems

Bugzilla and Jira to learn the percentage of bug reports that have been misclassified and found that

“Every third bug is not a bug”. Besides, they found 40% issue reports are inaccurately classified, and

39% files that are marked as defective have never had a bug.

From a different respect, Zanetti et al. [29] conducted a case study on four open-source software

communities, and found that bug reporters’ centrality plays an important role in bug-report quality,

based on which they developed an automated bug-report classification mechanism using a support vector

machine, to predict whether a reported bug is valid or faulty.

4.3 Prediction on the severity of bug reports

“Severity” is an important content of a bug report assigned by reporters, which is critical for developers

to decide the priority of different bugs. Reporters (e.g, testers or end-users) often fail to recognize the

severity of bug reports due to the lack of experience or some other reasons.

To help testers assign severity levels to bug reports, in 2008, Menzies and Marcus [13] presented

the first automated approach, which is based on standard text-mining and machine-learning techniques.

Their severity predictor first used typical text-mining techniques (i.e., tokenization, removing stop words,

and stemming) to deal with textual description of bug reports, then used a Java version of Cohen’s

RIPPER rule learner [30] to generate rule sets based on important tokens got before. They emphasized

that severity prediction is especially important for mission critical systems (e.g., systems developed by

NASA), and performed a case study using data from NASA’s Project and Issue Tracking System (PITS).

Similarly, Lamkanfi et al. [31] used the same technique (text mining and machine learning) to predict

severity of bug reports by using larger training sets from three open-source projects: Mozilla, Eclipse,

and Gnome. Different from the previous techniques, they used a Naive Bayes classifier to train the

tokens. Their research goal is comparatively easy, which is to distinguish non-severe bugs from severe

bugs. In particular, in their approach, trivial and minor of severity levels are taken as non-severe,

whereas major, critical, and blocker of severity levels are taken as severe. Later, Lamkanfi et al. [32]

completed a follow-up study, which is a comparison of four well-known document classification algorithms

(i.e., Naive Bayes, Naive Bayes Multinomial, K-Nearest Neighbor, and Support Vector Machines) on bug-

report severity prediction. According to this study, Naive Bayes is best suited for classifying bug reports

into “severe” or “non-severe”. Extending the above work, Tian et al. [33] proposed a new information

retrieval based approach to predicting the severity levels of bug reports. In particular, they used BM25F

similarity function to evaluate the similarities among different bug reports, then used the similarity in a

nearest-neighbor fashion to assign severity levels to bug reports. Their approach uses both textual and

non-textual information of bug reports. Their work is mostly similar to Menzies and Marcus’s work [13]

because both of them is fine-grained (i.e., five severity labels). However, the former work is evaluated to

outperform Menzies and Marcus’s work.

4.4 Discussion

It is necessary to improve the quality of bug reports due to the existing problems in practical bug reports.

First, reporters still report issues in the same way as bugs by bug reports in some bug tracking systems,

although these issues may be feature request, missing documentation, and so on. Second, it is hard to

automatically distinguish real bugs from non-bugs, and thus developers usually have to manually select

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:9

real bugs. Third, some bug reports are invalid because reporters sometimes fail to report contents that

are essential for bug fixing. Fourth, reporters can hardly submit bug reports when they cannot reproduce

bugs.

Considering the techniques used in bug-report optimization, researchers usually use questionnaires to

investigate what contents of a bug report are essential or important; when to distinguish bugs from other

issues or predict bug-report severity, researchers usually use text mining and machine learning techniques.

In the future, to improve the quality of bug reports, bug tracking systems may check the quality of

bug reports as reporters submit a bug report. For example, bug tracking system may check whether

a bug report is duplicate as soon as reporters submit it so as to reduce the large number of duplicate

bug reports before bug-report triage. Moreover, it is necessary to specify the necessary contents of bug

reports before they are submitted so as to reduce the number of invalid bug reports that cannot be solved

by developers.

5 Bug-report triage

Bug-report triage is a process of checking bugs, prioritizing bugs, and assigning bugs to proper developers

(i.e., bug assignment) [17]. In practice, most bug reports are triaged manually to developers [34]. However,

for a large open-source project, every day an ignorable number of bug reports are submitted. For example,

60 bug reports are generated every day on average for the open-source version of Eclipse. That is, it

is a labor-intensive task for developers to read, analyze, prioritize these bug reports, check duplication

of these bug reports, and assign these bug reports to a proper developer from hundreds of candidates.

Moreover, these procedures are also error-prone [17,35].

To assist triagers who are responsible for the process of bug-report triage and improve the bug triaging

efficiency, many researchers have focused on automating bug-report triage, including prioritizing bug

reports (in Subsection 5.1), checking duplication of bug reports (in Subsection 5.2) and assigning bug

reports to developers (in Subsection 5.3).

5.1 Bug-report prioritization

As a large number of bug reports exist in the bug tracking system for a large project, it is time-consuming

and effort-consuming to deal with these bug reports. Some bug reports are more important than others.

Due to time limit, it is necessary to deal with important bug reports early. That is, triagers assign priority

to bug reports and prioritize these bug reports based on their priority.

To facilitate bug-report prioritization, Yu et al. [36] adopted neural network techniques. Also, they

reused data sets from similar software systems to speed up evolutionary training, which aims to solve

error problems. Kanwal and Maqbool [37] proposed a bug priority recommender based on SVM and

Naive Bayes classifiers. Besides, they compared the results of these two classifiers in terms of accuracy,

and found that when using text features for recommending bug priority, SVM performs better, while

when using categorical features, Naive Bayers performs better. Tian et al. [38] presented a new machine

learning framework and a new classification engine, which are used to predict the priority of bug reports

considering multiple factors including temporal, textual, author, related-report, severity, and product.

These factors are extracted as features and are then used to train a discriminative model via a classification

algorithm.

5.2 Detection of duplicate bug reports

In 2005, Anvik et al. [39] conducted a large-scale empirical study on the bug repositories of Eclipse and

Firefox, and found that a large portion (20%–40%) of bug reports are identified as duplicate by the

developers. This study provided evidence for the existence of bug-report duplication and showed that it

is necessary to detect duplicate bug reports and understand the phenomena of bug-report duplication.

The work on bug-report duplication can be classified into three categories. The first two categories

focuses on presenting new techniques on detecting duplicate bug reports, whereas the last category focuses

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:10

on understanding bug-report duplication. In particular, the work of the first category mainly relies on

the natural language information in bug reports, the work of the second category mainly relies on the

execution information recorded by bug reports, and the work of the third category is mainly empirical

studies on bug-report duplication.

5.2.1 Natural-language based duplicate bug-report detection

Hiew [40] made the first attempt to detect duplicate bug reports based on the textual information of

bug reports. Specifically, his approach transforms the textual part of bug reports into word vectors,

calculates the similarity between word vectors, and ranks candidate duplicate bug reports according to

their similarity to a given bug. Runeson et al. [9] did another pioneer work on natural language based

duplicate bug-report detection, in which they considered more textual features (e.g., software versions,

testers, the submission date, and so on), and conducted a large-scale experimental study on industrial

projects. Later, Jalbert and Weimer [41] proposed duplicate bug-report classification, in which they not

only ranked a list of existing bug reports that are more similar with a new bug report, but also gave

a recommendation on whether the new bug report is a duplicate bug report based on the similarities.

Sureka and Jalote [42] proposed a novel approach to detecting duplicate bug reports based on N-grams

of characters. Since their approach is not word-based, it is able to handle bug reports written in Asian

languages such as Chinese and Japanese.

Furthermore, many works in this direction tried to enhance the accuracy of duplicate-bug-report detec-

tion based on the following ways: metrics on textual similarity, ranking strategies, or extra information.

We summary and introduce existing work based on the three ways as follows.

