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ABSTRACT

The development of modern science and technology requires high magnetic fields exceeding 25T.
Second-generation high-temperature superconducting wires, i.e. REBCO (REBa,;Cu307-x, RE refers to Y,
Gd, Dy, Eu and other rare-earth elements) coated conductors (CCs), have become the first choice for

high-field magnet construction because of their high irreversible magnetic field. The mechanical stresses

caused by manufacturing, thermal mismatch and Lorenz forces closely influence electromagnetic

performance during operation for REBCO CCs. In addition, the recently studied screen currents have
effects on the mechanical characteristics of high-field REBCO magnets. In this review, the experimental and
main theoretical works on critical current degradation, delamination and fatigue, and shear investigations

on REBCO CCs, are reviewed at first. Then, research progress on the screening-current effect in the

development of high-field superconducting magnets is introduced. Finally, the key mechanical problems
facing the future development of high-field magnets based on REBCO CCs are prospected.

Keywords: REBCO second-generation high-temperature superconducting coated conductors (REBCO
2G-HTS CCs), high-field magnets, mechanics, screening-current effect

INTRODUCTION

High-field superconducting magnets have potential
application prospects in future accelerators, nuclear
magnetic resonance (NMR), magnetic resonance
imaging (MRI), fusion reactors and other large-
scale advanced devices. At present, superconduct-
ing magnets can be divided into two categories. One
is low-temperature superconducting (LTS) mag-
nets made of NbTi and/or Nb;Sn materials. They
have already been commercialized (in MRI, NMR,
etc.), and successfully demonstrated in accelera-
tors and so on [1-3]. The other is superconducting
magnets based on high-temperature superconduct-
ing materials. Compared with Bismuth-based super-
conductors and MgB, high-temperature supercon-
ducting (HTS) materials, second generation RE-
BCO (REBa,Cu;305-x, RE refers to Y, Gd, Dy, Eu
and other rare-earth elements) HTS coated con-
ductors (CCs) have higher mechanical strength and
critical current. In particular, its excellent current-
carrying capacity (450-500 A at 42 Kand 19 T

[4]) under high magnetic field makes it suitable for
high-field superconducting magnets over 15 T. In
addition, REBCO CCs have been commercialized
on a large scale. Now REBCO CCs are produced
worldwide by many companies from the USA [§,6],
Japan [7] and China [8] etc. One type of magnet
consists of pancake winds with flat REBCO CCs,
shown in Fig. 1(a). The superconducting magnet
properties are constrained by the non-linear elec-
tromagnetic constitutive relation formed by the in-
teraction between critical temperature, critical mag-
netic field and critical current density, as shown in
Fig. 1(b). It is well known that the magnetothermal
instability of a superconducting material is closely
related to the safe and stable operation of the su-
perconducting device. Jing et al. developed a series
of numerical models to study the flux avalanches
and mechanical failure of superconductors [9-13].
The numerical results were in good agreement
with experiments, and revealed some new findings
about the thermal-magnetic-mechanical instability
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Figure 1. (a) Schematic of a single-pancake coil in the magnet, reproduced from ref. [14]. (b) The critical temperature, critical magnetic field and critical
current density of a superconductor. (c) Stress applied in the microelement body of the CC.

behavior of the superconductors. REBCO CCs
are inevitably subjected to complicated mechanical
loadings, such as the assembly stress, thermal stress
and electromagnetic stress. Any microelement in a
superconducting magnet is subjected to the super-
position of normal stress and tangential stress, as dis-
played in Fig. 1(c).

As early as 1976, Ekin discovered that the critical
current of Nb;Sn would degrade non-linearly with
an increase in strain [15]. Later, a large number of
experimental results showed that REBCO supercon-
ducting materials also show a similar phenomenon.
Therefore, the mutual coupling between strain and
current-carrying characteristics was inevitable in the
application of REBCO CCs. For the convenience
of engineering design, researchers defined the con-
cept of irreversible strain under uniaxial tensile load
to characterize the degradation behavior of critical
current with strain. Once the deformation of the su-
perconducting tape exceeds the critical strain, the
critical current degenerates irreversibly, which indi-
cates that part of the superconducting material may
be damaged. In addition, because the REBCO CC
is a laminated structure having a potential risk of lat-
eral delamination, it is also difficult to figure out how
to accurately measure the lateral allowable stress,
which can guide the engineering design. Therefore,
in the first part of this paper, research progress on
the axial tension and lateral delamination strength of
the REBCO CC (YBCO (YBa,Cu307-x) CC is of-
ten used as an example) is reviewed.

As is known, with an increase in the magnetic
field strength the screening-current effect in a mag-
net becomes more and more important. Traditional
magnet design methods often ignore the relation-
ship between mechanical characteristics and the
screening-current effect. They only regard the me-
chanical responses as direct outputs without consid-
ering coupling mechanical effects. Previous studies
have shown that this would often lead to it being dif-
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ficult for the design index of the magnetic field of
superconducting magnets to reach expectations. In
the second part of this paper, the research progress
on mechanical characteristics and the screening-
current effect in superconducting magnets is sum-
marized. Certainly, there are many comprehensive
articles on the development of superconducting
magnets based on high-temperature superconduct-
ing materials [ 16-18]. These articles summarize the
current research status of superconducting magnets
and the difficulties and challenges from different
views. In this review, the key mechanical problems
facing the development of high-field magnets based
on REBCO CCs are summarized. And more atten-
tion should be paid to mechanical effects in the de-
velopment process of future high-field magnets.

ELECTROMECHANICAL PROPERTIES
OF REBCO CCS

Compared to LTS wires such as Nb3Sn and NbTj,
the critical temperature and magnetic field of HTS
wires, e.g. the Bi-based first-generation (1G) HTS
wires and the REBCO CCs, are far beyond those
LTS materials, making it possible to construct mag-
nets exceeding 25 T. In contrast with 1G HTS wires,
REBCO CCshavelarger tensile mechanical strength
and large critical current density at 77 K. As a result,
REBCO CCs emerged as a potential candidate for
high-field magnets and power applications [19,20].
Through years of effort, several physical and chem-
ical deposition techniques have been developed,
giving CCs layered structures that are significantly
improved, with a long length (>1 km) and high per-
formance (230-305 A at 4.2 Kand 18 T [4]). The
architecture of REBCO CCs is displayed in Fig. 2.
Prototypes of transmission cables, motors and
magnets are manufactured with REBCO CCs
[21-23], and a huge market with great potential
and wide prospects is coming. Despite the superior
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Figure 2. Structure of the layered structure of the REBCO 2G
HTS CC, in which RE refers to Y, Gd, Dy, etc.

merits of REBCO CCs, the working conditions of
this material are very extreme and always involve
cryogenic temperatures of 4.2-77 K and magnetic
fields up to tens of Tesla, hence the large thermal
stress and electromagnetic forces (EMFs) that
are exerted on these CCs, as shown in Fig. 1. The
reported hoop stress can be as large as hundreds
of MPa [24,25], and the thermal-stress-induced
delamination behavior can be a serious problem
in an epoxy-impregnated magnet coil [26,27].
The damage caused by a huge electromagnetic
force has been a constraint for achieving higher
magnetic fields [28,29]. As a ‘practical’ magnet-
grade conductor, REBCO CCs pursue not only
the high critical current density J., but also the
ability to withstand high mechanical stress without
major deterioration of the transport properties
when bent or stressed during handling, winding or
operation under extreme environments [30]. In
this part, we review the electromechanical property
investigation of REBCO CCs from aspects of
experimental, theoretical and numerical analyses.
The remaining challenges with regard to experimen-
tation and mechanism analysis are also reported,
aiming to promote the future improvement of
REBCO CCs with high performance for scaled-up
applications.

