Design and application of intelligent monitoring and management system for campus weak current pipeline network based on IoT + GIS technology

LI Zimu, LU Chuan, WANG Jilong, and LI Fenghua
Information Technology Center, Tsinghua University, Beijing 100084

Abstract: In view of the characteristics and problems in the process of information construction and operation of the campus weak current pipeline network, combined with the actual needs of the development of smart campus, an intelligent monitoring and management system of the weak current pipeline network based on IoT + GIS technology is designed and the campus geospatial information database as well as the weak current pipeline network database are established at the same time. The three-dimensional visual integration management of weak current communication resources, such as underground pipeline laying, optical fiber routing analysis, fiber-optic fusion relationship, integrated wiring in the building, off-motion monitoring of well cover, and so on, is realized, which greatly improves the campus weak current pipeline network resources management and maintenance efficiency, and provides scientific decision-making basis for rational and effective use of these resources.

Key words: internet of things (IoT); geographic information system (GIS); weak current pipeline network; smart campus

随着高校信息化建设的迅速发展，弱电通讯管

随着高校信息化建设的迅速发展，弱电通讯管
及时获知、光缆数量庞大、极点复杂预警、管理查询困难及缺乏统计分析等问题。传统手工管理方式已不能满足新时代智慧校园建设的需求。为此，有必要改变现有弱电管网管理模式，通过信息化手段提高校园弱电管网的管理水平。

近年来，物联网（Internet of Things，IoT）和地理信息系统（Geographic Information Systems，GIS）技术在地下管线的管理方面显示出诸多优势[4-5]，通过将各类通讯资源数据化、地理空间数据信息化及管网设备联网化，有效提高了管理水平，达到形象直观、地址可视、报警联动及状态可得的管理目标。本研究分析校园弱电管网传统管理模式面临的典型问题，提出基于IoT+GIS技术的解决方案，以及实施后的应用效果，并对系统的未来扩展进行说明。

1 需求分析

伴随信息化建设的不断深入，校园内各类数字化信息化应用不断拓展，弱电网对信息化建设的基础支撑作用愈发明显。完整的弱电网一般由室内和室外两部分组成，其中，室外网主要由地下工程，主要由井口/井盖、管道、管孔、交接箱及熔接包等构成，内容物主要为光缆；室内网主要为建筑内综合布线工程，主要由配线架、光纤架、管道及槽架等构成，内容物主要为光缆和双绞线。在校园网络实际运行过程中，对弱电网主要有以下几个方面需求。

1.1 了解相关空间要素分布

弱电网分布在校园内建筑物、水体、道路、地下设施、出入口及水电气暖管网等空间要素位置和系统关系密切相关。在日常运行管理过程中，弱电网最容易受到周边各种空间要素变化的影响，如基建施工、后勤维护即道路交通等。只有通过充分了解园区内各种地上物和地下空间的要素状态，才能对其可能受到的影响做到心中有数，进而对弱电通讯管道资源进行有效设计，达到科学规划、管理及使用的效果。

1.2 掌握井口运行状态

弱电网井口是整个管网系统的入口，对管网系统的安全运行具有至关重要的作用。但是井盖丢失、损坏及移动情况和水位超限情况时有发生，这不仅影响了通信网络的正常运行，容易造成巨大的直接或间接经济损失，而且移动井盖的丢失也会对道路上的车辆和行人造成极大危害，对社会安全造成极大负面影响。因此，需要通过智能物联设备对井口状态进行监控，及时发现并处理异常情况。

1.3 掌握管网路由资源分布

对分布在园区内数量庞大的光缆通讯管道和光缆资源，通过三维模型和可视化手段，可深入了解管网路由的分布情况和各种即时运行状态，实现对管网路由通达性与光缆资源可用性的全面掌握和精确认管。

1.4 掌握管道管孔光缆使用情况

对电网、管孔及光缆是校园信息化的重要基础资源，通过对这些资源使用情况进行综合管理和统计分析，可以准确了解这些通信资源的分布和使用情况，保证在突发故障时能够进行快速适当的应急处置，同时也可为校园未来的光缆建设规划提供科学决策依据。

1.5 端到端路由管理一体化

传统弱电网一般分为室外管井主干和室内布线接入部分分别管理，其中，室外网埋于地下，室内布线位于楼内。但是网络业务是端到端连续的，这种分开管理的结果使室内网主干和室内布线接入不能构成一个完整的端到端路由，给路由分析和通信管理带来一定困难，因此，对端到端路由进行一体化管理成为一个重要需求。

1.6 形成具有标准结构的基础资料库

传统的高校信息化资料管理，对于管道路由、光缆连接及光缆两端子等，基本使用CAD文件和纸质文件实现，这些信息承继方式往往存在介质丢失或损坏的可能，而且检索和更新很不方便，因此，建立标准结构的在线资源库，方便数据共享和动态更新检索，并对数据信息进行定时备份，更符合高校信息化的发展方向。

