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1 Introduction

Suppose H = H(x, p) : Rn ×R
n → R is a C2 Tonelli Hamiltonian, i.e., H is convex in p with superlinear

growth condition. Let u : Rn → R be a (global) viscosity solution of the Hamilton-Jacobi equation

H(x,Du(x)) = 0, x ∈ R
n. (1.1)

Such a solution u is locally semiconcave (with linear modulus) on R
n. We denote by D+u(x) the su-

perdifferential of u at x (see, for example, [12]), which is a compact convex set in R
n, and we call x ∈ R

n

a singular point of u if D+u(x) is not a singleton. Certain “singular dynamics” was interpreted in [2] by

a Hamiltonian inclusion

ẋ(s) ∈ coHp(x(s), D
+u(x(s))), a.e. s ∈ [0, τ ],

and such a Lipschitz arc x is called a generalized characteristic. If x0 is a singular point of u and

0 6∈ coHp(x0, D
+u(x0)), (1.2)

then the associated generalized characteristic x(t), t ∈ [0, τ ], is composed of singular points of u. In

the recent works [10], the propagation of singularities along generalized characteristics in [10] has been

explained by an intrinsic variational approach (see [2–4, 11–13,29] for the approach from Control theory

or PDE), which is motivated by Mather theory (see [25]) and weak KAM theory.
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Let us recall the aforementioned results in [10] at first. Let u ∈ C(Rn), for any t > 0, T̆t, the Lax-Oleinik

operator of positive type, is defined as

T̆tu(x) := sup
y∈Rn

{u(y)−At(x, y)} := sup
y∈Rn

ψx
t (y), x ∈ R

n, (1.3)

where

At(x, y) = inf
γ∈Γt

x,y

∫ t

0

L(γ(s), γ̇(s))ds

with

Γt
x,y = {γ ∈W 1,1([0, t],Rn) : γ(0) = x, γ(t) = y}.

Here L is an arbitrary Tonelli Lagrangian on R
n with H its Fenchel-Legendre dual, and it is well

known that (1.3) is also called sup-convolution or Lax-Oleinik operators in the literature. Cannarsa

and Cheng [10] have shown that the maximizers in such a procedure of sup-convolution give exactly a

local or global generalized characteristic starting from a singular point of u under suitable conditions.

In the present paper, we will explain the connection between generalized characteristics and the well-

known Lasry-Lions regularization at first. Throughout this paper, we suppose that L satisfies (L1) and

(L2) (see Section 2).

Let M be a C2 closed manifold, t > 0 and let u : M → R be any semiconcave function, the following

properties are already known (see, for example, [6, 22]):

(P1) T̆tu belongs to class C1,1 for 0 < t 6 t0 with t0 is a constant dependent on the constant of

semiconcavity of u.

(P2) T̆tu is decreasing on (0,+∞) if u is a viscosity subsolution of Hamilton-Jacobi equation

H(x,Du(x)) = α(0), x ∈M,

where α(·) is Mather’s α-function. Moreover, T̆tu tends to u uniformly as t → 0+.

In this paper, we also have the following theorem.

Theorem 1.1. Suppose u : Rn → R is a semiconcave function. Then there exists 0 < t0 ≪ 1 such that

(P3) Let x0 ∈ R
n and L(x0, 0) 6 0, then T̆tu(x0) is increasing on (0,+∞) and

lim
t→0+

T̆tu(x0) = u(x0).

Consequently, if

L(x, 0) 6 0, ∀x ∈ R
n,

T̆tu tends to u uniformly on any compact subset as t→ 0+.

(P4) Let x ∈ R
n, suppose that the function ψx

t defined in (1.3) attains the maximizer yt in B(x,R(x, t))

for all 0 < t 6 t0, where R(x, t) > 0 is defined in (A.6). Then

lim
t→0+

DT̆tu(x) = p0 ∈ D+u(x),

where p0 is the unique element with minimal energy

H(x, p) > H(x, p0), ∀ p ∈ D+u(x). (ME)

For a more detailed formulation of Theorem 1.1, see Theorem 3.2.

It is worth noting that the minimal energy condition in (ME) is the same as the initial condition

on the velocity of the generalized characteristic obtained by the intrinsic approach in [10], see also

Proposition 3.1.

In the rest part of this paper, we try to exploit the nature of the singularities of u by the procedure of

inf-convolution. As pointed out that the inf-convolution defined by

Ttu(x) := inf
y∈Rn

{u(y) +At(y, x)}, x ∈ R
n (1.4)
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is not the dual procedure of sup-convolution. But, it is still meaningful to study the critical points of the

local barrier function

φx0

t (x) = u(x) +At(x, x0)

with respect to x0. Recall that a point x ∈ R
n is a critical point of a locally semiconcave function u if

0 ∈ D+u(x). Comparing with the local barrier function

ψx0

t (x) = u(x)−At(x0, x),

the function ψx0

t only admits a unique critical point (maximizer) for small time t > 0 since the convexity

properties of the fundamental solutions At(x0, x) (see Appendix).

Along this line, given a singular point x0 of u, using a nonsmooth critical point theorem by Shi [28],

we obtain a critical point of the local semiconcave function φx0

t , which is not a global minimizer of φx0

t

determined by classical characteristic passing to x.

Theorem 1.2. Let u be a Lipschitz viscosity solution of (1.1), t > 0, and let x ∈ R
n be a singular

point of u. Suppose there exist finite many elements in D∗u(x), the set of all limiting differentials of u

at x (see Definition 2.2), say D∗u(x) = {p1, . . . , pk} with k > 2. Then there exist critical points {xijt } of

φxt (not global minimizers) such that, for 1 6 i, j 6 k, i 6= j, each critical point xt = xijt has the following

dichotomy:

(a) xt is a differentiable point of φxt and there exists a local minimal curve connecting xt and x. More

precisely, there exists a C1 curve γ : (−∞, t] → R
n such that γ(0) = xt, γ(t) = x and the restriction of γ

on (−∞, 0] is a (u, L, 0)-calibrated curve, but γ is not a (u, L, 0)-calibrated curve on (−∞, t];

(b) xt is a singular point of u.