The electromechanical property of
REBCO CCs in a longitudinal direction

Experimental approaches for longitudinal
electromechanical investigation

To investigate the longitudinal strain influence on
the critical current I, in REBCO CCs, the strains are
exerted on samples through two methods: one is di-
rect stretching, and the other is bending through the
attached loading module, shown in Fig. 3.

In the stretching loading types, the tensile
force/strain can be recorded from the load cell and
extensometer, respectively. In the direct stretching
method, clamps serve the dual purpose of electrical
contacts and grips for applying strain. The I, is
determined by a four-point testing method. Stress o
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Figure 3. Schematic of two types of longitudinal strain load-
ing. (a) Direct stretching by tensile machine. (b) Bending
through the attached loading module.

vs. strain € curve and € dependence of I, curve can be
obtained. However, sometimes non-uniform strain
distribution near the clamps causes pre-quench
during the test. Direct stretching methods are
utilized in research groups in Lanzhou University
[31,32], Kyoto University [33], Andong National
University [34] and Twente University [35]. In the
bending approach, the CC sample is soldered onto
a metal beam, such as U-spring, Pacman, Walters
spring. Tensile or compressive strains can be ap-
plied to the CC samples by changing the bending
diameters through the bending moments applied to
the beam, and can be expressed as ¢ = y /R, where
y and R are the distance from a neutral axis to the
REBCO film, and bending radius. Since no clamps
are used, the non-uniform stress distribution is
avoided. Compared with direct stretching, bending
can provide more uniform tensile and compressive
strains. The bending approaches are adopted among
research groups in Twente University [36], Geneva
University [37], Durham University [38] and
Colorado University [39]. Both types of loading
frames have been developed for 77 K self-field and
magnetic-field tests at 77K [31,36,40], magnetic
field tests at different temperatures [37-39,41,42].
For direct measurement of the internal strain of
the superconducting layer in the composite YBCO
CCs, the diffraction techniques of synchrotron
radiation [43] or neutron diffraction [44] were
used combined with a tensile module to monitor
the Bragg peaks of the crystal plane. Recently, Liu
et al. developed a loading frame combined with an
magneto-optical (MO) imaging system to monitor
the real-time magnetic flux evolution of the CC
under tensile strain [32,45]. Zhou et al. constructed
a loading facility with an incorporated racetrack
superconducting magnet providing a magnetic
field up to 3.5T parallel to the c-axis [46]. The
loading frame was cooled by Gifford-Mcmahon
(GM) cryocooler so that different I,-strain curves
could be acquired at different temperatures. This
facility contains a quartz window enabling the
global strain measurement of YBCO CCs by
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digital-image-correlation (DIC) method. As can be
found, tensile devices have been developed with
multiple functions in order to further reveal physical
properties during straining.

The electromechanical behaviors of REBCO
CCs with strain below the irreversible

strain limit

Experimental results in the 77 K self-field condi-
tion have shown that the longitudinal strain/stress
can reversibly degrade the I. below a strain/stress
limit, while beyond the limit, the degrading behav-
ior is irreversible. The corresponding limits of strain
and stress are denoted as irreversible strain limit
& and irreversible stress limit oy, [47]. In the re-
versible strain range, the strain dependence of I. can
be expressed with a simple power-law expression as
[48,49]:

IC(Su):L‘m(l_alga _gplb)v (1)

where the ¢, and ¢, are the applied microscopic
strain and the peak strain (it is thought to be resid-
ual strain caused by thermal or lattice misfit) in the
superconducting layer, I, is the maximum critical
current where the intrinsic strain £y (80 = &, — €,)
is zero, a is the strain-sensitivity parameter and b
is the fitting parameter exponent. Details of the ap-
proaches used to calculate the strain sensitivity can
be found in Ekin’s book [50]. Based on the 3D/2D
mixed-dimensional modeling technique, Gao et al.
adopted a mixed-dimensional elastoplastic finite el-
ement method (FEM) model and provided numer-
ical analyses of YBCO CCs during fabrication, cool-
ing and under tensile load [51]. In their model, the
residual strains accumulated during the fabrication
and cooling processes are calculated by a multi-step
modeling method that emulates the manufacturing
process, through which a phenomenological critical-
current-strain model based on the Ekin power-law
formula and the Weibull distribution function is
combined with the mixed-dimensional conductor
model to predict the strain dependence behavior of
the critical currents in the reversible and irreversible
degradation strain ranges. Yong et al. presented a
model based on a modified Ginzburg-Landau func-
tion [52]. This model explains how the pre-strain
markedly influences the wave function and degrades
the critical current in the deformable superconduc-
tor. Van der Laan et al. found a similar critical-
current degrading behavior, which was also found in
YBCO films with grain boundaries of different an-
gles [S3]. It was explained that the maximum cur-
rent is obtained when the applied strain offsets the
compressive strain within the grain boundary chan-
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Figure 4. Experimental results versus the calculations from
the model by Yue et al. [49].

nels. Based on these results, Yue et al. proposed anew
model for current transporting in the [001]-tilt low-
angle grain boundary based on the strain energy of
dislocation [54], expressed as

Je.os = Jc (0) exp <_3>

0.
(YG b2+A
1—_p0—2+°A/da)|8—8m|2+A ,
Ee;,
w

)

where] . (0)is the critical current density when the
sample does not experience strain, 8 denotes the
misorientation angle of the grain boundary, 6. is a
constant (its value can be selected in the range of
3.2-5°), &,,denotes the maximum strain that existed
within the superconducting channel when the ap-
plied strain is equal to zero, py denotes the disloca-
tion density without external strain, A is a positive
parameter determined by the shape of the function,
aGbET™ denotes the strain energy of single disloca-
tion under free strain, and E is the average energy
of the single dislocation within the grain boundary.
Figure 4 displays the comparison between the exper-
imental results and the presented model. One can
see that a good agreement is obtained, and thus the
clear physical meaning of the empirical parameters
in the fitting formula has been confirmed.