由以上需求可见，通过信息化手段对弱电管网进行改造，实现科学高效的运行和管理，已经成为校园弱电管网发展的必然需求。

2 系统设计

系统采用IoT+GIS技术，结合日常弱电管理业务，将信息采集、传输、加工、查询、统计及工单应用融为一体，实现校内弱电通信资源的综合管理功能，为校园弱电管网管理和决策提供科学手段和依据。
2.1 设计目标
为满足上述用户需求，系统的设计目标如下。
1）建立覆盖全校范围的地理空间信息数据库、管网基础数据库和井口状态数据库，通过制定统一的管网资源数据标准，实现弱电管网信息资源的数字化和标准化；
2）实现弱电管网资源信息与校园地理空间位置信息相结合，建立各类弱电通信资源之间的位置关系，实现基于 GIS 技术的可视化管理方法；
3）融合 IoT + GIS 技术，实现从井口、管道、管孔及光缆到纤芯、交接箱、分光器及终端盒等所有弱电管网信息资源的全方位监测和管理；
4）建立规范有序、合理科学的校园弱电管网管理工作流程，通过系统理顺和优化管理模式，提升校园弱电管理的信息化水平。

2.2 信息化改造
为对弱电管网进行智能监控和管理，首先需要对弱电管网进行信息化改造，主要包括井盖智能化和管线数字化。
井盖智能化采用智能井盖技术，给弱电管网井盖增加传感终端和智能锁，通过 IoT 技术传送数据，实现弱电管网井口状态的实时监控和远程开锁等功能。

管线数字化包括的室外地下管网和室内综合布线均需数字化方式，将数据保存在标准数据库中。同时需要将校园地理空间信息，包括建筑物、道路、广场、水体及绿地等数据进行采集和入库，为弱电管网可视化管理打下基础。

2.3 系统架构
图 1 为系统架构图，主要由平台层、基础数据层、中间管理层和应用服务层组成，配合网络和系统安全管理体系，完成整个系统的业务管理和授权认证等功能和服务。
平台层由 IoT 和 GIS 平台组成，其中，IoT 负责井口状态的监测和数据传输，GIS 负责校园空间模型和电子地图构建，为整个校园的弱电管网提供基于位置的三维可视化服务；基础数据层由井口状态数据、地理空间数据和管网基础数据库组成，这 3 个基础数据库为管网系统提供基础数据支撑；中间层由智能井盖管理、地理信息管理和弱电管网管理模块组成，协同管理对应数据，共同为上层应用服务提供基础支持；应用服务器层面向最终业务，提供直观可视的各项应用层功能服务。

![图 1 弱电管网智能监控系统架构](http://journal.szu.edu.cn)

2.4 支撑技术
1）IoT 网络技术。
弱电管网井口一般位于室外区域，分布较为离散，为了能够实时监测到井口状态，需要在井盖上安装物联网智能终端，通过低功耗广域物联网（low-power wide-area network，LPWAN）技术进行数据传输。LPWAN 目前有 NB-IoT 和 LoRa 两大技术阵营，如何选择 LPWAN 技术成为本系统需要考虑的首要问题。

| 表 1 NB-IoT 和 LoRa 技术相关的主要指标 | 可见，两种技术在性能指标方面比较接近，主要差别在于工作频段、部署模式、运维模式、技术标准和发展趋势。LoRa 技术由美国 SemTech 公司主导，其也是全球唯一的芯片供应商，存在较大的安全风险和政策风险，且该网络需要全新开建，有一定建设周期，运维团队技术水
平要求较高。与之对应，NB-IoT 技术属于 3GPP 国际标准，中国厂商和运营商处于相对主导地位，是目前国内主推的物联网技术，且运营商在校园内已经建成网络，可立即开通使用。”

<table>
<thead>
<tr>
<th></th>
<th>传输距离</th>
<th>电池寿命/年</th>
<th>传输速率 kbit/s</th>
<th>连接容量 (1000 个)</th>
<th>工作频段</th>
<th>部署模式</th>
<th>运维模式</th>
<th>技术标准</th>
<th>发展趋势</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB-IoT</td>
<td>远距离</td>
<td>(1～10 km)</td>
<td>～10 年</td>
<td><100</td>
<td>运营商频段</td>
<td>与现有蜂窝基站融合</td>
<td>运营商主导建设</td>
<td>3GPP 国际标准</td>
<td>国家战略主导</td>
</tr>
<tr>
<td>LoRa</td>
<td>远距离</td>
<td>(1～10 km)</td>
<td>～10 年</td>
<td>0.3～50.0</td>
<td>200 km-hub</td>
<td>开放频段，易受干扰</td>
<td>全新独立建设</td>
<td>自建自管</td>
<td>国外单一专利技术公司主导</td>
</tr>
</tbody>
</table>