(1) Improvement based on metrics for textual similarity. Sun et al. [43] proposed a novel

approach based on discriminative approach that assigns different weights to words in bug reports when

calculating textual similarity. Their empirical studies showed that their approach outperforms all former

techniques that used merely textual information. Later, they further improved their approach [44] by

bringing in a textual similarity metric called BM25F [45]. After that, also based on BM25F, Tian et

al. [46] proposed to consider the similarity between new bug reports and multiple existing bug reports

(instead of just the most similar bug reports) to decide whether the bug reported by the new bug report

is actually a duplicate bug. Nyugen et al. [8] proposed to apply topic modelling to detect duplicate bug

reports, which measures the semantic similarity between words. Different from the previous work that

models a bug report as a set of words, Banerjee et al. [47] proposed to further consider word sequences

when calculating the textual similarity between bug reports.

Furthermore, Falessi et al. [48] conducted a large-scale experimental study to compare a wide range of

natural language processing techniques on the duplicate-bug-report detection in a large industrial project.

They drew the conclusion that different NLP techniques do not have significant difference, but a proper

combination of these techniques may result in a higher effectiveness.

(2) Improvement on ranking strategies. Liu et al. [7] proposed to apply a recently developed

supervised machining learning technique called Learn To Rank (LTR) to rank candidate bug reports based

on a series of features. Simultaneously, Zhou and Zhang [49] also proposed an LTR-based approach, using

nine more sophisticatedly defined features.

(3) Improvement by using extra information. Feng et al. [50] proposed to use the profile in-

formation of the bug reporter to enhance the effectiveness of existing techniques on detecting duplicate

bug reports. Alipour et al. [51] proposed to supplement existing approaches with domain knowledge (i.e.,

Android-specific keywords in their study), and their experiments showed that such domain knowledge

can effectively enhance the accuracy of duplicate-bug-report detection.

5.2.2 Execution information based duplicate bug report detection

As many software platforms (e.g. Microsoft Windows, Firefox) provide features to record execution traces

for field bugs, it is natural to use such execution information to detect duplicate bug reports because

such information demonstrates the behavior of bugs. Therefore, many research efforts have been made

on using execution information in duplicate-bug-report detection.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:11

Podgurski et al. [14] started the preliminary work by proposing an approach to categorizing software

failure reports by performing undirected clustering on their execution traces. Later, Wang et al. [52]

proposed the first approach to detecting duplicate bug reports using execution traces. To learn the

effectiveness of execution traces on detecting duplicate bug reports, they also combined execution traces

with natural language information using a self-adapted weighing algorithm to assign weights to the

information sources, and found that this combination technique achieves a higher accuracy than existing

techniques using only natural language information. Based on this work, Song et al. [53] did some

adaptations, and implemented a more efficient version for the IBM Jazz Project. Lerch et al. [54] proposed

an approach to identifying stack traces in bug reports, transforming stack traces to a set of methods, and

detecting duplicate bug reports by calculating and ranking the similarity between method sets. Recently,

Kim et al. [55] proposed to use crash graphs to depict a number of related crash reports (stack traces),

and detect duplicate crash reports by measuring the similarity between crash graphs. Dang et al. [56]

proposed a novel model to measure the similarity between two stack traces. Specifically, in their work,

they further considered the the distance of the matched functions to the top frame, and the offset distance

between the matched functions.

5.2.3 Empirical studies on duplicate bug reports

Due to the existence of a large number of duplicate bug reports in software repositories, some researchers

began to conduct empirical studies to better understand this phenomena. Specifically, Bettenburg et

al. [57] conducted an empirical study on the influence of duplicate bug reports and found that although

these bug reports cause extra burden on bug triaging, they also provide extra useful information that the

original bug report may not cover. Wang et al. [58] studied existing duplicate bug reports, and found

that many different technical terms actually have a similar meaning in the setting of software bugs. So

they proposed an approach to detecting different software technical terms with similar meanings, based

on known duplicate bug reports. Later, Cavalcanti et al. [59,60] conducted two empirical studies to find

relations between the characteristics (e.g., size, life-time, bug-report submitters) of software repositories

and bug-report duplication, and found that bug-report submitters with sporadic profiles are more likely

to submit duplicate bug reports. Davidson et al. [61] conducted another empirical study to find the

factors that affect bug-duplication rate, in which they found that software size and user groups do not

have strong correlations with the bug-duplication rate.

5.3 Bug-report assignment

We classify and summary the existing work on bug-report assignment from two aspects, the techniques

used in bug-report assignment and the information used in bug-report assignment.

5.3.1 Classification based on technologies used in bug-report assignment

After a comprehensive investigation, we found that work in bug-report assignment usually uses the fol-

lowing techniques, machine-learning techniques, information-retrieval techniques, and some mathematical

theories like fuzzy sets and Euclidean distance. Therefore, we will review these work based on the tech-

niques used in bug-report assignment:

(1) Machine learning based bug-report assignment. Most bug-report triage approaches use Ma-

chine Learning techniques for the purpose of text categorization. In particular, these approaches usually

train a classifier with previously assigned bug reports and then use the classifier to classify and assign

new bug reports.

Cubranic and Murphy [16] proposed the first machine-learning based bug-report triage approach in

2004. In particular, they viewed bug-report assignment as a supervised learning problem where the history

information on developers and their fixed bugs (recorded in the bug reports) are used as training data to

learn which developer a bug report should be assigned to. Based on their experimental study, the proposed

approach based on a Naive Bayes classifier assigned 15859 bug reports and achieved 30% classification

accuracy. Later, Anvik et al. [3,10] extended the previous work by filtering out noise data including bug

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:12

reports labeled “wontfix” or “worksforme”, and developers who no longer worked there or contributed

poorly. Compared with the previous work, this approach is evaluated to have higher precision (more

than 50%). Besides, based on the experimental results, among the three machine-learning algorithms,

Naive Bayes, Support Vector Machines (i.e., SVM), and C4.5, SVM based bug-report assignment is

competitive. To improve the accuracy of bug-report triage, Bhattacharya and Neamtiu [62] proposed to

use refined classification, richer feature vectors and tossing graphs. From their experimental results, intra-

fold updates are useful for improving the prediction accuracy in bug-report triage. Most recently, Hao et

al. [63] proposed a novel recommendation method for large projects called BugFixer. They developed a

new tokenization algorithm and used Vector Space Model (i.e., VSM) to compute bug report similarity.

Their evaluation shows that BugFixer outperforms previous recommendation methods based on Naive

Bayes and SVM.

Most of the related work on bug-report assignment is based on free and open-source projects, but Lin

et al. [64] conducted an empirical study on a Chinese proprietary software project. Also using SVM,

they conducted an experiment using Chinese text in bug reports (i.e., title, description, and step).

Besides, they conducted another experiment based on non-text fields of bug reports (i.e., BUGTYPE,

BUGCLASS, PHASEID, SUBMITTER, MODULEID, BUGPRIORITY) using J48 classifier and decision

tree, and found that text data are more useful than non-text data when automatically assigning bug

reports.

Unlike other supervised or unsupervised learning approaches on bug-report assignment, Xuan et al. [65]

first proposed a semi-supervised approach. They proposed a semi-supervised learning approach by com-

bining a Naive Bayes classifier and expectation-maximization, which generates a weighted recommenda-

tion list for bug-report triage. They took advantage of both labeled and unlabeled bug reports.

Different from the preceding work that focuses on finding the best developers, Alenezi and Magel [66]

built a classification model to redistribute the load of overloaded developers.

Feature selection is an important component of machine learning, which may facilitate training-set

reduction. Zou et al. [67] first combined feature selection (i.e., CHI Feature Selection Algorithm) with

instance selection (i.e., ICF Instance Selection Algorithm) to improve the accuracy of bug-report triage

and reduce the training sets. From their experimental results, their approach removed 70% words and

50% bug reports in applying machine learning to assign bug reports, and the reduced training sets provide

better accuracy. Park et al. [35] reformulated bug assignment as an optimization problem of both accuracy

and cost, and proposed a cost-aware triage algorithm, which extracts bug features to train an SVM model

and is evaluated to have reduced 30% of cost.

(2) Information retrieval based bug-report assignment. Information Retrieval is also widely

used in bug-report assignment, because bug reports are documents recording the information that may

be used in bug-report assignment.