In experiments with varying temperatures and
magnetic fields, the strain dependence of the critical
current becomes a little complex, and the main char-
acteristics are summarized as follows:

¢ In an applied magnetic field parallel to the ab
plane, the change of critical current density de-
creases with the low magnetic field and increases
in the high magnetic field [SS]. Where the mag-
neticfieldis applied along the c axis, the peak of the
normalized I. emerges with the €, shifted [33,39].
In a bending test, the normalized I, (&,) shows
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Figure 5. Fracture behavior of the superconducting layer in YBCO CCs. (a) Crack forma-
tion by discontinuous yielding of the substrate. (b) Crack extension from the substrate to
superconducting layer. (c) Micro transmission electron microscope (TEM) results at the
crack tip, where the amorphous phase exists and is indicated in the broken rectangle,
reproduced from ref. [9].

two maxima under a magnetic field below 3 T, and
both maxima are nearly the same and located at
compressive and tensile sides. The relative magni-
tude of the peaks increases with magnetic field and
reaches a maximum at ~0.25 T. Both peaks disap-
pear at an applied field of ~3 T, and the reduction
of I, with strain increases with magnetic field be-
yond 3 T [39].
¢ The strain dependence of the critical current in
a self field or external field becomes insensitive
when temperature is reduced [33,41,42]. In addi-
tion, the peak strain in a self field shifts to the com-
pressive side as the temperature decreases [41]
and cannot be determined just by thermo-strain
[56] as previously suggested, because it is contrary
to the thermo-strain analysis that the peak strain
should be shifted to the tensile side.
The existing models mentioned above hold well
for the YBCO CCs at 77 K self field. The physi-
cal mechanisms of effects of temperature and mag-

netic field on I, (g,) are still unclear. Therefore, a
more comprehensive modelstill needs to be estab-
lished so as to correctly predict the current behav-
ior of YBCO CCs with varying temperatures and
magnetic fields.

The cracking of the superconducting layer in
REBCO CCs with strain beyond the irreversible
strain limit

When the applied strain in a second-generation
(2G) HTS CC exceeds the ¢,,,, the reduction of crit-
ical current cannot be recovered after the stress is un-
loaded. Diffraction results have verified the ceramic
superconducting layer fractures at &,,,, which are due
to its brittle nature. The temperature and magnetic
field do not affect the ¢;,,. The cracking behavior is
thought to be related to discontinuous yielding [ 57],
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as shown in Fig. 5(a). A large localized strain initi-
ates at the discontinuous yielding area, and there-
fore the misfit between the deformation of YBCO
and substrate under the applied strain is mediated by
the crack formation [58]. The results [ 14] from mag-
netic flux evolution under quasi-static loading reveal
that the cracks are initiated from the substrate and
extend along both tape thickness and width direc-
tions as shown in Fig. 5(b). The amorphous phases
were found at the tip of the cracks, as displayed in
Fig. 5(c).

Methods to improve the electromechanical

property against the axial strain/stress

There are two ways of improving the ¢;, of YBCO
CCs, and the first way is to increase the stabilizing
layer thickness or laminate a metal layer on YBCO
CCs [34,59-64], where the increment of ¢;,, value
ranges from 0.04% to 0.36%. The improvements are
attributed to two reasons. One is that the additional
metal layers have bigger coefficient of thermal
expansion (CTEs) than YBCO, producing a larger
compressive pre-strain in the YBCO layer during
cool down and hence resulting in extra tensile strain
to compensate. The other is that, under tensile stress,
once the cracks initiate in the REBCO layer, they
propagate in both thickness and width directions.
These metal layers improve the toughness of the
brittle ceramic layer because the added ductile phase
shields (as a ligament) the crack initiation zones
behind the crack tips, thus inhibiting and retarding
crack propagation along the width direction. In spite
of the increase of tolerant strain by an additional
metallic layer, for materials like copper, with low
yielding stress, an increase in the volume fraction of
copper would lead to a decrease of 0;, . Therefore, a
trade-off between strength and protection should be
considered in engineering design [62]. The second
way is to solder YBCO CCs on a pre-stretched steel,
so that a pre-compressive strain exists in the YBCO
CCs. Thus, a larger tensile &;,, value is obtained by
canceling the pre-compressive strain. This approach
shows that the increment of the ¢;, of the YBCO
CCsis ~0.34% [65].

Fatigue properties of REBCO CCs

For superconducting devices such as superconduct-
ing magnets, motors, transformers and magnetic
energy storage devices, the coils inside, based
on REBCO CCs, always involve situations of
charge/discharge cycles, repeated thermal cycles
and alternating current transportation. The resultant
periodic electromagnetic force and thermal mis-
match stress will apply on the CCs. As a result, the
CCs will be subjected to alternating stress/strain.
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Figure 6. Schematic diagram for measuring shear strength of REBCO CCs.

Thus, evaluating fatigue properties of REBCO
CCs is important for their practical application.
The fatigue investigations on REBCO CCs can
be classified into two categories: one is high-cycle
fatigue testing (periodic dynamitic alternating load
stress/strain is applied to CC samples) [66-72],
and the other is static-fatigue measurement (a con-
stant force is exerted on the CC samples) [73,74].
High-cycle fatigue research is concerned with the
applied maximum stress or strain, i.e. Opmax OF Emaxs
stress (or strain) ratio R, and fatigue number of the
cycles N to reach mechanical (structure broken)
or electromechanical failure (critical current degra-
dation). Static-fatigue investigation emphasizes the
relationship between the applied stress level and
static-fatigue lifetime, i.e. elapsed time to reach a
criterion of the retention of critical current.

The first fatigue analysis on CCs was done by
Mbaruku et al. [66]. The CC made by SuperPower
with 50 wm thick substrate and 20 pum thick Cu sta-
bilizer showed no degradation of critical current af-
ter 200k cycles under a &, 0of 0.367% and R of 0.5.
For higher &, the degradation of I. was observed
with lower Ny. Similar fatigue behaviors can also
be found in other studies with stress control mod-
els [67,68,71]. Moreover, in those reported by Sug-
ano et al. [67], Shin et al. [68] and Chen et al. [71],
both the mechanical and electromechanical N in-
creased with elevated R for the same &, or Oy,
indicating that the fatigue strain (or stress) range
was a more important factor in determining the me-
chanical and electromechanical N than the £, or
Omax- Since the metal layer accounts for the main
part of CCs, and current-carrying capacity depends
on the superconducting layer, thus mechanical fa-
tigue properties are mainly determined by the duc-
tile metal substrate, and electromechanical fatigue
properties predominantly depend on the brittle ce-
ramic REBCO layer. Fractographic results showed
that mechanical failure correlated with the fatigue
cracks in the Hastelloy substrate [67], and the degra-
dation of I, was caused by crack propagation in the
REBCO layer. The cracks formed and localized in
weak areas and in defects that were induced by a slit-
ting process at the CC edge [66,69,70,72], i.e. a full-
width CC tape was cut into small-width CC tapes.
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These cracks grew faster due to higher €;,,,01 Oay,
and as a result, a full-width CC usually had a bigger
fatigue tolerance than the cut one [72].

With regard to the static fatigue behavior,
there are a few studies on it. De Leon et al. [73]
reported that the CC had no degradation with an
applied stress level of 90% of yield stress oyand
elapsed time over 100 hours, whereas I. dropped
significantly when high stress levels were applied,
especially when the applied stress was near or equal
to the oy. In addition, their recent work [74] found
that for a CC sample simultaneously subjected to
axial tension and bending strain in a static fatigue
experiment, the bending diameter influenced the
allowable applied stress level and the static fatigue
lifetime, i.e. for a smaller bending diameter with the
same static fatigue lifetime, the applied stress level
must be reduced.