综合考虑以上因素，本系统最终采用 NB-IoT 作为智能井盖数据的物联网传输技术。如图 2 所示，NB-IoT 网络由智能井盖终端、基站、核心网、数据转发平台、数据服务器和弱电管网应用系统组成。其中，网络部分由运营商建设运维，智能终端、应用系统和数据服务系统由学校建设运维。这种技术路线优点在于学校无需建网，可以集中精力聚焦应用系统和数据建设，缺点是井口监测数据需要通过运营商网络进行传输，存在一定的安全风险。通过物联网技术，系统可以实时监测井盖开启状态和井内水位状态，还可以实现远程授权开锁和井口的功能，极大方便了弱电管网的施工管理。

![图 2 NB-IoT 网络数据流程图](http://journal.szu.edu.cn)

2) GIS 可视化技术。

GIS 技术以地理空间为基础，采用地理分析模型，实时提供多种空间和动态数据的地理信息技术，是一种基于位置服务的计算机图形技术，非常适合应用于地下管网等与位置、空间密切相关的资源类管理信息系统。

WebGL 是一种 3D 绘图标准，其允许 JavaScript 与 Open GL ES 2.0 结合，通过向 Open GL ES 2.0 添加 javascript 绑定，WebGL 可为 HTML5 画布提供硬件 3D 加速渲染，这样 Web 开发人员就可以使用系统图形卡在浏览器中更平滑地显示 3D 场景和模型，并创建复杂的辅助线、导航和数据可视化。

本系统结合 GIS 和 WebGL 技术特点，形成覆盖学校所有建筑的电子地图，并将校园弱电管网资源管理相关的业务数据与物理位置信息建立有效关联，能够在三维地图上对学校弱电管网要素信息进行显示、定位以及统计分析，实现对弱电管网资源的三维可视化管理和展示。

通过 GIS 可视化技术不仅可以实现弱电管网资源的三维可视化管理，有效提高管道走向、路由分析及泵站等常规操作的准确性和效率，还可以通过使用率分析、光缆辅助铺设及道路模拟开挖等功能，了解全校弱电管网的整体使用情况，直观有效地进行光缆路由设计和道路施工影响预估，极大提高学校弱电管网建设的科学规划水平。

3）应用效果

与传统手工管理方式相比，建成后的校园弱电管网智能监控管理系统在数据查询、管线状态、管道路由、光缆敷设、光纤熔接、统计分析及业务管理等多方面具有显著优势。图 3 为系统的部分功能界面，管理员和决策人员可以通过遥感、平面及三维多种形式浏览园区地形地貌，对各个图层进行管理和分析显示，随时查看管网运行状态，并在地图上对弱电通信资源进行查询、分析、统计及管理等操作，主要包括：

1) 管井状态监测。实时查看井口位置、周围环境、井盖开启及水位超限等信息，授权远程开锁。
2) 管网要素查询。对井、管道、管孔、光缆、终端盒、分支器、交接箱及桥架等弱电管网通信资源要素信息进行快速查询和定位。
3) 通信资源管理。对管道连接关系、管孔排
布和使用率、光缆容量和路由走向、终端盒型号和
排布、交接箱熔接关系等信息进行查询和管理。
4) 数据统计分析：对井口、管道、管孔及光缆
等资源要素的特征属性进行综合统计分析（如直
观查看电信运营商对校园弱电管道资源的使
用情况），可以按照最短长度、管孔密度及光缆容
量等特定条件进行光缆辅助路由设计，对修路和挖
坑等进行模拟开挖，对施工环境进行预先评估。
5) 三维一体化管理：实现从室外到室内的三
维透视，全方位角度观察弱电管网在室外地下和
建筑物内的路由分布情况，实现端到端路由的一体
化管理。

图 3 部分功能截图展示

结语

基于 IoT + GIS 技术的校园弱电管网智能监控管
理系统充分利用 IoT 和 GIS 技术，对校园弱电通信
资源进行智能化改造和数字化整合，改变了传统弱
电管网管理模式，其中，IoT 为系统进行数据采集
处理；GIS 为系统提供分析展示，系统实现了管网
状态的动态监测和可视化管理，很好满足了用户需
求，为校园弱电管网基础设施建设管理和提供高
eff. 先进及科学的支持手段。通过在关键节点安装
智能电表、智能水表、智能气表、智能压力表、智能
流量表和智能液位表等物联网智能传感终端，该
系统还可以进一步扩展支持水电气暖等传统地下管
网的动态监测和可视化管理，为全面建设智慧校园
夯实基础。

作者简介：李子木（1971—），清华大学高级工程师，博士。研究
方向：计算机网络/物联网、网络安全及信息技术。
E-mail：lzmsncet.edu.cn

参考文献 / References:
[1] 王爱星，任宇中，姜 楠. 浅谈地下管网信息管理系统
关键技术[J]. 智慧城市，2020(5)：68-69.

信息通信，2017(8)：256-257.
[3] 高 阳. 基于 NB-IoT 和 LoRa 相互协作的窨井盖检测
[4] 奥 夫. NB-IoT 与 LoRa 技术在物联网中的应用研究
[5] 吴 毅，夏婷，李勇青. 基于 NB-IoT 及 LORA 的技
术分析和应用展望[J]. 中国管理信息化，2018(3)：
162-164.
应用研究[J]. 油气田地面工程，2019，38(6)：61-
63.