Following the hypothesis that “given a new change request, developers that have resolved similar

change requests in the past are the best candidates to resolve the new one”, Canfora and Cerulo [68] used

the textual description of change request (i.e., bugs or features) as a query to find candidate developers

by using information retrieval and thus constructed a competence database of developers. However, for

a bug report, “most experienced developers” may not be “the best developers”, their proposed approach

may ignore some developers who have contributed in some code that is very related to this bug report

because these developers have never dealt with a bug report before.

Term selection is a group of information-retrieval techniques which help to improve the accuracy of

bug-report assignment. Alenezi and Magel [66] investigated the use of five term-selection techniques on

the accuracy of bug-report assignment. Matter et al. [69] proposed a novel expertise model of developers

based on the vocabulary found in the source code contributions of developers. Then they extracted

information from bug reports, looked it up in the vocabulary, and recommended the top-k developers.

They used information retrieval techniques to match the word frequencies in bug reports to the word

frequencies in source code. Unlike other approaches, their approach does not rely on the quality of

previous bug reports and can assign bug reports to a proper developer although he/she never worked on

a bug report previously.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:13

(3) Tossing graph. Jeong et al. [34] introduced a Tossing Graph model to reduce bug tossing

(i.e., the process of reassigning a bug to other developers [34]). The proposed model is effective as it has

been evaluated to reduce 72% of bug tossing events and improve 23% of automatic bug-report assignment

accuracy. Furthermore, Bhattacharya and Neamtiu [62] extended their work by using additional attributes

on edges and nodes, which has been evaluated to reduce 86.31% of tossing paths and achieve 83.62% of

prediction accuracy in bug-report assignment.

(4) Fuzzy set. Tamrawi et al. [11] used a Fuzzy Set to represent the developers who have the bug-fixing

expertise relevant to a specific technical term, and “determine the capable developers for the technical

aspects in the system based on their past fixing activities”. They proposed a tool Bugzie that combines

fuzzy sets with tossing graphs, which has been evaluated to achieve higher accuracy and efficiency than

other work.

(5) Euclidean distance. Xia et al. [70] extended bug fixer recommendation to bug resolution recom-

mendation. In particular, they performed two kinds of analysis: bug reports based analysis and developer

based analysis. In bug reports based analysis, they recommended developers according to similar bugs

resolved in bug reports history. In developer based analysis, they measured the distance between a

potential developer and a bug report by considering bug reports the developer resolved before.

5.3.2 Classification based on information used in bug-report assignment

In the research on bug-report assignment, researchers usually build expertise models based on features

(e.g., words or terms) extracted from different data sets, such as bug reports or other documents. For

the original data sets, most researchers prefer to assign new bug reports by using previously assigned bug

reports [3,11,16,62,64,65,67,71]. Cubranic and Murphy [16] first used the summary and description of

each report; Anvik et al. [3,10] removed unconfirmed or reopened reports and reports assigned to resigned

or unexperienced developers; Baysal et al. [71] used the summary, the description, and the comments ;

Bhattacharya et al. [62] and Tamrawi et al. [11] used the bug report’s ID, the fixing developer’s ID, and

summary as well as description; Park et al. [35] extracted features from the text description of bug reports

and its metadata (i.e., version, platform, and target milestone). Besides, Baysal et al. [71], Zou et al. [67],

Tamrawi et al. [11], Aljarah et al. [72] and Alenezi et al. [66] all used reduced terms to improve the

accuracy and efficiency of bug-report assignment.

Some approaches are based on the history of source code. Matter et al. [69] proposed a bug-report

triage approach based on the vocabulary found in the source code contributions of developers; Servant

and Jones [73] combined the source-code history with the diagnosis information about the location of

faults; Shokripour et al. [74] proposed an approach to predicting what source code files will be changed

when fixing a new bug report based on its identifier, commit message, comments in source code and

previously fixed bug reports.

As no prior work combined bug reports with source code, Kevic et al. [75] first proposed a collaborative

approach, which lists similar bug reports though information retrieval and then analyzes associated change

sets and the developers who authored the change sets. However, their approach is evaluated based on

only the authors’ own projects, and thus the effectiveness of the proposed approach needs to be further

evaluated.

5.3.3 Empirical studies on bug-report reassignment

As developers may not deal with the bug reports assigned to them, sometimes bug-report triage has

to reassign bug reports. Therefore, besides the work on automatic bug-report assignment, there is also

some research on the analysis on bug-report reassignment. Guo et al. [76] conducted a large-scale study

on the bug-report reassignment process of Microsoft Windows Vista to learn the reasons for bug-report

reassignment. In particular, this study categorized five reasons for reassignments (i.e., finding the root

cause, determining ownership, poor bug report quality, hard to determine proper fix, and workload

balancing). Xie el al. [77] studied Mozilla project and found that the chance of bug report being reassigned

is associated with the assigner’s past activities and her/his social network. To prevent developers from

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:14

being distracted by reassignment and to crowd-source non-developers to improve reassignment, they

proposed a logistic regression based tool to estimate the odds that the assignment is incorrect. Instead

of studying bug-report assigner reassignment, Xia et al. [22] conducted an empirical study on bug report

field reassignment, including reassigning reports to new developers. From their study, it usually takes

more time to fix a reassigned bug than a non-reassigned bug.

5.4 Discussion

In summary, many researchers have focused on automated realization of bug-report triage. Due to various

reasons, none of the existing approach has achieved satisfactory accuracy (e.g., more than 95%). Due

to the accuracy concern, it is hard to apply existing automatic bug-report triage approaches in practice.

Moreover, existing bug tracking systems are not able to provide any automatical support for bug-report

assignment. Therefore, developers still detect duplication and assign bug reports manually.

The main techniques used in bug-reports triage are information retrieval and machine learning. Spe-

cially, information retrieval is used to split a bug report into words which are easy to inquire, and machine

learning is used for the purpose of text categorization. Other techniques like tossing graph and fuzzy set

based techniques are not generally used.

In the future, researchers on bug-report triage may focus on improving the accuracy of bug-report

triage by using some new techniques (e.g., deep learning techniques) and new data sources (e.g., emails,

comments of bug reports, documentation, logs).

6 Bug fixing

Besides the research in bug-report optimization and bug-report triage, there is also some research on

bug-report based bug fixing, including localizing bugs and recovering links between bug reports and the

corresponding fixing changes.

6.1 Bug localization based on bug reports

As soon as a bug is identified, the developer should locate the source code files (or methods, classes, etc.)

that contain the reported bug [78]. The process of finding the location of bugs is called bug localization.

Manual bug localization is time-consuming and tedious, especially for a large project with thousands of

files. To reduce the bug-fixing time and maintenance cost, many researchers have proposed automated

bug-localization techniques. In this section, we focus on only the techniques related to bug reports. Based

on the information used in the techniques, we divide existing work on bug report based bug localization

into two categories, bug localization based on source code and bug localization based on bug localization

history.

6.1.1 Source code based techniques

Given a bug report for a new bug, source code based bug-localization approaches typically use information

retrieval to rank the source code files by their relevance to a bug report. Similar to the operation process

of a search engine, the preceding process takes a bug report as a query in information retrieval. According

to Gay et al. [79] and Zhou et al. [80], the process of such an information-retrieval based bug localization

consists of four steps, corpus creation, indexing, query formulation, and retrieval and ranking.

Corpus creation. This step performs lexical analysis for each source code file and creates a vector

of lexical tokens. Some text transformation techniques are used, such as tokenizing, stopping, and

stemming. To reduce the size of corpus, existing techniques usually remove stop-words (e.g., “the”, “of”,

“to”, and “for”) that help form sentence structures but contribute little to the description of the topics,

keywords (e.g., int, double, char, etc.), separators, and operators, since they usually have no impact on

bug-localization effectiveness. To increase the likelihood that words in bug reports and source code files

will match, words derived from a common stem are grouped, and replaced with one designated group

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:15

member (e.g., replace “fishes” and “fishing” with “fish”); composite tokens are also split into individual

tokens (e.g., the variable “TypeDeclaration” is split into “type” and “declaration”).