Shear strength of REBCO CCs

For epoxy impregnated magnet coils made from RE-
BCO CCs, the hoop stress caused by electromag-
netic force is a function of the radius. Shear stresses
exist at the interface between the epoxy and CC
tapes. Hence the shear strength is one of the impor-
tant mechanical properties of YBCO CCs. As shown
in Fig. 6, the shear stress is applied to the CC sam-
ple through a pair of soldered metal plates that are
under tensile forces. Some researchers measured the
shear strength of YBCO CCs. For example, Gao et al.
proposed a new method, which can realize the pure
shear load on the tapes by eliminating the torque ef-
fect, to measure the shear strength of YBCO CCs
[75]. Liu et al. designed an experimental device for
applying shear stress along the width direction of the
tape [76]. The delamination test of the YBCO tape
under shear stress at both room temperature and lig-
uid nitrogen temperature has been performed. In the
work by Liu et al. [76], it is reported that the shear
strength of YBCO CCs is <10 MPa, and the aver-
age shear strengths at liquid nitrogen are higher than
those at room temperature. Also, as shown in Fig. 7,
the dependence of Ic on the shear stress of 16 sam-
ples was measured. One can see that: (i) all shear
strengths are <10 MPa; (ii) for most of the samples,
their critical current decreases rapidly, as shear stress
is close to the maximum values.

Electromechanical properties of REBCO
CCs in the transverse direction

Experimental approaches for transverse elec-
tromechanical investigation

For a 2G HTS CC, the brittle ceramic layers in-
cluding YBCO layer and buffer layer are together
sandwiched by the ductile metal layers, i.e. silver,
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copper and substrate layers. For the reason that the
fracture toughness of the metal layer, in the order
of kJ/m?, is several orders higher than the ceramic
layer, typically in the order of J/m?, the whole CC
sample can be regarded as a mechanical structure
that the metal layers are joining together by this ad-
hesion [77]. As a result, the bonding strength in the
transverse direction is mainly determined by the co-
hesive bonding strength in the matrix of each ce-
ramic layer itself, and adhesive strength between the
interfaces. In order to achieve a better understanding
of the mechanical properties of this laminar struc-
ture, especially the stress response along the trans-
verse direction, the testing methods are classified
into four types based on the exerted stress condition
[77], as shown in Fig. 8.

Delamination behavior of REBCO CCs

The transverse tensile test includes anvil [78-92],
pin-pull [93] and three-point bending tension tests
[94]. In the anvil method, the CC is soldered be-
tween a pair of upper and lower anvils, thus the
tensile stress is applied through the anvils, perpen-
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dicular to the CC surface. This method was first
adopted by Van der Laan et al. [78] to evalu-
ate the transverse mechanical delamination strength
(MDS) of YBCO CCs. Shin et al. [82] gave the
definition of mechanical delamination and elec-
tromechanical delamination, and conducted a se-
ries of systematic studies on factors that influence
the anvil measurements. For mechanical delamina-
tion, physical separation takes place within a layer
or between any adjacent layers. The delamination
strength is related to adhesion strength. For elec-
tromechanical delamination, electrical disconnec-
tion happens when the superconducting layer is
broken, which is detected by degradation of criti-
cal current. For the mechanical delamination test,
it is found that the slitting process in fabrication
could reduce the result of the MDS due to the
crack formation of the superconducting layer near
the cut edge of the CC samples [78,80,81,87,88,91].
It was found that the anvil measurement is not
influenced by certain factors, like CC sample ar-
rangement between the anvils [86,91], loading
speed [84] and thickness of the silver layer [92],
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Figure 9. Delamination strength of YBCO CCs from SuperPower Inc., reproduced from ref. [92]. The anvil has a width of 4 mm and a length of 8 mm. The
width of the CC sample is 6 mm. The sample capacity of each group is 30. (a) Mechanical delamination strengths of YBCO CCs at room temperature and
77 K along with results of the electromechanical delamination strength. The two inserts are schematics for mechanical and electromechanical tests.
(b), (c) and (d) are the frequency distributions of the mechanical delamination strength of YBCO CCs at room temperature, 77 K, and electromechanical
delamination strength, respectively. In each group test, 30 samples were continually cut and used for testing. The mechanical delamination strength
ranges from 22.5 MPa to 54.8 MPa with an average value of 35.3 MPa at 77 K, and from 24.7 MPa to 54.3 MPa with an average value of 36.0 MPa at
room temperature. The electromechanical delamination strength has a maximum of 68.1 MPa, minimum of 20.6 MPa, and mean value of 35.5 MPa. It
can be observed that all the experimental results share discrete characteristics.

and several numerical analyses were conducted to
evaluate stress distribution [95] and failure be-
havior [96] in the anvil test. Nevertheless, all the
measured data show the behavior of discrete dis-
tribution [79,80,82,84-92,97]. The dispersion de-
gree depends on the anvil size [80,82,87] and the
position of the CC with a cut edge [80,86,88].
Figure 9 displays the experimental results of CC me-
chanical delamination strengths for room tempera-
ture and 77 K, as well as electromechanical delami-
nation strength.

The micro analyses [82,86,93], through scanning
electron microscopy (SEM), energy disperse spec-
troscopy (EDS) or optical microscopy, reveal that
the delamination sites occur in the forms of both
intralaminar fracture of the ceramic matrix and in-
terlaminar cracking at the interface, as shown in
Fig, 10.

Hence the brittle fractures make the discrete data
hard to evaluate just using the average and vari-
ance. For this reason, a Weibull distribution anal-
ysis is employed to carry out an efficient analysis
[82,84,88,97]. In the work of Zhang et al. [97], a
three-parameter Weibull distribution function [98]
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Figure 10. A schematic of a zigzag crack path during the
delamination.

was used and a criterion based on the Weibull re-
liability function was provided. In the Weibull sta-
tistical analysis, a Weibull failure function was de-
termined and properly described the data distribu-
tion. Weibull reliability distribution as a function of
transverse tensile stress can be obtained, from which
the corresponding mechanical and electromechani-
cal delamination strengths are determined by a relia-
bility criterion and can be used as a reference for the
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Figure 11. The three-parameter Weibull distributions of the delamination strength of YBCO CCs in different situa-
tions, reproduced from ref. [92]. (a) Mechanical delamination at room temperature. (b) Mechanical delamination at 77 K.
(c) Electromechanical delamination at 77 K. (d) Weibull reliability distribution versus transverse tensile stress. The distribu-
tion shows the reliability of the safety of samples under the transverse tensile stress. Points a, b and ¢ are the corresponding
delamination strengths at a reliability of 99%. The corresponding mechanical strengths at room temperature and 77 K are
20.07 MPa and 22.00 MPa respectively. The electromechanical delamination strength is 22.88 MPa at 77 K.

engineering test and design, as displayed in Fig. 11.
After that, the minimum sample capacity and opti-
mum anvil size for proper Weibull distribution statis-
tics were experimentally determined for a standard-
ized anvil test [99].