For a more detailed formulation of Theorem 1.2, see Theorem 3.9.

From the theorem above, the location of singularities afford possible information to construct “local”

minimal orbits for Tonelli Lagrangian systems, which is totally unknown before. In the previous works

of variational approach of Hamiltonian dynamical instability problems like Arnold diffusion (see, for

example, [7, 14–20]), the diffusion orbits shadow the relevant global minimizers.

The paper is organized as follows. In Section 2, we review some basic properties of viscosity solution of

Hamilton-Jacobi equations. In Section 3, we discuss the relation of the generalized characteristics given

by the procedure of sup-convolution and Lasry-Lions regularization, then, we also discuss what happens

for the procedure of inf-convolution. Section 4 concludes the paper. We present regularity properties of

fundamental solutions in Appendix.

2 Viscosity solutions and weak KAM theory

A C2 function L : Rn×R
n → R is said to be a Tonelli Lagrangian if the following assumptions are satisfied:

(L1) The Hessian ∂2L
∂v2 (x, v) is positive definite for all (x, v) ∈ R

n × R
n.

(L2) There exists a non-decreasing function θ : [0,+∞) → [0,+∞), θ(r)/r → +∞ as t → +∞, c0 > 0

and, c1 = c1(x,R) > 0 such that

L(x, v) > θ(|v|) − c0, (x, v) ∈ R
n × R

n,

and

|Lx(y, v)|+ |Lv(y, v)| 6 c1(x,R)θ(|v|), (y, v) ∈ B̄(x,R)× R
n.

Let H : Rn × R
n → R be the associated Tonelli Hamiltonian, i.e.,

H(x, p) = sup
v∈Rn

{〈p, v〉 − L(x, v)}.

Throughout this paper, we suppose L is a C2 Tonelli Lagrangian with (L1) and (L2).
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2.1 Semiconcave functions

Let Ω ⊂ R
n be a convex open set, a function u : Ω → R is semiconcave (with linear modulus) if there

exists a constant C > 0 such that

λu(x) + (1− λ)u(y)− u(λx + (1− λ)y) 6
C

2
λ(1 − λ)|x − y|2 (2.1)

for any x, y ∈ Ω and λ ∈ [0, 1]. Any constant C that satisfies the above inequality is called a semiconcavity

constant for u in Ω. A function u : Ω → R is said to be semiconvex (with linear modulus) if −u is

semiconcave. A function u : Ω → R is said to be locally semiconcave (resp. locally semiconvex) if for each

x ∈ Ω, there exists an open ball B(x, r) ⊂ Ω such that u is a semiconcave (resp. semiconvex) function

on B(x, r).

Definition 2.1. Let u : Ω ⊂ R
n → R be a continuous function. We recall that, for any x ∈ Ω, the

closed convex sets

D−u(x) =

{

p ∈ R
n : lim inf

y→x

u(y)− u(x)− 〈p, y − x〉

|y − x|
> 0

}

,

D+u(x) =

{

p ∈ R
n : lim sup

y→x

u(y)− u(x)− 〈p, y − x〉

|y − x|
6 0

}

are called the (Dini) subdifferential and superdifferential of u at x, respectively.

Definition 2.2. Let u : Ω → R be locally Lipschitz. We recall that a vector p ∈ R
n is called a limiting

differential of u at x if there exists a sequence {xn} ⊂ Ω \ {x} such that u is differentiable at xk for each

k ∈ N, and

lim
k→∞

xk = x and lim
k→∞

Du(xk) = p.

The set of all limiting differentials of u at x is denoted by D∗u(x).

The fundamental properties of the superdifferential of a semiconcave function are listed in the following

proposition. The monograph [12] is a good reference for the topic of semiconcave functions and beyond.

Proposition 2.3. Let u : Ω ⊂ R
n → R be a semiconcave function and let x ∈ Ω. Then the following

properties hold:

(a) D+u(x) is a nonempty compact convex set in R
n and D∗u(x) ⊂ ∂D+u(x), where ∂D+u(x) denotes

the topological boundary of D+u(x).

(b) The set-valued function x D+u(x) is upper semicontinuous.

(c) If D+u(x) is a singleton, then u is differentiable at x. Moreover, if D+u(x) is a singleton for every

point in Ω, then u ∈ C1(Ω).

(d) D+u(x) = coD∗u(x).

(e) D∗u(x) = {limi→∞ pi : pi ∈ D+u(xi), xi → x, diam (D+u(xi)) → 0}.

From proximal analysis point of view, the following result characterizes the semiconcavity of a contin-

uous function and its superdifferential.

Proposition 2.4. Let u : Ω → R be a continuous function. If there exists a constant C > 0 such that,

for any x ∈ Ω, there exists p ∈ R
n such that

u(y) 6 u(x) + 〈p, y − x〉 +
C

2
|y − x|2, ∀ y ∈ Ω, (2.2)

then u is semiconcave with constant C and p ∈ D+u(x). Conversely, if u is semiconcave in Ω with

constant C, then (2.2) holds for any x ∈ Ω and p ∈ D+u(x).