Indexing. This step indexes all the files in the created corpus. Inverted indexes are by far the most

common form, and for every index term (word, stem, phrase, etc.), a list of documents that contain the

index term is created. By using these indexes, fast query processing is enabled.

Query formulation. In this step, a bug report is treated as a query, and its textual description is

processed with the same text transformation techniques (e.g., extract tokens, remove common words,

stem each word, etc.) used in source code files. Index terms that are comparable to the source code

terms are produced, and are used to search for relevant files in the indexed corpus.

Retrieval and ranking. In this step, files in the indexed corpus are ranked based on their textual

similarity with transformed bug reports. A ranking algorithm based on retrieval model can calculate

scores of these files.

As the retrieval model impacts the effectiveness of ranking, various retrieval models and methods on

deriving ranking algorithms have been proposed. The widely used models are as follows:

• Latent Semantic Indexing (LSI). Latent semantic indexing (also called latent semantic analysis) [81]

is a technique on analyzing relationships between documents and terms based on Singular Value Decom-

position (SVD). This technique assumes that related words occur in similar pieces of text and uses a

term-document matrix to describe the occurrences of terms in documents. Marcus et al. [82] first used

information retrieval method for concept location, where LSI was used to find semantic similarities be-

tween change request and modules of software and whose result is a list of source code files ranked by

their relevance. Comparing with other static code analysis based techniques, they discovered that the

proposed LSI based technique is independent of programming languages and requires only simple source

code preprocessing. The effectiveness of the proposed approach is evaluated based on NCSA Mosaic

web browser. After that they analyzed three static concept location techniques (i.e., regular expression

matching, static program dependencies, and information retrieval) to see the strengths and weaknesses

of the proposed techniques [83]. For the IR-based technique, they used the LSI [82]. Again in 2006,

Poshyvanyk and Marcus [84] combined Formal Concept Analysis (FCA) and LSI to promote the problem

of concept location. The results showed that the combined technique performed better than a single tech-

nique. After that, Poshyvanyk et al. [85] then proposed a feature location method called PROMESIR,

which combined LSI and a probabilistic ranking technique (scenario-based probabilistic ranking). They

chose LSI instead of other models as LSI “has been shown to address the problems of polysemy and syn-

onymy quite well”. Liu et al. [86] combined dynamic program analysis with static information retrieval

technique. In particular, they used LSI to index the comments and identifiers from source code. Most of

the proceeding work has shown that combining several techniques together may improve bug-localization

performance.

• Latent Dirichlet Allocation (LDA). Latent Dirichlet Allocation is a generative three-level hierarchical

Bayesian model, in which each document is viewed as a mixture of various topics that spit out words

with certain probabilities. Lukins et al. [87] first applied LDA model to automate bug localization, and

found that LDA can be successfully applied for bug localization. They also compared their results to

similar proceeding studies on LSI, and found that LDA performed better than LSI. After that, Lukins

et al. [88] extended their work by presenting five case studies to evaluate the accuracy and scalability

of LDA-based bug-localization techniques. They found that LDA is widely applicable as it is suitable

for open-source software of varying size and stability. Nguyen et al. [12] also extended LDA for bug

localization by proposing BugScout, which correlates bug reports and source code files via their shared

topics (i.e., the same technical aspects of the system).

• Vector Space Model (VSM). In vector space model, both documents and queries are represented

as t − dimensional vectors, each dimension corresponds to a separate index term, and each scalar of

a dimension represents the weight8) of the index term. The cosine of the angle between a document

vector and a query vector is used to measure the similarity between the document and the query [89]. In

8) The weight of a term in a document or query denotes the importance of the term, which is usually determined by the

retrieval model.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:16

information retrieval, VSM model is simpler than other models when representing a document. Gay et

al. [79] proposed IRRF (Information Retrieval with Relevance Feedback) based concept location. They

chose VSM as the information retrieval model, as at that time there was no clear winner among LSI, VSM,

or LDA. Zhou et al. [80] proposed an approach BugLocator based on revised Vector Space Model, which

differs from classic Vector Space Model in that it considers document length and similar bugs that have

been resolved before. According to their experiments, BugLocator outperforms existing bug-localization

methods.

Several research has focused on the comparison of these models. Rao and Kak [90] compared five

genetic models (i.e., the Unigram Model (UM), the Vector Space Model (VSM), the Latent Semantic

Analysis Model (LSA), the Latent Dirichlet Allocation Model (LDA), and the Cluster Based Document

Model (CBDM).) as retrieval tools for the purpose of bug localization, and found that UM and VSM are

more effective on retrieving relevant files than sophisticated models like LDA and LSA. Chawla et al. [91]

compared VSM and LSI, but their results showed that in most cases, LSI performs better than VSM.

Besides the models above, Saha et al. [92] presented BLUiR, which uses a baseline “TF.IDF model”.

They believe that code constructs (i.e., class and method names) improve the accuracy of bug localization.

Unlike traditional research during source code parsing and term indexing, their approach excludes lan-

guage keywords (e.g., if, else, etc.) as they are also important identifiers. Their approach also indexes full

identifiers and splits tokens. Kim et al. [93] proposed a two-phase recommendation model that eliminates

inadequate bug reports in the first phase. Their model outperforms the one-phase model and Nguyen’s

BugCount [12]. Most recently, Ye et al. [94] ranked source code files by leveraging domain knowledge

(e.g., API specifications and the syntactic structure of code) to help bug localization. Their approach can

locate 70% of the bug reports with the top 10 recommendations. Wong et al. [95] found that the existing

approaches can not deal with large files or stack traces. To deal with these two issues, they proposed

segmentation and stack-trace analysis techniques to improve the performance of bug localization. Their

approach is evaluated to significantly improve a representative bug localization approach.

6.1.2 History based techniques

Another typical way to localize a bug is to search for similar bugs resolved in the past and find a potential

resolution, as the same bug may have been encountered and fixed in another code branch [96]. Cubranic

et al. [97] built a tool to provide developers efficient and effective access to the group memory (i.e., the

collection of software artifacts that contain a work group’s past experience). The tool is able to provide

a highly ranked recommendation that points out the relevant location and constructs. Ashok et al. [96]

proposed a recommender system for debugging, which can automatically search through diverse data

repositories for similar bugs from the past. According to their evaluation, 78% of the 129 users stated

the recommendations were useful and 75% of them believed the search results useful. Zhou et al. [80]

examined similar bugs resolved before to improve bug-localization performance.

Furthermore, Davies et al. [98] proposed an approach to combining source code files and past similar

bugs. Their approach has been evaluated to be effective.

6.2 Recovering links between bug reports and change files

Bug reports are usually stored in bug-tracking systems. When bug reports are fixed, the corresponding

changes of source code will be recorded in change logs. The links between bug reports and committed

change logs are important in defect prediction, evolution analysis, and software quality measurement.

However, such links are often missing due to many reasons (e.g., systems provide insufficient supports or

developers forget to record such links).

To address this problem, many researchers focus on recovering the links between bug reports and

change files. As some link recovery approaches yield bias results, some research focuses on revealing the

bias and observing its negative impacts. In the following two subsections, we will review the existing

work on these two aspects.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:17

6.2.1 Link recovery

Change logs are usually stored in version archives, such as CVS. Fischer et al. [99] realized that there are

insufficient supports for software evolution analysis between version control and bug tracking systems, so

they populated a Release History Database, which stores extracted data. In particular, they combined

bug reports with change logs by comparing bug report ID. That is, they used a table to store the bug

report ID found in change logs. Furthermore, Fischer et al. [100], improved their previous approach by

considering both ID and the names of bug reports in analyzing software features.

Sliwerski et al. [101] linked bugs with changes from two levels: syntactic level and semantic level. In

the syntactic level, they split change logs into tokens and checked if there exists a bug number or key

words such as “fixed” and “bug”; in the semantic level, they validated the link by checking whether the

bug has been fixed, whether the change log contains the bug report description, and so on. Schroter

et al. [102] applied this approach in analyzing where bugs come from. Zimmermann et al. [103] used a

similar approach to predict defects for Eclipse.