Compressive test for REBCO CCs

The compressive test is opposite to the tension, but
it is also implemented by the anvils with compres-
sive stress along the direction that is perpendicular
to the tape surface. The early ion beam assisted
deposition-pulsed laser deposition (IBAD-PLD)
YBCO CCs with Inconel substrate could sustain
up to 100 MPa compressive stress with degrada-
tion of critical current density J, <5%, and there
was <2% of degradation in J. after 2000 fatigue
cycles [100]. Both the J. of rolling aided biaxial
textured substrate-metallic organic decomposition
(RABiTS-MOD) and IBAD-MOCVD YBCO CCs
exhibited no degradation under the compressive
stress of 150 MPa and 20000 cycles, and this behav-
ior is independent of stabilizer thickness [101]. For
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IBAD-MOCVD and ion beam assisted deposition-
reactive co-evaporation by deposition and reaction
(IBAD-RCE-DR) GdBCO  (GdBa,Cu30,-x)
CCs, the influence of compressive stress was still
negligible with stress up to $86 MPa [102].

Cleavage and peeling strengths of REBCO CCs
To evaluate the interface strength of REBCO CCs
from the point of view of fracture energy, cleavage
[103-106] and peeling [107-109] methods were
adopted. Cleavage is defined as the stress occurring
when forces at one end of a rigid bonded assembly
act to pry the adherends apart. In the cleavage test,
the CC sample with a pre-crack that was made at the
YBCO/buffer interface is soldered between a pair of
double cantilevers. By applying tensile loading at the
end containing the pre-crack, model-I-type fracture
propagation takes place so that the energy release
rate G can be measured. G at room temperature
for YBCO and Ag/YBCO interfaces was measured
as 7-10 J/m’ and 80-120 J/m?, respectively
[103,105,106]. Peeling is similar to the cleavage,
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but the difference is that the CC sample is soldered
on one beam, and a peeling force at a fixed angle is
applied to the partially peeled arm of the CC sample.
The peeling force per unit width was measured with
good reproducibility and accuracy [107,109], from
which the fracture energy release rate G can be de-
rived. Nevertheless, it should be noted that peeling
results strongly depend on the peeling angle and
the energy contribution from macroscopic plastic
deformation at the peeling point, e.g. the results rely
on the thickness of the copper stabilizer [ 108]. Duan
et al. numerically investigated the effect of substrate
thickness on the interfacial adhesive strength of
2G HTS tape by peel test modeling, in which the
thermal residual stresses were an important reason
for reducing the peeling strength [110].

MAGNETO-MECHANICAL COUPLING IN
THE DEVELOPMENT OF HIGH-FIELD
MAGNETS

In 2000, Johansen presented an insightful view on
the development of HT'S materials, i.e. the mechan-
ical response of these materials in high magnetic
fields may be more important than their critical cur-
rent density [111]. To date, the development of
high-field magnets still faces many scientific chal-
lenges, such as: (i) under extreme environments
(low temperature, large current and high magnetic
field), the high-field magnet is subjected to huge
electromagnetic forces and stresses, which directly
act on the REBCO CC and may lead to degra-
dation of the critical current, delamination, dam-
age and even failure of the superconducting layers.
(ii) Compared to a magnet made by typical LTS
wires with many twisted multi-filaments, a magnet
made by monofilament tape-shaped REBCO CCs
show significant screening-current effects. There is
remarkable coupling between the screening-current
effect and mechanical stress, which was consid-
ered as one of the possible reasons for the mag-
net not meeting expectations. More and more re-
searchers pay attention to the relationship between
screening-current effect and mechanical character-
istics at present [112-116]. (iii) Because of the
strongly non-linear electromagnetic constitutive re-
lations of superconductors, the numerical simula-
tions of magneto-mechanical coupling in the mag-
net are limited by the huge computation cost and
convergence problem. It is imperative to establish
an effective multi-field coupling and multi-scale nu-
merical model, which can enhance the development
of high-field magnets. In this part, we mainly focus
on the mechanical behaviors that are related to the
screening-current effect.
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Stress amplification produced
by the screening current

In the initial charging state of a superconducting
magnet, screening currents are generated as a re-
sponse to the change of magnetic field and pro-
duce an undesirable field in the magnet center
[22,117-120]. As illustrated in Fig. 12, the screen-
ing currents lead to a considerable reduction of mag-
netic field intensity, since part of the screening cur-
rent is opposite to the transport current within the
current ramping-up process [121]. The field reduc-
tion generated by the screening current is related
to the magnetization history of the superconducting
coils, which can be described approximately by the
well-known Bean critical state model [122,123]. Be-
sides, the decay of the screening current takes quite a
long time. Therefore, the screening-current-induced
field exhibits the hysteresis effect [121]. In addition
to having an effect on the magnitude of the field in-
tensity, the spatially non-homogeous screening cur-
rent affects the overall target field distribution as
well, especially the original field homogeneity along
the axial direction.

In comparison with the multi-filamentary wires
and tapes, such as NbTi, Nb3Sn, Bi2212 and MgB,,
screening-current effects are reported to be larger
in REBCO-CC-based configurations due to the flat
and wide surface of commercially available REBCO
CCs [124]. The screening-current relaxation can re-
sult in a temporal drift of the magnetic field due to
the thermally flux creep of a REBCO CC. In a typ-
ical insulated REBCO pancake coil, the screening-
current-induced field slowly decays over time, and
the decay rate can be increased at a higher transport
current [ 125]. Furthermore, the time stability of the
field can be more complicated for no-insulation and
metal-insulation coils due to the field-charging delay
[114]. In general, the field disturbance and temporal
driftissue are undesirable and detrimental to the per-
formance of REBCO coils and their applications in
NMR, MRI and accelerator magnets, which indeed
require high spatial homogeneity and field stability.
Therefore, feasible techniques have been developed
to eliminate the screening-current-induced field.

With the continuous progress of supercon-
ducting magnet technology, the magnitude of the
strong central field was greatly improved. Although
screening-current-induced field effects have been
mentioned since the birth of LTS magnets in the
1960s [22], it is only in the last few years that the
high stress level arising from the interaction of the
strong field and screening currents has attracted
researchers’ attention. Stress modification due to
the screening current became one of the most
significant technical challenges for the further

€20z 1dy 0z uo 3s8nb Aq Z1.2€269/100PEMU/E/0 | /2I01E/ISU/WOD"dNO"DIWSPEDE//:SA]Y WOl PAPEOJUMOQ



Natl Sci Rev, 2023, Vol. 10, nwad001

coils are significantly underestimated compared to

r

i

! the case where the screening current is neglected.
0.3 —— (3) —

1

i
1
i
! Li et al. extended the discrete contact model to the
i | mechanical behavior analysis of the 18.8 T REBCO
0.2- i magnet, and further explored the effect of friction
. F ()N | between adjacent pancake coils [131]. Meanwhile,
_§ 0.1 | in contrast to the case where the screening current
é 5 - i is not taken into account, a high tensile hoop
:i, | SESREEEREEES stress is induced by the screening current in the
E é - HTS coils due to the concentration of outward
w @ 01k Lorentz force. Thus, the maximum hoop strain
3 L and stress of the HTS coils in high-field magnets
02F A = can be enhanced remarkably by the screening
7| Coil#2 (ke =0A) X current. Furthermore, the numerical results of
- 1stand 2nd runs 2nd run i ) ’ 7 o
03— I i I i | i Xia et al. [130] and Li et al. [131] also indicated