Finally, we introduce the concept of singularity of a semiconcave function. A point x ∈ Ω is called a

singular point of u if D+u(x) is not a singleton. The set of all singular points of u, also called the singular

set of u, is denoted by Σu.
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2.2 Fundamental solutions and viscosity solutions

Given x, y ∈ R
n, we define

Γt
x,y = {γ ∈W 1,1([0, t],Rn) : γ(0) = x, γ(t) = y}.

Letting t > 0, we denote

At(x, y) = inf
γ∈Γt

x,y

∫ t

0

L(γ(s), γ̇(s))ds. (2.3)

It is well known that the infimum can be achieved by C2 curves. In the literature of PDEs, At(x, y) is

called a fundamental solution of (2.4), see, for example, [26].

Throughout this section, we suppose the C2 Tonelli Lagrangian L satisfies (L1)–(L2). We discuss the

associated Nagumo type conditions and the essential regularity results of the fundamental solutions in

Appendix. For the main regularity results we will use, see, Propositions A.3 and A.4.

Suppose H is a Tonelli Hamiltonian, throughout this paper we will be concerned with the Hamilton-

Jacobi equation

H(x,Du(x)) = 0, x ∈ R
n. (2.4)

We recall that a continuous function u is called a viscosity subsolution of equation (2.4) if, for any

x ∈ R
n,

H(x, p) 6 0, ∀ p ∈ D+u(x). (2.5)

Similarly, u is a viscosity supersolution of (2.4) if, for any x ∈ R
n,

H(x, p) > 0, ∀ p ∈ D−u(x). (2.6)

Finally, u is called a viscosity solution of (2.4), if it is both a viscosity subsolution and a supersolution.

Proposition 2.5. Any viscosity solution of the Hamilton-Jacobi equation (2.4) is locally semiconcave

with linear modulus.

Proposition 2.6. There holds ExtD+u(x) = D∗u(x)1) for any viscosity solution u of (2.4) and any

x ∈ R
n.

Proposition 2.7 (See [27]). Let x ∈ R
n and u : Rn → R be a viscosity solution of the Hamilton-Jacobi

equation (2.4). Then p ∈ D∗u(x) if and only if there exists a unique C2 curve γ : (−∞, 0] → R
n with

γ(0) = x which is a (u, L, 0)-calibrated curve2), and p = Lv(x, γ̇(0)).

2.3 Generalized characteristics

The construction of the singular set or cut loci of viscosity solutions is a very important and hard problem

in many fields such as Riemannian geometry, optimal control, classical mechanics, etc. It is known that

the study of propagation of singularities can go back to [1] for general semiconcave functions by the

method from nonsmooth analysis. Some dynamical nature of the singularity was found by the concept

of generalized characteristic.

Definition 2.8. A Lipschitz arc x : [0, τ ] → R
n is said to be a generalized characteristic of the

Hamilton-Jacobi equation (2.4) if x satisfies the differential inclusion

ẋ(s) ∈ coHp(x(s), D
+u(x(s))), a.e. s ∈ [0, τ ]. (2.7)

A basic criterion for the propagation of singularities along generalized characteristic was given in [2]

(see [13, 29] for an improved version and simplified proof).

1) For any convex closed subset of Rn, we denote by ExtC the set of extremal points of C.
2) For the concept of dominated functions and calibrated curves, see, for example, [22]
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Proposition 2.9 (See [2]). Let u be a viscosity solution of Hamilton-Jacobi equation (2.4) and let

x0 ∈ R
n. Then there exists a generalized characteristic x : [0, τ ] → R

n with initial point x(0) = x0.

Moreover, if x0 ∈ Σu, then x(s) ∈ Σu for all s ∈ [0, τ ]. Furthermore, if

0 6∈ coHp(x0, D
+u(x0)) , (2.8)

then x(·) is injective for every s ∈ [0, τ ].

3 Procedure of sup-convolution and generalized characteristics

LetH be a Tonelli Hamiltonian on R
n. Recall the Lax-Oleinik operators Tt and T̆t, i.e., for any u ∈ C(Rn),

T̆tu(x) := sup
y∈Rn

{u(y)−At(x, y)}, (3.1)

Ttu(x) := inf
y∈Rn

{u(y) +At(y, x)}. (3.2)

When taking H(p) = |p|2/2 and the kernel

At(x, y) =
1

2t
|x− y|2,

the two operators above are closely linked to the so-called Lasry-Lions regularization procedure (see

[24]) which is written in the form of sup-convolution and inf-convolution, respectively. This type of

regularization is also called Moreau-Yosida regularization in convex analysis. A more detailed formulation

can be found in [5] with respect to the aforementioned quadratic kernel.

3.1 Procedure of sup-convolution and generalized characteristics

Recently, Cannarsa and Cheng [10] studied the intrinsic relation of propagation of singularities along the

generalized characteristics and the following procedure of sup-convolution.

Fixing x ∈ R
n, 0 < t 6 t0 ≪ 1, then there exists R(x, t) > 0 such that, the function

ψx
t (y) := u(y)−At(x, y), y ∈ B̄(x,R(x, t)) (3.3)

has a unique maximizer for each t ∈ (0, t0], where At(x, y) is a fundamental solution with respect to the

associated Tonelli Lagrangian L.

Suppose that u(·) is semiconcave while At(x, ·) is both locally semiconcave, and convex when t ∈ (0, t0]

(see Proposition A.3), say C1 > 0 (resp. −C2(t)) is the semiconcavity (resp. convexity) constant of u(·)

(resp. At(x, ·)). Note that, by Proposition A.4, the constant C2(t) =
C
t , thus ψ

x
t (·) is strictly concave

in B̄(x,R(x, t)) and consequently we have a unique maximizer for each t ∈ (0, t0], which is also a unique

critical point of ψx
t if yt ∈ B(x,R(x, t)).