Traditional link recovery approaches are effective, but suffer from poor accuracy. To improve the

accuracy, Wu et al. [104] developed an automatic link recovery algorithm—ReLink, which first discovered

links using traditional approaches, and then analyzed the missing links based on three features including

time interval, bug owner and change committer, and text similarity. The ReLink yields higher accuracy

and perform significantly better in maintainability and defect prediction. However, Bissyande et al. [105]

pointed out that the evaluation of ReLink has several flaws, so they used more reliable data to evaluate

ReLink, and found that ReLink is less effective in recovering missing links than recovering links that are

actually correct.

All the proceeding approaches are based on textual similarity between bug reports and change files.

Nguyen et al. [106] proposed a muti-layered recovery approach—MLink, which takes advantage of both

textual features and code features. Their evaluation shows that MLink outperforms the state-of-the-art

methods by improving 18% accuracy.

Despite these automatic methods in link recovery, Bird et al. [107] developed a tool, LINKSTER,

to provide convenience for manually establishing links. This tool integrates bug reports, source code

repositories, and mailing lists, and facilitates the exploration and annotation of software-engineering

data.

6.2.2 Bias revealing in link recovery

Since the links between bug reports and change files are widely used in defect prediction, evolution

analysis, and so on, it is essential to guarantee the accuracy and sufficiency of recovered links. However,

several evaluation shows that linkage bias is inevitable.

Bird et al. [108] noticed that only a fraction of bug fixes are labeled in change files. They found bug

feature bias and commit feature bias, and also provided strong statistical evidence on bug feature bias.

Furthermore, they illustrated the potential adverse effect of bias, and claimed that “bias is a critical

problem”. Bachmann et al. [109] extended this work by doing a more thorough evaluation and presented

a detailed examination of the bias in automatically recovered linked set. After that, Nguyen et al. [110]

conducted a pioneer study using near-ideal data-set, but bias still exists, so they believe bias is not a

result of datasets and approaches, but a symptom of software development process.

6.3 Bug-fixing time prediction

Predicting the time to fix a bug is important in maintaining software quality or aiding project planning

process. Several techniques have been proposed to measure or predict bug-fixing time.

Most of the bug-fixing time prediction approaches are building prediction models based on the at-

tributes of bug reports. Panjer [111] used the Bugzilla database of Eclipse for analysis. The attributes

they used in modeling are priority, severity, version, comments, components, and so on. They finally

achieved a prediction accuracy of 34.9% , and found that comments, severity, products, component, and

version influence bug-fixing time the most. Giger et al. [112] combined the attributes of the initial bug

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:18

report with post-submission information (i.e., the information submitted after a bug was reported) to

classify bug reports into “Fast” and “Slow” (which denotes the fixing time) and their approach has been

evaluated to achieve an accuracy between 60% and 70%. Moreover, post-submission data was proved

to improve the performance by 5% to 10%. Besides the attributes Panjer used, they also took account

into other attributes, such as assignee. Most recently, Zhang et al. [113] performed a dedicated empirical

study on bug-fixing time with three commercial projects of CA Technologies (i.e., a multinational com-

pany providing IT management software and solutions). Their results show that the Submitter and the

Owner are the top 2 most important attributes which contribute to bug-fixing time prediction. Besides,

they proposed methods both on predicting the number of bugs to be fixed and on estimating the time

required to fix these bugs.

Instead of using the attributes of bug reports, Weiss et al. [114] used text similarity to predict bug-fixing

time, which is to find similar bug reports resolved before and then provides those similar bug reports’

bug-fixing time for consultation when facing a new bug report. Hooimeijer and Weimer [6] viewed time

as an important measurement of bug-report quality, and measured bug-report-triage time instead of

bug-fixing time using linear regression analysis.

Furthermore, some research takes developers who fix the bug reports as an important factor that may

affect bug-fixing time. In particular, Anbalagan and Vouk [115] studied on more than 70000 bug reports

from nine releases of Ubuntu, and found that “there is a strong linear relationship between the number

of users participating in a bug report and the median time taken to correct it”. Based on this finding,

they proposed a linear model to predict bug-fixing time. Guo et al. [116] performed an empirical study

on Windows Vista and Windows 7, and found that the higher reputation a developer has, the more likely

his/her bug reports get fixed.

To evaluate the significance of different features used by previous prediction models (e.g., bug reports

attributes, post-submission information, number of developers, and reporter’s reputation), Bhattacharya

and Neamtiu [117] conducted a large scale experiment on more than 500000 bug reports from five open-

source projects, using both multivariate and univariate regression testing. Their findings are different

from existing work. For example, they found no linear relationship between a reporter’s reputation and

his/her bug-fixing time.

Furthermore, as bug-report databases contain some long-lived bug reports that are not resolved due

to some reasons, Saha et al. [118] analyzed these long-lived bugs from five aspects: proportion, severity,

longest bug-fix process, reasons, and nature. Their study has the following findings: 5%–9% bugs take

more than a year to be fixed. Bug assignment and bug fix are actually time-consuming. Moreover, the

existence of long-lived bugs results from problem complexity, reproducing errors, and misunderstanding

of bug-report severity.

6.4 Discussion

To conclude, the same as bug-report triage, none of the existing automated-fixing approach has achieved

satisfactory accuracy, and developers still fix bugs manually. Information retrieval is also widely used in

bug localization and links recovering.

In future, more techniques (e.g., deep learning) can be used in automating bug fixing, especially in

bug localization based on bug reports. Also, to increase the accuracy of bug localization, it is essential

to assure that reporters provide high-quality bug reports. On the other hand, some skills can be used

for improving bug localization, such as adding some kind of labels in both the source code and the bug

report.

7 Other work on bug-report analysis

Besides the preceding research on bug-report optimization, bug-report triage, and bug fixing, there is

also a little research in other aspects of bug-report analysis that cannot be categorized into the above

three scopes, with various motivations. We will introduce these research in this section.

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:19

As many developers use bug-tracking systems to discuss some issues in software development, Ko

and Chilana [119] used the whole set of closed bug reports from three open-source projets (i.e., Firefox,

Linux kernal, and FacebookAPI) to perform a qualitative analysis of design discussions in those reports.

They found that many arguments in these discussions are about whether to realize original design intents

or to make adaption according to user needs. They also suggested online discussion tools be redesigned

for clearer proposals. Sahoo et al. [120] examined reproducibility of bug reports via randomly selecting

bug reports of six server applications. They found that one request is enough for reproducing bugs in 77%

cases. Xuan et al. [121] presented the first model to prioritize developers in bug-tracking systems using

a socio-technical approach. In particular, by examining tasks in bug-report repositories, they concluded

that developer prioritization is helpful to enhance bug-report handling, especially for bug-report triage.

Bhattacharya et al. [122] defined several metrics to measure the quality of Android bug reports. On the

other hand, they compared Google Code’s bug tracker with Bugzilla and Jira, and found that though

Google Code’s bug tracker is more widely used by Android apps, it offers less management support.

Wang et al. [123] built a state transition model based on historical data, and presented a method for

predicting bug numbers at each state of a bug report, which can be used to predict a project’s future

bug-fixing performance.

8 Conclusion

There is considerable volume of research on bug-report analysis. After introducing some preliminaries, we

presented some statistics on practical bug reports to show that ensuring bug reports quality, automating

bug reports triage and localization are indeed urgent to be solved. Then we conducted a rather thorough

survey on existing bug-report analysis work, mainly including bug-report optimization, bug-report triage,

and bug fixing. Among the work in bug-report analysis, machine learning and information retrieval are

main techniques widely used.

However, many problems are still unsolved, even have not been studied. Many researchers have focused

on automated realization of handling bug reports (e.g., bug-report assignment, duplication detection, bug

localization). Unfortunately, none of the existing approaches has achieved satisfactory accuracy (e.g.,

more than 95%). That is, it is hard to apply existing automatic approaches in practice. Furthermore,

bug-tracking systems are still not able to provide any support for automatically dealing with bug reports.

In the future, researchers may consider how to improve the accuracy of existing automatic approaches.