-100 0 100

that the large screening current generated in the
NbTi coil current, lyr, (A)

magnetization process of REBCO CCs may induce
arisk of overstress, posing a threat to the mechanical
strength of the high-field magnet. Recently, the
screening-current-induced

Figure 12. The screening-current-induced field is calculated in the single pancake
coil. The inset is the screening-current distribution in the REBCO CC. Reproduced from

trai
ref. [121]. strain

non-uniform

development of high-field REBCO magnets [126].
Most of the available high-field REBCO magnets are
made by dry-winding technology. For instance, an
insulated dry-winding REBCO magnet is inserted
in the National High Magnetic Field Laboratory
(NHMFL) 32 T all-superconducting magnet [127],
and a no-insulation dry-winding REBCO magnet
is inserted in the NHMFL 45.5 T hybrid magnet
[128]. Under the action of complicated loads such
as thermal stress and electromagnetic force, the
HTS coil undergoes structural deformation. Due
to the dry-wound characteristic of the REBCO
coil, relative displacement may occur between the
contact surfaces, resulting in turn-to-turn separation
behavior [129]. After considering the uneven
distribution of screening current and magnetic
field in superconducting magnets, the analytical
solution based on the assumption of plane stress
cannot effectively evaluate the mechanical behavior
of high-field REBCO magnets [130], and therefore
it is necessary to resort to numerical simulations.

In order to reveal the influence of a screening
current in high-field REBCO magnets, Xia et al.
developed a discrete contact model to simulate the
screening-current-induced stress-strain in stacked
dry-wound REBCO coils [130]. Based on the
combination of a discrete contact model and the
screening current obtained by the H formulation
and homogenization method, Xia et al. numerically
evaluated the local overlarge stress and the non-
uniform strain resulting from the screening-current
effect [130]. Moreover, the non-uniform radial and
hoop deformation along the tape width direction
can be observed whilst considering the screening
current, and maximum local hoop stresses of the
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was experimentally validated by Takahashi et al.
[121], Yan et al. [132] and Li et al. [112]. Kolb
et al. [133] computed the screening-current-
induced strain of the prototype REBCO coil.
They also compared the calculated results with the
observation and post-mortem analysis of the test
coil [133]. Both the numerical and measurement
results revealed the local degradation and plastic
deformation of the REBCO magnet induced by the
screening current.

In addition to the high electromagnetic stress
caused by the screening-current effect, the winding
and cooling stresses during the coil preparation
and cooling stages are also significantly correlated
with the mechanical and electromagnetic properties
of the high-field REBCO magnet. To obtain the
winding pre-stress of the coil, a simple 1D analytic
solution has been derived based on the com-
bined homogeneous cylinder method (CHCM)
[129,135]. Meanwhile, a 2D finite element method
based on element birth and death technology was
also developed to calculate the winding pre-stress
[134,135]. It was found that the stress distributions
estimated by the two methods were in good agree-
ment. Recently, a 3D finite element model was built
to calculate the contact stress distribution among the
turns during the winding process [ 136,137]. The nu-
merical results indicated that the contact stress along
the width of the conductor had non-uniform dis-
tribution. It is difficult to measure the winding pre-
stress in experiments, and these models still need to
be verified in the future. Moreover, the binding force
generated by overbanding radial build is beneficial
to HTS coils [ 138,139]. A parametric study on over-
band radial build has been performed for a REBCO
800 MHz insert ofa 1.3 GHz LTS/HTS NMR mag-
net, and it has been demonstrated that overbanding
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Figure 13. Distributions of (a) radial stress and (b) hoop stress at the fully charged
state of the REBCO insert coils of a 32 T magnet. Reproduced from ref. [134].

coils is necessary to keep a small mechanical
deformation [140]. Recently, a multi-step analysis
was constructed to simulate the accumulated stress
distribution after winding, cooling and electromag-
netic excitation of REBCO insert coils in a NHMFL
32 T magnet [131]. In the numerical model, the
15 T REBCO insert magnet contains ~20000 turns
of tape. The electromagnetic field computation is
based on a combination of the T-A formulation
and homogenization technique, and the governing
equations can be described as

N oB

VA = —pu], prVxT:—a, (3)
where the current vector potential T is only defined
in the superconducting conductor, and the magnetic
vector potential A is defined in all the computational
domains. The simulation results seen in Fig. 13 indi-
cate that the screening-current-induced hoop stress
is higher, which possibly induces local degradations
of the current-carrying capacity.

A large number of experiments and numerical
analyses demonstrates that the degradation of the
current-carrying performance of HTS coils may oc-
cur during the cooling and charging stages. Recently,
researchers noted that the separated analyses of the
electromagnetic-mechanical field give an overesti-
mation of the screening-current effects of high-field
REBCO magnets, including screening-current-
induced field and stresses [18]. The structural
deformation also leads to misalignment between the
deformed tape surface and the coil’s axis. Therefore,
the magnetic field orientation, with respect to the
deformed tape surface, and the screening currents
change in the excitation process. In addition, it is
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possible for the screening-current-induced stress
and strain to induce the degradation of supercon-
ducting properties. Therefore, a few researchers built
the coupled electromagnetic-mechanical model to
replace the separated model [113,115,116]. Kolb
et al. studied the effects of the tilting angle and the
strain-dependent critical-current relationship on
the electromagnetic field of HTS magnets [116].
The numerical results indicated that the distribution
of the current density is closely related to the
mechanical deformation of magnets. Meanwhile,
Yan et al. also simulated the magnetization of HTS
coils based on the coupling of electromagnetic
and mechanical responses [115]. It can be found
that the results of the discrete contact model with
coupling mechanical deformation are in agreement
with the experimental results.

On this basis, a 3D electromagnetic and me-
chanical coupling model was also developed to
study the screening current and the electromagnetic-
mechanical behaviors of the coil [ 113]. Although the
electromagnetic field of the coil was still calculated
by the T-A formulation, the governing equation for
the T formulation needs to be revised by considering
the deformed angle, which can be expressed as

[BEZ JE, dE, 9E.JE, BEx]T
« N

— sino — cos o
at d
Ja
—i—a(Blsinot—i—BH cosoz), (4)

where B and B are the parallel and perpendicular
magnetic field components of the conductor, respec-
tively. The deformed angle « is defined as du /dz. The
resistivity of the REBCO conductor is modified by
considering the strain-dependent normalized criti-
cal current and n-value, which can be given as

E. n(e)

Je (B, By, ¢)

1l
Je (B, By, ¢)

p:

(%)
Figure 14 indicates that the mutual interaction be-
tween the electromagnetic field and mechanical de-
formation affects the accuracy of numerical simula-
tions of the electromechanical characteristics.