Let us define the arc y : [0, t0] → R
n by

y(t) =

{

x, t = 0,

yt, t ∈ (0, t0].
(3.4)

If ξt : [0, t] → R
n is the unique minimizer in the definition of At(x, y), we define

pt(s) := Lv(ξt(s), ξ̇t(s)), s ∈ [0, t], (3.5)

the associated dual arc with respect to ξt(s).

Proposition 3.1 (See [10]). Let u be a locally semiconcave function and x ∈ Σu, the singular set of u.

If φxt attains the unique maximizer yt ∈ B(x,R(x, t)) for all t ∈ [0, t0], then the arc y : [0, t0] → R
n
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defined in (3.4) is a generalized characteristic composed of singular points of u, i.e., y : [0, t0] → R
n is

Lipschitz continuous, y(t) ∈ Σu for all t ∈ [0, t0], and satisfies

ẏ(τ) ∈ coHp(y(τ), D
+u(y(τ))), a.e. τ ∈ [0, t0]. (3.6)

Moreover,

ẏ+(0) = Hp(x, p0), (3.7)

where p0 ∈ D+u(x) is the unique element of minimal energy

H(x, p) > H(x, p0), ∀ p ∈ D+u(x).

3.2 Lasry-Lions regularization

In this section, we will explain the connection between Lasry-Lions regularization (see [24]) and general-

ized characteristics first found in [2]. We only concentrate on the case of sup-convolution T̆tu with u a

locally semiconcave function.

For t > 0, recalling that

T̆tu(x) := sup
y∈Rn

{u(y)−At(x, y)}, (3.8)

where u : Rn → R is any locally semiconcave function, and At(x, y) is the fundamental solution with

respect to any Tonelli Lagrangian L.

Theorem 3.2. Suppose u : Rn → R be a semiconcave function with constant C. Then there exists

0 < t0 ≪ 1 such that if T̆tu is defined as in (3.8), we have the following:

(P3) Fix x ∈ R
n, then T̆tu(x) is increasing on (0,+∞) and limt→0+ T̆tu(x) = u(x) if L(x, 0) 6 0.

Consequently, if

L(x, 0) 6 0, ∀x ∈ R
n,

then T̆tu tends to u uniformly on any compact subset as t→ 0+.

(P4) Let x ∈ R
n, suppose that the function ψx

t defined in (3.3) attains the maximizer yt in B(x,R(x, t))

for all t ∈ (0, t0]. Then

lim
t→0+

DT̆tu(x) = p0,

where p0 is the unique element with minimal energy, i.e.,

H(x, p0) = min
p∈D+u(x)

H(x, p). (3.9)

(P5) In particular, when L has the form

L(x, v) =
1

2
〈Av, v〉, x ∈ R

n, v ∈ R
n,

where A is an n× n symmetric and positive definite matrix. If t 6 κC−1, then, the functions u and T̆tu

have the same critical points and critical values where κ > 0 is the smallest eigenvalue of A.

Remark 3.3. The properties (P1) and (P2) (see the introduction) is already known (in the case of

compact manifolds), see, for example, [6] or [22]. Since this is a local result, it is not hard to generalize

to the manifolds using local charts. We collect the known results here just for the comparison interests

like (P2) (in the introduction) and (P3). The property (P5) is a slight generalization of a known result

(see [5]).

Remark 3.4. It is worth noting that the assumption in (P4) that the function ψx
t defined in (3.3)

attains the maximizer yt in B(x,R(x, t)) for all t ∈ (0, t0], is not easy to be checked in general. Fortunately,

if we consider a certain type of nearly integrable systems or mechanical systems, this condition holds.

The readers can refer to [10] for more general discusssion.
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Proof. Let x, y ∈ R
n and t > 0, for any 0 < s < t, it is easily checked that

At(x, y) 6 As(x, y) +At−s(x, x).

Taking the constant curve γ(τ) ≡ x, τ ∈ [0, t− s], we have

At−s(x, x) 6

∫ t−s

0

L(γ(τ), γ̇(τ))dτ = (t− s)L(x, 0).

Therefore, for any fixed x ∈ R
n, we have At(x, ·) 6 As(x, ·) since L(x, 0) 6 0, and thus, ψx

t (y) > ψx
s (y)

for all y ∈ R
n. This leads to the conclusion that T̆su(x) 6 T̆tu(x) if 0 < s < t. The uniform convergence

result is a direct consequence of Dini’s lemma on monotone sequence of continuous functions. This

completes the proof of (P3).

Now, we turn to the proof of (P4). Fix x ∈ R
n and t ∈ (0, t0]. Adopting the same terminologies as

before, since ψx
t (·) attains the maximum at y = yt ∈ B(x,R(x, t)) and ξt ∈ Γt

x,yt
is the minimal curve in

the definition of At(x, yt), we have

Lv(ξt(t), ξ̇t(t)) = DyAt(x, yt) ∈ D+u(yt),

since the results in Proposition A.4 and 0 ∈ D+ψx
t (yt). Moreover, we have that the family {ξ̇t}t∈(0,t0] is

equi-Lipschitz, by Proposition A.2.

Therefore, we have

∣

∣

∣

∣

ξt(t)− x

t
− ξ̇t(0)

∣

∣

∣

∣

6
1

t

∫ t

0

|ξ̇t(s)− ξ̇t(0)|ds

6
C

t

∫ t

0

sds =
C

2
t.