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program) (Grant No. 2015CB3522-

01), National High-tech R&D Program of China (863 Program) (Grant No. 2013AA01A605), National Natural

Science Foundation of China (Grant Nos. 61228203, 61272157), and Fund for the Advisors of Beijing Excellent

Doctoral Dissertations (Grant No. 20131000111).

References

1 Si X, Hu C, Zhou Z. Fault prediction model based on evidential reasoning approach. Sci China Inf Sci, 2010, 53:

2032–2046

2 Xie T, Zhang L, Xiao X, et al. Cooperative software testing and analysis: advances and challenges. J Comput Sci

Technol, 2014, 29: 713–723

3 Anvik J, Hiew L, Murphy G C. Who should fix this bug? In: Proceedings of the International Conference on Software

Engineering, Shanghai, 2006. 361–370

4 Bettenburg N, Just S, Schröter A, et al. What makes a good bug report? In: Proceedings of the ACM SIGSOFT

International Symposium on Foundations of Software Engineering, Atlanta, 2008. 308–318

5 Bettenburg N, Just S, Schröter A, et al. Quality of bug reports in Eclipse. In: Proceedings of the OOPSLA workshop

on Eclipse Technology eXchange, Montreal, 2007. 21–25

6 Hooimeijer P, Weimer W. Modeling bug report quality. In: Proceedings of the IEEE/ACM International Conference

on Automated Software Engineering, Atlanta, 2007. 34–43

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:20

7 Liu K, Tan H B K, Chandramohan M. Has this bug been reported? In: Proceedings of the ACM SIGSOFT Symposium

on the Foundations of Software Engineering, Cary, 2012. 28

8 Nguyen A T, Nguyen T T, Nguyen T N, et al. Duplicate bug report detection with a combination of information

retrieval and topic modeling. In: Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering, Essen, 2012. 70–79

9 Runeson P, Alexandersson M, Nyholm O. Detection of duplicate defect reports using natural language processing.

In: Proceedings of the International Conference on Software Engineering, Minneapolis, 2007. 499–510

10 Anvik J. Automating bug report assignment. In: Proceedings of the International Conference on Software Engineer-

ing, Shanghai, 2006. 937–940

11 Tamrawi A, Nguyen T T, Al-Kofahi J, et al. Fuzzy set-based automatic bug triaging. In: Proceedings of the

International Conference on Software Engineering, Waikiki, 2011. 884–887

12 Nguyen A T, Nguyen T T, Al-Kofahi J, et al. A topic-based approach for narrowing the search space of buggy files

from a bug report. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,

Lawrence, 2011. 263–272

13 Menzies T, Marcus A. Automated severity assessment of software defect reports. In: Proceedings of the IEEE

International Conference on Software Maintenance, Beijing, 2008. 346–355

14 Podgurski A, Leon D, Francis P, et al. Automated support for classifying software failure reports. In: Proceedings

of the International Conference on Software Engineering, Portland, 2003. 465–475

15 Raymond E. The cathedral and the bazaar. Knowl Technol Policy, 1999, 12: 23–49

16 Čubranić D. Automatic bug triage using text categorization. In: Proceedings of the International Conference on

Software Engineering & Knowledge Engineering, Alberta, 2004. 92–97

17 Xie J, Zhou M, Mockus A. Impact of triage: a study of mozilla and gnome. In: Proceedings of the ACM / IEEE

International Symposium on Empirical Software Engineering and Measurement, Baltimore, 2013. 247–250

18 Breu S, Premraj R, Sillito J, et al. Information needs in bug reports: improving cooperation between developers and

users. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, Savannah, 2010. 301–310

19 Lamkanfi A, Demeyer S. Predicting reassignments of bug reports-an exploratory investigation. In: Proceedings of

the European Conference on Software Maintenance and Reengineering, Genova, 2013. 327–330

20 Herraiz I, German D M, Gonzalez-Barahona J M, et al. Towards a simplification of the bug report form in Eclipse.

In: Proceedings of the International Working Conference on Mining Software Repositories, Leipzig, 2008. 145–148

21 Wu L L, Xie B, Kaiser G E, et al. BugMiner: software reliability analysis via data mining of bug reports. In:

Proceedings of the International Conference on Software Engineering & Knowledge Engineering, Miami Beach, 2011.

95–100

22 Xia X, Lo D, Wen M, et al. An empirical study of bug report field reassignment. In: Proceedings of the Software

Evolution Week—IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, Antwerp,

2014. 174–183

23 Rastkar S, Murphy G C, Murray G. Summarizing software artifacts: a case study of bug reports. In: Proceedings of

the ACM/IEEE International Conference on Software Engineering, Cape Town, 2010. 505–514

24 Ko A J, Myers B A, Chau D H. A linguistic analysis of how people describe software problems. In: Proceedings of

the IEEE Symposium on Visual Languages and Human-Centric Computing, Brighton, 2006. 127–134

25 Toutanova K, Klein D, Manning C D, et al. Feature-rich part-of-speech tagging with a cyclic dependency network.

In: Proceedings of the Human Language Technology Conference of the North American Chapter of the Association

for Computational Linguistics, Edmonton, 2003. 173–180

26 Antoniol G, Ayari K, Di Penta M, et al. Is it a bug or an enhancement? A text-based approach to classify change

requests. In: Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research, Richmond

Hill, 2008. 23

27 Pingclasai N, Hata H, Matsumoto Ki. Classifying bug reports to bugs and other requests using topic modeling. In:

Proceedings of the Asia-Pacific Software Engineering Conference, Ratchathewi, 2013. 13–18

28 Herzig K, Just S, Zeller A. It’s not a bug, it’s a feature: how misclassification impacts bug prediction. In: Proceedings

of the ACM/IEEE International Conference on Software Engineering, San Francisco, 2013. 392–401

29 Serrano Zanetti M, Scholtes I, Tessone C J, et al. Categorizing bugs with social networks: a case study on four open

source software communities. In: Proceedings of the ACM/IEEE International Conference on Software Engineering,

San Francisco, 2013. 1032–1041

30 William C. Fast effective rule induction. In: Proceedings of the International Conference on Machine Learning, Tahoe

City, 1995. 115–123

31 Lamkanfi A, Demeyer S, Giger E, et al. Predicting the severity of a reported bug. In: Proceedings of the International

Working Conference on Mining Software Repositories, Cape Town, 2010. 1–10

32 Lamkanfi A, Demeyer S, Soetens Q D, et al. Comparing mining algorithms for predicting the severity of a reported

bug. In: Proceedings of the European Conference on Software Maintenance and Reengineering, Oldenburg, 2011.

249–258

33 Tian Y, Lo D, Sun C. Information retrieval based nearest neighbor classification for fine-grained bug severity predic-

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:21

tion. In: Proceedings of the Working Conference on Reverse Engineering, Kingston, 2012. 215–224

34 Jeong G, Kim S, Zimmermann T. Improving bug triage with bug tossing graphs. In: Proceedings of the joint meeting

of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations

of Software Engineering, Amsterdam, 2009. 111–120

35 Park J W, Lee M W, Kim J, et al. Costriage: a cost-aware triage algorithm for bug reporting systems. In: Proceedings

of the Conference on Artificial Intelligence, San Francisco, 2011. 139–144

36 Yu L, Tsai W T, Zhao W, et al. Predicting defect priority based on neural networks. In: Proceedings of the

International Conference on Advanced Data Mining and Applications, Chongqing, 2010. 356–367

37 Kanwal J, Maqbool O. Bug prioritization to facilitate bug report triage. J Comput Sci Technol, 2012, 27: 397–412

38 Tian Y, Lo D, Sun C. DRONE: predicting priority of reported bugs by multi-factor analysis. In: Proceedings of the

IEEE International Conference on Software Maintenance, Eindhoven, 2013. 200–209

39 Anvik J, Hiew L, Murphy G C. Coping with an open bug repository. In: Proceedings of the OOPSLA Workshop on

Eclipse Technology Exchange, San Diego, 2005. 35–39

40 Hiew L. Assisted detection of duplicate bug reports. Dissertation for the Master Degree. Vancouver: The University

of British Columbia, 2006

41 Jalbert N, Weimer W. Automated duplicate detection for bug tracking systems. In: Proceedings of the Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, Anchorage, 2008. 52–61