The structure feature of REBCO CCs sug-
gests a fundamental method for eliminating their
screening current, which is to divide the wide
superconducting layer into a number of sections, i.e.
a multi-filamentary REBCO CC [141]. Yanagisawa
et al. performed the exploration of multi-filamentary
tape in REBCO coils [142]. It was found that
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Figure 14. (a) Time evolutions of the external radial field and axial field of a REBCO coil with three turns. (b) Experimental
and simulated results of the strain difference between the bottom and upper parts of the outermost layer [113]. The time
evolutions of both numerical results are in qualitative agreement with the measured ones [112], especially in low external
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from ref. [113].

multi-filamentary tape can decrease the screening-
current-induced field and mitigate the temporal drift
of the magnetic field after coil charge. The width
size of a narrow filament was revealed to impact the
reduction of a screening-current-induced field
[143]. Despite the decrease in screening-current
effects, the production of a narrow REBCO filament
should take care to avoid causing mechanical
damage, which is also one of the drawbacks of this
method. The application of a multi-filamentary
REBCO CC in an ultra-high-field magnet is, to date,
still in progress. Another conventional method to
reduce screening-current effects is the current sweep
reversal method [22], i.e. increasing the transport
current above the target value and then reducing
to the target. In contrast to the direct ramping-up
path, the current sweep reversal method is able to
generate a flux barrier and thus mitigates the field
drift issue [ 144]. Better field stability of the REBCO
coils after charging can be achieved by increasing the
overshooting current of the current sweep reversal
method. However, an increased transport current
can significantly increase the mechanical stress in a
high field as well. Wulff ef al. [122] stated that the
combination of multi-filamentary tape and current
sweep reversal method is expected to be a feasible
way to decrease the screening current with higher

efficiency.

The thermal stability and mechanical
behaviors of HTS no-insulation magnets

Since HTS conductors were discovered, quench
protection has always been the main constraint
for the HTS magnet due to the low normal zone
propagation velocity of the REBCO CC compared
to low-temperature superconductors [145-148]. In
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the past, a superconducting coil was wound with in-
sulation layers, which had relatively low transverse
and longitudinal normal zone propagation velocity.
Thus, the critical current of the magnet had an ob-
vious degradation during the quench, and the mag-
net may even have been burned out. Moreover,
most of the insulating materials were flexible, which
could cause a reduction in mechanical strength in
HTS coils, especially when the magnet was sub-
jected to a large electromagnetic force in a high
field [149-151]. In 2011, Hahn et al. proposed the
no-insulation (NI) winding technique and wound a
double-pancake (DP) NIREBCO coil [ 152]. Exper-
imental results showed that the DP coil can with-
stand more than twice the critical current in an over-
current test. This means that an HTS coil wound us-
ing the NI approach has high thermal stability and
self-protection ability.

Many experiments have indicated that burnout
of NI coils can be avoided in cases of overcurrent,
sudden power failure and heating [149,152-156].
Initially, these phenomena were interpreted as the
current bypassing the local hotspot radially through
the lower turn-to-turn contact resistance [157].
In 2016, Wang et al. numerically analyzed the self-
protection mechanism using an equivalent circuit
network model [158]. The results showed that ex-
cept for the local region of the hotspot, the azimuthal
current redistributes in the whole coil. As the normal
area expands, the azimuthal current and the mag-
netic field would decrease. Ultimately, the NI coil
survives and recovers due to radial shunt. Another
advantage of NI coils is defect-irrelevance. Hahn
et al. experimentally confirmed that the electro-
magnetic behaviors of a coil containing defects
were almost identical to that of a defect-free coil
[159]. Thus, this means that the quality of the
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Figure 15. (a) A 45.5 T magnet of the USA. (b) A 32.35 T all-superconducting magnet
of China. Reproduced from refs [128,160].

superconducting tape has a small effect on the
electromagnetic property of an NI coil, which will
greatly reduce the cost of manufacturing the magnet.
Based on its high current density, thermal sta-
bility, mechanical strength and defect-irrelevant
behavior, the HTS NI coil has become a candidate
for the preparation of high-field magnets [161-163].
In 2016, the South Korean company SuNAM and
the Francis Bitter National Magnet Laboratory (FB-
NML) at the Massachusetts Institute of Technol-
ogy (MIT) developed a multi-width HTS NI mag-
net consisting of 26 DP coils, which generated a cen-
tral magnetic field of 26.4 T [154]. In 2019, the
researchers of the National High Magnetic Field
Laboratory (NHMFL, USA) inserted a 14.4 T NI
magnet into a 31.1 T resistive magnet, and ob-
tained a magnetic field of 45.5 T [128], as shown in
Fig. 15(a). In 2020, the Chinese Academy of Sci-
ences (CAS) achieved a 32.35 T magnetic field in
an all-superconducting magnet [160], as shown in
Fig. 15(b). These achievements indicate that NI
technology can potentially be applied in the research
and development of ultra-high-field magnets.
However, NI technology also has some disadvan-
tages because of its lower turn-to-turn contact resis-
tance. Experiments and numerical simulations have
revealed that NI magnets need more time than in-
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sulated magnets to stabilize the magnetic field dur-
ing charging and discharging processes due to ra-
dial shunt [152,164]. In addition, the magnetic field
drops to a very low value during a quench and thus
the magnet only has a small magnetic field in a
lengthy period, which can greatly affect the opera-
tional availability of the magnet. In order to decrease
the field delay time, researchers have proposed some
methods. For example, Choi et al. inserted some
insulation layers between certain turns of the coil
[165,166]. This can decrease the delay time with-
out sacrificing the self-protection ability. On this ba-
sis, the metal insulation method, proportion integra-
tion control, high resistance layers and smart mate-
rials inserted among adjacent turns were also pro-
posed to improve the turn-to-turn contact resistance
[167-171]. Although these methods can mitigate
the field delay time of an NI magnet, their effects on
the mechanical behaviors of the magnet still need to
be further studied.

The large electromagnetic force generated by a
large current density and high magnetic field of-
ten leads to remarkable mechanical deformation and
even damage to the magnets. Moreover, thermal
stress during a quench also plays a non-negligible
role. Lecrevisse et al. inserted an NI coil into a re-
sistive magnet [172,173]. There was a lot of in-
duced current generated in the NI coil during a
quench, and it was also found that the damage was
extended in the coil, and an obvious delamination
phenomenon was observed in the tape. The NI mag-
net inserted in the 45.5 T magnet was also damaged
after quenching [128,174], and plastic deformation
and cracks appeared at the edge of the conductors in
most of the coils. Since magnets operate in a multi-
field coupling environment, it is necessary to ana-
lyze the electromagnetic-thermal response and me-
chanical deformation of the NI magnets during a
quench.

Based on the homogenous method, a multi-
physics quench model was built to study the
electromagnetic-thermal behaviors and mechanical
response of NI pancake coils during a quench. This
involves considering electromagnetic force and ther-
mal stress, as show in Fig. 16(a) and (b) [175,177].
An equivalent circuit model was employed to cal-
culate the distributions of radial and circumferential
current in each turn, and each turn was divided into
superconducting layers and normal layers. Thus, the
current of the superconducting layer of the mth turn
can be calculated as
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where E, is the critical electrical field. i,, and
isc m represent the circumferential current and the
current of the superconducting layer in the mth
turn, respectively. Moreover, with the radial Joule
heat generated in the turn-to-turn contact surface,
the governing equation of the thermal model was
given as

oT im = bsc,m
AC 4 V. (=kVT) = p, (T) (" Leem
V(D) =gy () ()

+ 0, 8(r — r])(é—m) + Queat (7)
k

where the delta function 8(r —r;) was intro-
duced to describe the radial Joule heat generated in
the turn-to-turn contact surface. Numerical results
showed that the stress and strain are mainly affected
by temperature in the self field and both of them in-
crease as the temperature increases. For the DP coil,
the temperature rise of the coil induced by the heater
was also the main influence on the stress distribu-
tion in the self field, as shown in Fig. 16(c) [176].
In the high field, the mechanical deformation of the
coil was affected by the combined action of the tem-
perature rise and the electromagnetic force.
Although many HTS NI magnets are fabricated
by assembling the modules using a pancake-wound
method, it is also found that connecting each pan-
cake module with the joint makes it difficult to sus-
tain a persistent current in the magnet [120,178].
Considering the above disadvantage of pancake
winding, a layer-wound technique has been devel-
oped in recent years, and the conductor was wound
on a bore tube. Considering the requirement of a
spatially homogeneous magnetic field in an NMR
magnet [179], the layer-wound coil is preferred as
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it can achieve a more homogeneous magnetic field
compared to the pancake coil.