Thus, we obtain

v0 = lim
t→0+

vt = lim
t→0+

ξ̇t(0) = lim
t→0+

ξ̇t(t),

where vt = (yt−x)/t. Since u is a locally semiconcave function, by the monotone property of semiconcave

functions (see, e.g., [12]), we have

〈p− Lv(ξt(t), ξ̇t(t)), vt〉+ tC|vt|
2
> 0, ∀ p ∈ D+u(x). (3.10)

Taking limit in (3.10), then

〈p, v0〉 > 〈Lv(x, v0), v0〉, ∀ p ∈ D+u(x). (3.11)

In other words,

H(x, p) > 〈Lv(x, v0), v0〉 − L(x, v0) = H(x, p0), ∀ p ∈ D+u(x), (3.12)

where

p0 = Lv(x, v0) ∈ D+u(x),

by the upper semicontinuity of the set valued function x ; D+u(x), is the unique element solve the

associated optimization problem (3.12), and

lim
t→0+

DT̆tu(x) = lim
t→0+

Lv(ξt(0), ξ̇t(0)) = p0.

This completes the proof of (P4).

For the proof of (P5), note that, in our case, the minimal curve

ξt(s) =
yt − x

t
· s,
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thus, by (3.10), we have

〈p−Avt, vt〉+ tC|vt|
2
> 0, ∀ p ∈ D+u(x).

If 0 ∈ D+u(x), take p = 0 in the inequality above, then it follows

〈−κvt, vt〉+ tC|vt|
2
> 〈−Avt, vt〉+ tC|vt|

2
> 0, ∀ p ∈ D+u(x),

where κ > 0 is the smallest eigenvalue of A. Therefore,

(tC − κ)|vt|
2
> 0, ∀ p ∈ D+u(x).

If t 6 κC−1, then vt ≡ 0, yt ≡ x and u(x) = T̆tu(x). Conversely, if 0 = DT̆tu(x), then vt = 0 and yt ≡ x.

It follows 0 ∈ D+u(x) which proves (P5).

3.3 What happens for the inf-convolution

In this subsection, we discuss the procedure of inf-convolution. Let u be a locally semiconcave function

on R
n, and let L be a C2 Tonelli Lagrangian, for any fixed x ∈ R

n, define

φxt (y) := u(y) +At(y, x), y ∈ R
n.

It is worth noting that φxt is the sum of two locally semiconcave functions, and it is also locally semiconcave

consequently.

For the convenience of our discussion, we suppose that u is a global viscosity solution of the Hamilton-

Jacobi equation

H(x,Du(x)) = 0, x ∈ R
n, (3.13)

where H is the associated Hamiltonian with respect to L.

At this stage, we have

u(x) = Ttu(x) = inf
y∈Rn

φxt (y)

for all t > 0 by the well-known facts from weak KAM theory.

Lemma 3.5. Let u be a viscosity solution of (3.13), and φxt be defined as above for t > 0. Then for

t > 0, there exists zt such that

φxt (zt) = inf
y∈Rn

φxt (y).

Proof. This is actually obvious. Indeed, by Proposition 2.7, for any t > 0, and p ∈ D∗u(x), there exists

a C2 curve γ : (−∞, t] → R
n such that γ(t) = x, p = Lv(γ(t), γ̇(t)) and

u(γ(t))− u(γ(s)) =

∫ t

s

L(γ(τ), γ̇(τ)) dτ, ∀ s < t.

Taking zt = γ(0), then we have the expected result.

Now, we can impose such a question: Is the aforementioned procedure of inf-convolution efficient for

tracking the information of the propagation of singularities along generalized characteristics?

We will try to answer this question using the technique from nonsmooth critical point theory, see

also [9] for the applications by standard using Lasry-Lions regularization.

Lemma 3.6. Let u be a viscosity solution of (3.13) and the function φxt be defined as above for any

fixed x ∈ R
n and t > 0. Then there exists a one-to-one correspondence between p ∈ D∗u(x) and the global

minimizers zt of φ
x
t for all t > 0.

Proof. Let zt ∈ R
n be a minimizer of φxt , t > 0. Then φxt is differentiable at zt since φxt is locally

semiconcave. Thus, zt is a differentiable point for both u and At(·, x). Consequently, there exist two C1

curves γ1 : (−∞, 0] → R
n and γ2 ∈ Γt

zt,x such that

γ1(0) = γ2(0) = zt,
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p = Du(zt) = Lv(γ1(0), γ̇1(0)),

p′ = DxAt(zt, x) = −Lv(γ2(0), γ̇2(0)),

by Propositions 2.7 and A.4, and p+ p′ = 0 since zt is a critical point of φxt . Moreover, γ1 is a (u, L, 0)-

calibrated curve, i.e., for any s > 0,

u(γ1(0))− u(γ1(−s)) =

∫ 0

−s

L(γ1(τ), γ̇1(τ))dτ,

and, similarly,

u(x)− u(γ2(0)) = At(γ2(0), x) =

∫ t

0

L(γ2(τ), γ̇2(τ))dτ.

By the juxtaposition of γ1 and γ2, we define

ηt(τ) =

{

γ1(τ), τ 6 0,

γ2(τ), 0 < τ 6 t.

It is clear that ηt is a C
1 curve on (−∞, t] with ηt(t) = x, and

u(x)− u(ηt(−s)) =

∫ t

−s

L(ηt(τ), η̇t(τ))dτ, s > 0,

which follows that ηt is also a (u, L, 0)-calibrated curve, and such a (u, L, 0)-calibrated curve passing

through zt with x the terminal datum is unique. Therefore, the correspondence between zt and ηt is

one-to-one.

The rest of the proof is a direct consequence of Proposition 2.7.

Now, we fix a point x ∈ R
n.

(1) If x is a differentiable (or regular) point of u, then D∗u(x) = {Du(x)}, and φxt has a unique global

minimizer zt which determines a unique (u, L, 0)-calibrated curve passing though zt with x the terminal

endpoint.