42 Sureka A, Jalote P. Detecting duplicate bug report using character n-gram-based features. In: Proceedings of the

Asia Pacific Software Engineering Conference, Sydney, 2010. 366–374

43 Sun C, Lo D, Wang X, et al. A discriminative model approach for accurate duplicate bug report retrieval. In:

Proceedings of the ACM/IEEE International Conference on Software Engineering, Cape Town, 2010. 45–54

44 Sun C, Lo D, Khoo S C, et al. Towards more accurate retrieval of duplicate bug reports. In: Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering, Lawrence, 2011. 253–262

45 Robertson S, Zaragoza H, Taylor M. Simple BM25 extension to multiple weighted fields. In: Proceedings of the ACM

CIKM International Conference on Information and Knowledge Management, Washington, 2004. 42–49

46 Tian Y, Sun C, Lo D. Improved duplicate bug report identification. In: Proceedings of the European Conference on

Software Maintenance and Reengineering, Szeged, 2012. 385–390

47 Banerjee S, Cukic B, Adjeroh D. Automated duplicate bug report classification using subsequence matching. In:

Proceedings of the International IEEE Symposium on High-Assurance Systems Engineering, Omaha, 2012. 74–81

48 Falessi D, Cantone G, Canfora G. Empirical principles and an industrial case study in retrieving equivalent require-

ments via natural language processing techniques. IEEE Trans Softw Eng, 2013, 39: 18–44

49 Zhou J, Zhang H. Learning to rank duplicate bug reports. In: Proceedings of the ACM International Conference on

Information and Knowledge Management, Maui, 2012. 852–861

50 Feng L, Song L, Sha C, et al. Practical duplicate bug reports detection in a large web-based development community.

In: Proceedings of Asia-Pacific Web Conference on the Web Technologies and Applications, Sydney, 2013. 709–720

51 Alipour A, Hindle A, Stroulia E. A contextual approach towards more accurate duplicate bug report detection. In:

Proceedings of the Working Conference on Mining Software Repositories, San Francisco, 2013. 183–192

52 Wang X, Zhang L, Xie T, et al. An approach to detecting duplicate bug reports using natural language and execution

information. In: Proceedings of the International Conference on Software Engineering, Leipzig, 2008. 461–470

53 Song Y, Wang X, Xie T, et al. JDF: detecting duplicate bug reports in jazz. In: Proceedings of the ACM/IEEE

International Conference on Software Engineering, Cape Town, 2010. 315–316

54 Lerch J, Mezini M. Finding duplicates of your yet unwritten bug report. In: Proceedings of the European Conference

on Software Maintenance and Reengineering, Genova, 2013. 69–78

55 Kim S, Zimmermann T, Nagappan N. Crash graphs: an aggregated view of multiple crashes to improve crash triage.

In: Proceedings of the IEEE/IFIP International Conference on Dependable Systems and Networks, Hong Kong, 2011.

486–493

56 Dang Y, Wu R, Zhang H, et al. Rebucket: a method for clustering duplicate crash reports based on call stack

similarity. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, Zurich, 2012.

1084–1093

57 Bettenburg N, Premraj R, Zimmermann T, et al. Duplicate bug reports considered harmful...really? In: Proceedings

of the IEEE International Conference on Software Maintenance, Beijing, 2008. 337–345

58 Wang X, Lo D, Jiang J, et al. Extracting paraphrases of technical terms from noisy parallel software corpora. In:

Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International Joint

Conference on Natural Language Processing of the AFNLP, Singapore, 2009. 197–200

59 Cavalcanti Y, Almeida E, Cunha C, et al. An initial study on the bug report duplication problem. In: Proceedings

of the European Conference on Software Maintenance and Reengineering, Madrid, 2010. 264–267

60 Cavalcanti Y, Mota Silveira Neto P, Lucrdio D, et al. The bug report duplication problem: an exploratory study.

Softw Qual J, 2013, 21: 39–66

61 Davidson J, Mohan N, Jensen C. Coping with duplicate bug reports in free/open source software projects. In:

Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing, Pittsburgh, 2011. 101–

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:22

108

62 Bhattacharya P, Neamtiu I. Fine-grained incremental learning and multi-feature tossing graphs to improve bug

triaging. In: Proceedings of the IEEE International Conference on Software Maintenance, Timisoara, 2010. 1–10

63 Hu H, Zhang H, Xuan J, et al. Effective bug triage based on historical bug-fix information. In: Proceedings of the

IEEE International Symposium on Software Reliability Engineering, Naples, 2014. 122–132

64 Lin Z, Shu F, Yang Y, et al. An empirical study on bug assignment automation using chinese bug data. In:

Proceedings of the International Symposium on Empirical Software Engineering and Measurement, Lake Buena

Vista, 2009. 451–455

65 Xuan J, Jiang H, Ren Z, et al. Automatic bug triage using semi-supervised text classification. In: Proceedings of

International Conference on Software Engineering & Knowledge Engineering, Redwood City, 2010. 209–214

66 Alenezi M, Magel K, Banitaan S. Efficient bug triaging using text mining. J Softw, 2013, 8: 2185–2190

67 Zou W, Hu Y, Xuan J, et al. Towards training set reduction for bug triage. In: Proceedings of the Annual IEEE

International Computer Software and Applications Conference, Munich, 2011. 576–581

68 Canfora G, Cerulo L. Supporting change request assignment in open-source development. In: Proceedings of the

ACM Symposium on Applied Computing, Dijon, 2006. 1767–1772

69 Matter D, Kuhn A, Nierstrasz O. Assigning bug reports using a vocabulary-based expertise model of developers. In:

Proceedings of the International Working Conference on Mining Software Repositories, Vancouver, 2009. 131–140

70 Xia X, Lo D, Wang X, et al. Accurate developer recommendation for bug resolution. In: Proceedings of the Working

Conference on Reverse Engineering, Koblenz, 2013. 72–81

71 Baysal O, Godfrey MW, Cohen R. A bug you like: a framework for automated assignment of bugs. In: Proceedings

of the IEEE International Conference on Program Comprehension, Vancouver, 2009. 297–298

72 Aljarah I, Banitaan S, Abufardeh S, et al. Selecting discriminating terms for bug assignment: a formal analysis. In:

Proceedings of the International Conference on Predictive Models in Software Engineering, Banff, 2011. 12

73 Servant F, Jones J A. Whosefault: automatic developer-to-fault assignment through fault localization. In: Proceed-

ings of the International Conference on Software Engineering, Zurich, 2012. 36–46

74 Shokripour R, Anvik J, Kasirun Z M, et al. Why so complicated? simple term filtering and weighting for location-

based bug report assignment recommendation. In: Proceedings of the Working Conference on Mining Software

Repositories, San Francisco, 2013. 2–11

75 Kevic K, Muller S C, Fritz T, et al. Collaborative bug triaging using textual similarities and change set analysis.

In: Proceedings of the International Workshop on Cooperative and Human Aspects of Software Engineering, San

Francisco, 2013. 17–24

76 Guo P J, Zimmermann T, Nagappan N, et al. Not my bug! and other reasons for software bug report reassignments.

In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, Hangzhou, 2011. 395–404

77 Xie J, Zheng Q, Zhou M, et al. Product assignment recommender. In: Proceedings of the International Conference

on Software Engineering, Hyderabad, 2014. 556–559

78 Li W, Li N. A formal semantics for program debugging. Sci China Inf Sci, 2012, 55: 133–148

79 Gay G, Haiduc S, Marcus A, et al. On the use of relevance feedback in IR-based concept location. In: Proceedings

of the IEEE International Conference on Software Maintenance, Edmonton, 2009. 351–360

80 Zhou J, Zhang H, Lo D. Where should the bugs be fixed? more accurate information retrieval-based bug localization

based on bug reports. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, Zurich,