Choi et al. found that the NIlayer-wound coil had
a time delay during charging or discharging and a
self-protecting feature during a local quench, which
is similar to the NI pancake coil [180]. A small NI
REBCO layer-wound coil with a self-inductance of
1.62 mH was built and tested by Chiba University
in Japan in 2016 [181]. The coil had a charging de-
lay time constant of ~3000 s at 4.2 K. In the exper-
iment, an excessive increase in the induced current
resulted in thermal runaway of the coil. Burnouts of
the REBCO CC were found near the copper elec-
trodes, and buckling was also observed for all layers
of the layer-wound coil. Moreover, Jiang et al. de-
signed and fabricated a small-scale REBCO Nl layer-
wound coil with an inner diameter of 15 mm and a
length of 38 mm [182]. When the coil was tested in
a31.5 T background field, both peeling and buckling
appeared in the coil. Thus, the thermal stability and
mechanical response of layer-wound coils in a high
field need to be further explored for the reliability
and stability of the magnet.

A multi-physics quench model has been pre-
sented in order to study thermal stability and
mechanical behaviors in an NI layer-wound coil
[183]. The layer-wound coil had high thermal
stability based on radial shunting through the low
turn-to-turn contact resistance. The field delay time
can be reduced by increasing turn-to-turn contact
resistance with the thin metallic cladding technique.
The increase of the peak temperature for coils was
not significant. The results indicated that it was feasi-
ble to reduce the field delay time without sacrificing
high thermal stability by designing a layer-wound
coil with relatively high contact resistivity. Dur-
ing a quench, the fast temperature rise results in
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remarkable strain of the coil. It can be expected that
a large stress may be induced in the coil if the dura-
tion of the heat disturbance is long enough, which
could result in permanent damage or degradation.

Recently, a new winding method was proposed
to reduce the field delay time of the NI layer-wound
REBCO coil, which was termed ‘intra-layer no-
insulation (LNI)’ [184]. A polyimide sheet and a
copper sheet were both inserted between different
layers of the layer-wound coil. The experimental re-
sults indicated that not only can an LNI coil reduce
the magnetic field delay time, but it also has high
thermal stability. In 2021, an LNIREBCO coil con-
nected to an insulated Bi-2223 coil was tested un-
der a background magnetic field of 17.2 T [185]. A
central magnetic field of 31.4 T was generated in the
magnet and there was no degradation in the REBCO
coil after a quench. Li et al. investigated and com-
pared the ramping loss and mechanical characteris-
tics of the layer-wound coil and LNI coil via a hy-
brid numerical model [186]. The LNI winding ap-
proach can significantly reduce the ramping loss en-
ergy in the whole charging process, and thus an LNI
coil has a higher thermal stability margin. Due to the
combined action of the cooling process and Lorentz
force, the copper sheet of the LNI coil experienced
relatively high stress, while the magnitude of stress
generated in the REBCO CC of the LNI coil was al-
most the same as that of the layer-wound coil. This
means that the inserted materials have a negligible
effect on the mechanical characteristics of the LNI
coil.

Some numerical simulation methods have been
developed to calculate the screen current distri-
bution and mechanical characteristics of NI coils
[187-190]. For example, a 2D axially symmetric
model based on the H-formulation was proposed in
order to estimate the electromagnetic properties of
NI coils [187]. Not only can the method be used
to simulate the screening current, but it can also di-
rectly capture the distributions of the axial and ra-
dial current density. Recently, the method was also
applied to study the screening-current-induced me-
chanical response of the NI coil during the charging
process [ 188]. Moreover, it is assumed that the con-
ductor can be divided into several filaments along
the width direction. Two refined circuit models have
been built to analyze the screen current distribu-
tion of NI coils [189,190]. These methods will also
help to achieve a detailed mechanical analysis of
an NI magnet induced by the screen current in the
future.

The effect of mechanical strain in high-field mag-
netsis significant, and there are still many unresolved
key mechanical issues. For example, as the coil is
deformed, both the turn-to-turn contact resistance
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and thermal resistance will change, but these fac-
tors are not taken into account in the current nu-
merical analysis. Furthermore, the mechanisms of
the bulking, delamination and fatigue of the mag-
net, observed in the experiments, need to be clarified
quantitatively and accurately by numerical simula-
tions, including the screening current effects during
the quench process. This is important for the devel-
opment of ultra-high-field magnets. The simulation
results on the stress or strain during the quench are
reasonable. The variation trend of mechanical defor-
mation is similar to the temperature in the self field,
which means that the strain can be used to deter-
mine the quench in the magnet. The quench detec-
tion method based on the measurement of strain has
also been used in LTS [191]. Namely, relevant ex-
periments should be developed to validate the me-
chanical simulation results. Meanwhile, a reliable
real-time monitoring and testing method for stress
or strain needs to be explored in high-field mag-
nets. Therefore, in order to ensure the stable and
safe operation of HT'S magnets, it is necessary to de-
velop refined electric-magnetic-thermo-mechanical
coupling models so as to understand the mecha-
nism underlying the mechanical failure of the mag-
nets. Furthermore, an effective quench detection
method should also be explored in order to achieve
the quench protection of HT'S magnets.

CONCLUSION

With a further increase in the magnetic field strength
of superconducting magnets, it can be predicted
that the influence of mechanical effects related to
their electromagnetic properties will be significantly
enhanced. The authors think that in the future it
will be necessary to further focus on research from
the following aspects. For REBCO CCs, (i) the low
shear strength should be enhanced to improve the
interlaminated properties. (ii) The fatigue problem
of the superconducting tape with current-carrying
under cyclic loading should be given priority
attention. For high-field magnets, (i) the super-
conducting magnets can be optimized based on
the results of multi-field simulation to enhance the
reliability and stability of magnets. Thus, calculation
methods with high efficiency and precision should
be used to overcome the requirement of too much
computation caused by the 3D refined electromag-
netic and mechanical models. (ii) Some structures
should be developed in order to achieve the effective
stress management of the superconducting magnets
in a high field, to reduce strain-induced degradation.
(iii) Currently, it is still too costly to build high-field
superconducting magnets. To maximize their
application, the total cost should be reduced in the
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future. In addition, the development of high-field
superconducting magnets needs the participation of
more and more researchers majoring in mechanics.
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