(2) If x is singular point of u, it become relatively complicated. Let

Zx,E = {p ∈ R
n : H(x, p) 6 E},

which is a non-empty compact and convex set when the energy E, say E = 0, is suitably chosen. It is

known that D∗u(x) = ExtD+u(x), the set of extremal points of D+u(x), by Proposition 2.6. This means

the elements of D∗u(x) is exactly the set ExtD+u(x) which is located in the energy hypersurface ∂Zx,E

since H(x, ·) is strictly convex.

In the spirit of Lemma 3.6, we want to look for the critical points of φxt . A point x ∈ R
n is a critical

point of a locally semiconcave function u if 0 ∈ D+u(x). To find the critical points of φxt besides the

global minimizers as in Lemma 3.6, we cannot apply the standard Lasry-Lions regularization directly

since such a function φxt is only locally semiconcave. Fortunately, recall a well known nonsmooth critical

point theorem, see, for example, [28]. We only need the result in the following finite dimension setting.

Proposition 3.7. Let f : Rn → R be a locally Lipschitz function. Suppose that x1, x2 ∈ R
n, x2 6∈

B̄(x1, r) with r > 0 such that

max{f(x1), f(x2)} < b0 < inf
∂B(x1,r)

f,

and define

b = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where

Γ = {γ ∈ C([0, 1],Rn) : γ(0) = x1, γ(1) = x2}.

If f is coercive, then there exists x3 such that f(x3) = b and 0 ∈ ∂f(x3), where ∂f(x3) is the Clarke’s

generalized gradient of f at x3.
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The readers can refer to [21] for the definition and properties of Clarke’s generalized gradients. Applying

Proposition 3.7 to f = φxt above, we obtain the following lemma.

Lemma 3.8. Let u be a Lipschitz viscosity solution of (3.13), t > 0, and let x ∈ R
n be a singular

point of u. Suppose there exist finitely many elements in D∗u(x), say D∗u(x) = {p1, . . . , pk} with k > 2.

Then there exist k distinct global minimizers z1t , . . . , z
k
t of φxt .

Moreover, if

bij = inf
γij∈Γij

max
s∈[0,1]

φxt (γij(s)), 1 6 i, j 6 k, i 6= j, (3.14)

where

Γij = {γ ∈ C([0, 1],Rn) : γ(0) = zit, γ(1) = zjt },

then, for each pair of (i, j) with i 6= j, there exists a third critical point xijt of φxt such that φxt (x
ij
t ) =

bij > miny∈Rn φxt (y).

Proof. We suppose k = 2 and the proof in the general case is definitely similar. Suppose {p1, p2} =

D∗u(x), and t > 0. Then there exists two (u, L, 0)-calibrated C1 curves η1t and η2t , and two global

minimizers z1t and z2t of φxt such that

η1t (t) = η2t (t) = x, η1t (0) = z1t , η2t (0) = z2t

by Lemma 3.6. Since z1t and z2t are two isolated (global) minimizers of local Lipschitz function φxt which

is coercive by the superlinear growth condition on L, a third critical point is obtained in the context

of mountain pass method as in Proposition 3.7. The rest part of the proof is a direct consequence of

Proposition 3.7 and the fact that the Clarke’s generalized gradient ∂φxt (·) coincides with the (proximal)

superdifferential D+φxt (·) (see [12]) since φxt is locally semiconcave.

Therefore, we claim that if x ∈ R
n is a singular point of viscosity solution u, there exists a third critical

point xt = x12t of φxt determined by two isolated global minimizers z1t and z2t as Lemma 3.8.

Theorem 3.9. Let u be a Lipschitz viscosity solution of (3.13), t > 0, and let x ∈ R
n be a singular

point of u. Suppose there exist finite many elements in D∗u(x), say D∗u(x) = {p1, . . . , pk} with k > 2.

Then there exist critical points {xijt } of φxt (not global minimizers) such that, for 1 6 i, j 6 k, i 6= j, each

critical point xt = xij has the following dichotomy:

(a) xt is a differentiable point of φxt and there exists a local minimal curve connecting xt and x. More

precisely, there exists a C1 curve γ : (−∞, t] → R
n such that γ(0) = xt, γ(t) = x and the restriction of γ

on (−∞, 0] is a (u, L, 0)-calibrated curve, but γ is not a (u, L, 0)-calibrated curve on (−∞, t];

(b) xt is a singular point of u.

Proof. The existence of such critical points {xijt }16i,j6k of φxt is a direct consequence of Lemma 3.8.

The critical points {xijt } are not global minimizers of φxt since each global minimizer zit, 1 6 i 6 k,

is isolated.

Suppose xt is not a singular point of φxt , thus both u(·) and At(·, x) is differentiable at xt and

Du(xt) +DxAt(xt, x) = 0

since xt is a critical point of φxt . Let p = Du(xt) and p
′ = −DxAt(xt, x), then there exist two C1 curves

γ1 : (−∞, 0] → R
n and γ2 : [0, t] → R

n such that

γ1(0) = γ2(0) = xt, γ2(t) = x,

and

p = Lv(γ1(0), γ̇1(0)) = −p′ = Lv(γ2(0), γ̇2(0)).

It follows that γ̇1(0) = γ̇2(0) and γ, the juxtaposition of γ1 and γ2, is a C1 curve which is an extremal.

But, γ : (−∞, t] → R is not a (u, L, 0)-calibrated curve, otherwise, γ(0) = xt is a global minimizer of φxt
by Lemma 3.6.



1748 Chen C et al. Sci China Math September 2016 Vol. 59 No. 9

Remark 3.10. It is not clear, even when t > 0 is sufficient small, whether the critical point xijt of

φxt found by Lemma 3.8 is close to the singular point x of u. It is not hard to prove that when the

positive time t tends to 0, the global minimizers zit and zjt tend to x along the direction determined by

the associated limiting differentials in D∗u(x), respectively. We hope to dig out more information from

this approach in the future.