2012. 14–24

81 Deerwester S C, Dumais S T, Landauer T K, et al. Indexing by latent semantic analysis. J Amer Soc Inform Sci,

1990, 41: 391–407

82 Marcus A, Sergeyev A, Rajlich V, et al. An information retrieval approach to concept location in source code. In:

Proceedings of the Working Conference on Reverse Engineering, Delft, 2004. 214–223

83 Marcus A, Rajlich V, Buchta J, et al. Static techniques for concept location in object-oriented code. In: Proceedings

of the International Workshop on Program Comprehension, Louis, 2005. 33–42

84 Poshyvanyk D, Marcus A. Combining formal concept analysis with information retrieval for concept location in source

code. In: Proceedings of the International Conference on Program Comprehension, Banff, 2007. 37–48

85 Poshyvanyk D, Guéhéneuc Y G, Marcus A, et al. Feature location using probabilistic ranking of methods based on

execution scenarios and information retrieval. IEEE Trans Softw Eng, 2007, 33: 420–432

86 Liu D, Marcus A, Poshyvanyk D, et al. Feature location via information retrieval based filtering of a single scenario

execution trace. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,

Atlanta, 2007. 234–243

87 Lukins S K, Kraft N A, Etzkorn L H. Source code retrieval for bug localization using latent dirichlet allocation. In:

Proceedings of the Working Conference on Reverse Engineering, Antwerp, 2008. 155–164

88 Lukins S K, Kraft N A, Etzkorn L H. Bug localization using latent dirichlet allocation. Inf Softw Technol, 2010, 52:

972–990

89 Salton G, Wong A, Yang CS. A vector space model for automatic indexing. Commun ACM, 1975, 18: 613–620

90 Rao S, Kak A. Retrieval from software libraries for bug localization: a comparative study of generic and composite

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:23

text models. In: Proceedings of the International Working Conference on Mining Software Repositories, Waikiki,

2011. 43–52

91 Chawla I, Singh S K. Performance evaluation of vsm and lsi models to determine bug reports similarity. In: Pro-

ceedings of the International Conference on Contemporary Computing, Noida, 2013. 375–380

92 Saha R K, Lease M, Khurshid S, et al. Improving bug localization using structured information retrieval. In:

Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, Silicon Valley, 2013.

345–355

93 Kim D, Tao Y, Kim S, et al. Where should we fix this bug? a two-phase recommendation model. IEEE Trans Softw

Eng, 2013, 39: 1597–1610

94 Ye X, Bunescu R, Liu C. Learning to rank relevant files for bug reports using domain knowledge. In: Proceedings of

the ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, 2014. 66–76

95 Wong C P, Xiong Y, Zhang H, et al. Boosting bug-report-oriented fault localization with segmentation and stack-trace

analysis. In: Proceedings of the IEEE International Conference on Software Maintenance and Evolution, Victoria,

2014. 181–190

96 Ashok B, Joy J, Liang H, et al. Debugadvisor: a recommender system for debugging. In: Proceedings of the joint

meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Amsterdam, 2009. 373–382

97 Čubranić D, Murphy G C, Singer J, et al. Hipikat: a project memory for software development. IEEE Trans Softw

Eng, 2005, 31: 446–465

98 Davies S, Roper M, Wood M. Using bug report similarity to enhance bug localisation. In: Proceedings of the Working

Conference on Reverse Engineering, Kingston, 2012. 125–134

99 Fischer M, Pinzger M, Gall H. Populating a release history database from version control and bug tracking systems.

In: Proceedings of the International Conference on Software Maintenance, Amsterdam, 2003. 23–32

100 Fischer M, Pinzger M, Gall H. Analyzing and relating bug report data for feature tracking. In: Proceedings of the

Working Conference on Reverse Engineering, Victoria, 2003. 90

101 Śliwerski J, Zimmermann T, Zeller A. When do changes induce fixes? ACM Sigsoft Softw Eng Notes, 2005, 30: 1–5

102 Schröter A, Zimmermann T, Premraj R, et al. If your bug database could talk. In: Proceedings of the ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, Rio de Janeiro, 2006. 18–20

103 Zimmermann T, Premraj R, Zeller A. Predicting defects for Eclipse. In: Proceedings of the International Workshop

on Predictor Models in Software Engineering, Minneapolis, 2007. 9

104 Wu R, Zhang H, Kim S, et al. Relink: recovering links between bugs and changes. In: Proceedings of the ACM

SIGSOFT Symposium on the Foundations of Software Engineering , Szeged, 2011. 15–25

105 Bissyandé T F, Thung F, Wang S, et al. Empirical evaluation of bug linking. In: Proceedings of the European

Conference on Software Maintenance and Reengineering, Genova, 2013. 89–98

106 Nguyen A T, Nguyen T T, Nguyen H A, et al. Multi-layered approach for recovering links between bug reports and

fixes. In: Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Cary, 2012.

63

107 Bird C, Bachmann A, Rahman F, et al. Linkster: enabling efficient manual inspection and annotation of mined data.

In: Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Santa Fe, 2010.

369–370

108 Bird C, Bachmann A, Aune E, et al. Fair and balanced? Bias in bug-fix datasets. In: Proceedings of the Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Amsterdam, 2009. 121–130

109 Bachmann A, Bird C, Rahman F, et al. The missing links: bugs and bug-fix commits. In: Proceedings of the ACM

SIGSOFT International Symposium on Foundations of Software Engineering, Santa Fe, 2010. 97–106

110 Nguyen T H, Adams B, Hassan A E. A case study of bias in bug-fix datasets. In: Proceedings of the Working

Conference on Reverse Engineering, Beverly, 2010. 259–268

111 Panjer L D. Predicting Eclipse bug lifetimes. In: Proceedings of the International Workshop on Mining Software

Repositories, Minneapolis, 2007. 29

112 Giger E, Pinzger M, Gall H. Predicting the fix time of bugs. In: Proceedings of the International Workshop on

Recommendation Systems for Software Engineering, Cape Town, 2010, 52–56

113 Zhang H, Gong L, Versteeg S. Predicting bug-fixing time: an empirical study of commercial software projects. In:

Proceedings of the International Conference on Software Engineering, San Francisco, 2013. 1042–1051

114 Weiss C, Premraj R, Zimmermann T, et al. How long will it take to fix this bug? In: Proceedings of the International

Workshop on Mining Software Repositories, Minneapolis, 2007. 1

115 Anbalagan P, Vouk M. On predicting the time taken to correct bug reports in open source projects. In: Proceedings

of the IEEE International Conference on Software Maintenance, Edmonton, 2009. 523–526

116 Guo PJ, Zimmermann T, Nagappan N, et al. Characterizing and predicting which bugs get fixed: an empirical study

of microsoft windows. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, Cape

Town, 2010. 495–504

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

Zhang J, et al. Sci China Inf Sci February 2015 Vol. 58 021101:24

117 Bhattacharya P, Neamtiu I. Bug-fix time prediction models: can we do better? In: Proceedings of the International

Working Conference on Mining Software Repositories, Waikiki, 2011. 207–210

118 Saha R K, Khurshid S, Perry D E. An empirical study of long lived bugs. In: Proceedings of Software Evolution

Week—IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering, Antwerp, 2014. 144–153

119 Ko A J, Chilana P K. Design, discussion, and dissent in open bug reports. In: Proceedings of iConference, Berlin,

2011. 106–113

120 Sahoo S K, Criswell J, Adve V. An empirical study of reported bugs in server software with implications for automated

bug diagnosis. In: Proceedings of the International Conference on Software Engineering, Cape Town, 2010. 485–494

121 Xuan J, Jiang H, Ren Z, et al. Developer prioritization in bug repositories. In: Proceedings of the International

Conference on Software Engineering, Zurich, 2012. 25–35

122 Bhattacharya P, Ulanova L, Neamtiu I, et al. An empirical analysis of bug reports and bug fixing in open-source

Android apps. In: Proceedings of the European Conference on Software Maintenance and Reengineering, Genova,

2013. 133–143

123 Wang J, Zhang H. Predicting defect numbers based on defect state transition models. In: Proceedings of the

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Lund, 2012. 191–200

 https://engine.scichina.com/doi/10.1007/s11432-014-5241-2