4 Concluding remarks

Recently, an intrinsic approach of the study of propagation of singularities along the generalized charac-

teristics is obtained, in both global and local cases. One of the essential parts is the regularity properties of

the fundamental solutions At(x.y). Then, it is natural to relate to some important facts in the literature:

• In the spirit of Lasry-Lions regularization (see [5] or [24]), the standard kernel of such inf/sup-

convolutions is defined by an integrable Lagrangian L(x, v) = |v|2

2 , and the associated fundamental

solution has the implicit form At(x, y) =
|y−x|2

2t .

• The Lax-Oleinik operators introduced in the theory of viscosity solutions of Hamilton-Jacobi equa-

tions play an essential role in the study of both Hamilton-Jacobi equations (see, for example, [6–8,12,22,

23]) and Hamiltonian dynamical systems (see, for example, [14–19]).

In view of the regularity results of At(x, y) in [10] for small t > 0, together with some rescaling

technique, it is worth imposing the following open questions:

• Is there a precise formulation on the correspondence between the classic characteristics determined

by the inf-convolution procedure (see Subsection 3.3) and the generalized characteristics determined

by the sup-convolution procedure (see Subsection 3.1)? What is the ω-limit sets of the generalized

characteristics?

• What is a more general setting for the problem of the long-time behavior of Lax-Oleinik operators,

even if the Aubry sets are empty?

• What is the relation between the Aubry sets and the cut loci in topological sense?

• How can we find a local minimizer in the procedure of inf-convolution as in Subsection 3.3?

• What can we obtained in analogy to the property (P4) in Theorem 3.2 for the t-dependent systems?

We will try to answer these questions in the future.
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6 Bernard P. Existence of C1,1 critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds. Ann Sci
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Appendix: Regularity properties of fundamental solutions

For the details of the proofs of the results in this appendix, the readers can refer to [10] or [8] under

certain special conditions.

Proposition A.1. Let 0 < t 6 1, R > 0 and suppose L satisfies (L1) and (L2). Let ξ ∈ Γt
x,y be a

minimizer for At(x, y), x ∈ R
n, y ∈ B̄(x,R), and let p(s) be the dual arc of ξ(s). Then we have

sup
s∈[0,t]

|ξ̇(s)| 6 ∆(x,R/t), sup
s∈[0,t]

|p(s)| 6 ∆(x,R/t), sup
s∈[0,t]

|ξ(s)| 6 ∆(x,R/t),

where ∆(x, ·) is non-decreasing.

Proof. For any t > 0, R > 0, let x ∈ R
n, y ∈ B̄(x,R) and ξ ∈ Γt

x,y be a minimizer for At(x, y), i.e.,

At(x, y) =

∫ t

0

L(ξ(s), ξ̇(s))ds.

Denoting by σ ∈ Γt
x,y the straight line segment defined by

σ(s) = x+
s

t
(y − x), s ∈ [0, t],

then by the Nagumo conditions in (L2) we have

∫ t

0

θ(|ξ̇(s)|)ds− c0t 6

∫ t

0

L(ξ(s), ξ̇(s))ds 6

∫ t

0

L(σ(s), σ̇(s))ds
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=

∫ t

0

L

(

x+
s

t
(y − x),

y − x

t

)

− L

(

s

t
(y − x),

y − x

t

)

+ L

(

s

t
(y − x),

y − x

t

)

ds

6 c1t|x|θ

(∣

∣

∣

∣

y − x

t

∣

∣

∣

∣

)

+ t max
y∈B̄(x,R),s∈[0,t]

∣

∣

∣

∣

L

(

s

t
(y − x),

y − x

t

)∣

∣

∣

∣

6 c1t|x|θ

(∣

∣

∣

∣

y − x

t

∣

∣

∣

∣

)

+ tM(t, R)

6 c1t|x|θ(R/t) + t max
|x|,|v|6R/t

|L(x, v)| =: C1(t, R).

By Condition (L2), we have

|L(x, v)− L(0, 0)| 6 |L(x, v)− L(x, 0)|+ |L(x, 0)− L(0, 0)|

6 c1θ(|v|)|v| + c2(x).

Thus,

C1(t, R) 6 c3(x,R)tκ1(R/t) (A.1)

with

κ1(s) = θ(s)(1 + s) + 1.

By the superlinear growth condition of θ, we have that

∫ t

0

|ξ̇(s)|ds 6 c4(x,R)tκ2(R/t),

where κ2(s) = 1 + κ1(s). Hence

|ξ(s) − x| 6

∫ s

0

|ξ̇(s)|ds 6 c4(x,R)tκ2(R/t), s ∈ [0, t], (A.2)

and

inf
s∈[0,t]

|ξ̇(s)| 6
1

t

∫ t

0

|ξ̇(s)|ds 6 c4(x,R)κ2(R/t). (A.3)

Now, we turn to estimating sups∈[0,t] |ξ̇(s)|. By Condition (L2) and the convexity of L, we have

θ(|ξ̇(s)|)− c0 6 L(ξ(s), ξ̇(s)) 6 L(ξ(s), 0) + 〈Lv(ξ(s), ξ̇(s)), ξ̇(s)〉

= L(ξ(s), 0) +

〈
∫ s

0

Lx(ξ(τ), ξ̇(τ))dτ + Lv(ξ(0), ξ̇(0)), ξ̇(s)

〉

. (A.4)

Note that we use the Euler-Lagrange equation in the last equality. By (L2) and the estimates above, we

have
∫ s

0

|Lx(ξ(τ), ξ̇(τ))|dτ 6

∫ s

0

c1θ(|ξ̇(τ)|)dτ 6 c1c3(x,R)tκ1(R/t) + c1c0t.

For any s ∈ [0, t], we also have

|Lv(ξ(0), ξ̇(0))| 6 |Lv(ξ(s), ξ̇(s))|+

∫ s

0

|Lx(ξ(τ), ξ̇(τ))|dτ.

Then, by (L2) and (A.3), it follows

|Lv(ξ(0), ξ̇(0))| 6 c1θ(|ξ̇(s)|) + c1c3(x,R)tκ1(R/t) + c1c0t,

and this implies

|Lv(ξ(0), ξ̇(0))| 6 c1θ( inf
s∈[0,t]

|ξ̇(s)|) + c1c3(x,R)tκ1(R/t) + c1c0t
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6 c1θ(c4(x,R)κ2(R/t)) + c1c3(x,R)tκ1(R/t) + c1c0t.

It follows there exists M > 0 sufficient large and µ > 0 such that

M |ξ̇(s)| 6 [c1θ(c4(x,R)κ2(R/t)) + c0t] + 2[c1c3(x,R)tκ1(R/t) + c1c0t] · |ξ̇(s)|+ µ

6 c5(x,R/t) · |ξ̇(s)|+ µ,

since c3(x, ·) is non-decreasing and 0 < t 6 1. This implies

|ξ̇(s)| 6
µ

M − c5(x,R/t)
=: c6(x,R/t).

So, if t 6 1, we have

sup
s∈[0,t]

|ξ̇(s)| 6 c6(x,R/t).

As for the dual arc p(·), by (L2), we have

sup
s∈[0,t]

|p(s)| = sup
s∈[0,t]

|Lv(ξ(s), ξ̇(s))| 6 c7(x,R/t).

We complete the proof by defining ∆(x,R/t) = max{c6(x,R/t), c7(x,R/t)}.

Fix x ∈ R
n and suppose R > 0 and L satisfies (L1)–(L2). In this case, the following observation is

one of the key points of the results on the local regularity properties of At(x, y). For any t > 0 and

y ∈ B̄(x,R), let ξt,y ∈ Γt
x,y be a minimizer for At(x, y), and pt,y be its dual arc. Then we have

sup
s∈[0,t]

|ξ̇t,y(s)| 6 ∆(x,R/t), sup
s∈[0,t]

|pt,y(s)| 6 ∆(x,R/t)

by Proposition A.1. Now, define

Kx := B̄(x,∆(x, 1)) × B̄(0,∆(x, 1)) ⊂ R
n × R

n,

K∗
x := B̄(x,∆(x, 1)) × B̄(0,∆(x, 1)) ⊂ R

n × (Rn)∗.
(A.5)

Then, by defining a function R(x, ·) : Rn × (0, 1] → (0,∞), R(x, t) = t
2 , we have

∆(x, 1/2) 6 ∆(x, 1). (A.6)

Because of the monotonicity properties of ∆(x, ·). So, if y ∈ B̄(x,R(x, t)), and ξt ∈ Γx,y is a minimizer

in the definition of At(x, y), then

{ξ(s), p(s)}s∈[0,t],t∈(0,1] ⊂ K∗
x, {ξ(s), ξ̇(s)}s∈[0,t],t∈(0,1] ⊂ Kx.

Proposition A.2 (See [10]). Fix any x ∈ R
n and t > 0 with R(x, t) defined as in (A.6). If yt is

the unique maximizer of ψx
t in B̄(x,R(x, t)) for all t ∈ (0, t0], and ξt ∈ Γt

x,yt
is a minimal curve in the

definition of At(x, yt), t ∈ (0, t0], then the family {ξ̇t} is equi-Lipschitz.

The proof of the following result is similar to those in [10] since the estimates involving certain first

and second order partial derivatives of L and H which are bounded on the a priori compact sets K∗
x

or Kx. The difference between the cases here and what in [10] is that the bound for the minimal curves

and the dual arc is independent of x in the latter.

Proposition A.3. Suppose L is a Tonelli Lagrangian satisfying (L1)–(L2). Fix any x ∈ R
n. Then

there exists t0 > 0, such that for 0 < t 6 t0, (t, y) 7→ At(x, y) is locally convex in

S(x, t0) = {(t, y) ∈ R× R
n : 0 < t 6 t0, |y − x| 6 R(x, t)}

with R(x, t) defined in (A.6).

More precisely, there exist constants C1, C2 > 0 such that, if y ∈ B(x,R(x, t)), then, for |h| ≪ 1 and

|z| ≪ 1, we have

At+h(x, y + z) +At−h(x, y − z)− 2At(x, y) >
C1

t3
|h|2 +

C2

t
|z|2. (A.7)
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Proposition A.4. Suppose L is a Tonelli Lagrangian satisfying (L1)–(L2). For any x ∈ R
n, there

exists t0 > 0, such that the functions w : (t, y) 7→ At(x, y) and (t, y) 7→ At(y, x) are both of class C1,1
loc in

S(x, t0) = {(t, y) ∈ R× R
n : 0 < t 6 t0, |y − x| 6 R(x, t)},

with R(x, t) defined in (A.6), for 0 < t 6 t0. In Particular, for any t ∈ (0, t0],

DyAt(x, y) =Lv(ξ(t), ξ̇(t)), (A.8)

DxAt(x, y) =− Lv(ξ(0), ξ̇(0)), (A.9)

DtAt(x, y) =− Et,x,y, (A.10)

where ξ ∈ Γt
x,y is the unique minimizer for At(x, y) and Et,x,y is the energy of the Hamiltonian trajectory

(ξ(s), p(s)) with p(s) = Lv(ξ(s), ξ̇(s)).


