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Abstract

Large Language Models (LLMs) have shown impressive capabilities in Machine Translation (MT), even when trans-
lating languages not specifically included in their training data. However, accurately translating rare words in low-
resource or domain-specific contexts remains a significant challenge for LLMs. To address this limitation, we propose
a multi-step prompt engineering approach that enhances translation accuracy by prioritizing the identification and
precise rendering of critical keywords essential to semantic understanding. Our method first identifies these high-
importance keywords and retrieves their translations from a bilingual dictionary, which are then integrated into the
model’s context via Retrieval-Augmented Generation (RAG). Additionally, we implement an iterative self-checking
mechanism to mitigate potential hallucinations introduced by lengthy prompts, enabling the LLM to refine its outputs
through lexical and semantic constraints. Experimental evaluations conducted using Llama and Qwen as base models
on the FLORES-200 and WMT benchmarks demonstrate substantial improvements over baseline systems, particularly
in low-resource settings. These results highlight the effectiveness of our approach in improving translation accuracy
and consistency, offering a promising solution for enhancing MT performance in resource-constrained environments.
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1. Introduction

The rapid advancement of Large Language Models (LLMs) has profoundly transformed the landscape of Nat-
ural Language Processing (NLP), particularly in the domain of Machine Translation (MT). LLMs, exemplified by
models such as GPT [1], Llama [2] and BLOOM [3], possess an inherent multilingual capability that arises from
extensive pre-training on diverse and expansive textual datasets. This capability enables LLMs to perform zero-shot
and few-shot translation tasks, achieving impressive results even in the absence of explicit training on parallel corpora

[4, 5]. Despite their promising potential, large language models (LLMs) face significant challenges in consistently
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Translate the following sentence from English to [ A
Indonesian, using the corresponding Dictionary _ -efisiensi turbin dan
information. keluaran generator di fasilitas tersebut.
Dictionary: \ J
[{"source": "engineer", "target": ['teknisi', 'insinyur']l},

{"source": "efficiency", "target": ['efisiensi']},

{"source": "facility", "target": ['fasilitas']}] =Y M
Sentence: :> E 00 E RS FSRGEVEINES] <fisiensi turbin dan
"The engineer assessed the turbine's efficiency and the — output generator di fasilitas.

generator's output at the facility." - )

Figure 1: Comparison of human and llm translations from English to Indonesian by using dictionary information.

achieving the faithfulness and precision necessary for high-quality translation, particularly when addressing rare or
specialized terminology [6, 7]. The primary limitation arises from the skewed distribution of pre-training data, which
is predominantly biased toward high-resource languages. This imbalance results in an under-representation of the
linguistic nuances and vocabularies associated with low-resource languages, resulting in a notable performance gap
during translation tasks [8]. Furthermore, rare words often possess precise meanings within specific domains but
can introduce ambiguity in varied contexts. LLLMs may struggle to accurately interpret these terms due to limited
contextual information, which can lead to translations that are semantically imprecise or even misleading.

The persistent limitations of LLMs in low-resource MT stem from three interconnected issues. First, the reliance
on parallel corpora in traditional systems creates a data scarcity feedback loop, where insufficient data inhibits robust
learning of rare linguistic structures or domain terms [9, 10]. Second, static dictionary-based approaches, which inject
predefined term mappings through simplistic prompts, fail to resolve contextual polysemy. For instance, the English
word “bank” may ambiguously translate to “banco” (financial) or “ribera” (river edge) in Spanish [11]. Third, current
methods treat translation as a single-step process, neglecting iterative human-like revision to cross-verify terminology
against contextual cues. To address these challenges, several studies have explored the integration of external knowl-
edge into LLM-based MT pipelines to enhance translation fidelity and contextual accuracy. A prominent approach
involves the incorporation of bilingual dictionaries or lexical constraints into the prompting process [12, 13]. These
methods have demonstrated significant potential in improving translation precision by ensuring the consistent and
accurate rendering of specialized terminology. However, they often rely on simplistic strategies, such as appending
pre-translated terms to the input prompt, which neglects a more nuanced and contextually aware analysis of the source
sentence. This rudimentary integration can impede the capture of the intricate semantic and syntactic nuances inherent
in the original text, potentially compromising overall translation quality.

As illustrated in Figure 1, discrepancies persist between human and LLM-generated translations when employing
dictionary resources. For instance, the term “engineer” maps to two Indonesian options: “teknisi” (technician) and
“insinyur” (professional engineer). While the LLM selected the semantically valid “teknisi”, this choice overlooks the
contextual dominance of “insinyur” in formal engineering discourse, reflecting a misalignment with domain-specific

conventions. Similarly, for the term “assessed”, the model generated “mengevaluasi” despite the more colloquially
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prevalent “menilai”, prioritizing literal accuracy over idiomatic fluency. These cases demonstrate that LLMs, while
technically correct in handling specialized terminology, often prioritize distributional biases from training data over
lexical preferences. Such mismatches arise from limitations in contextual disambiguation and an incomplete internal
representation of sociolinguistic norms, ultimately reducing translation naturalness despite grammatical correctness.
Current frameworks underutilize LLMs’ potential as autonomous agents capable of iterative refinement. To ad-
dress this, we propose three paradigm shifts: transitioning from passive term injection to active keyword identifica-
tion using LLMs’ latent knowledge; replacing rigid dictionaries with context-aware Retrieval-Augmented Generation
(RAG) [14] for dynamic term alignment; and introducing dual-agent refinement, where LLMs alternate between
translator and editor roles to emulate professional human workflows. Through comprehensive experiments on the
FLORES-200 [15] benchmark dataset for low-resource languages and contamination-free WMT datasets [16, 17, 18],
we demonstrate that our method significantly outperforms existing approaches, achieving state-of-the-art results

across multiple language pairs. Our main contributions are three-fold:

e Keyword Identification and Constraint Adherence: The proposed method effectively identifies keywords

crucial to translation quality while filtering out less relevant terms, ensuring adherence to lexical constraints.

e Enhanced Retrieval-Augmented Translation: By integrating RAG to incorporate bilingual dictionary trans-
lations into the LLM’s context window and applying a post-translation self-checking mechanism, the approach

minimizes misunderstandings and optimizes translation accuracy and adherence to lexical constraints.

e Prompt-Based Iterative Refinement: Leveraging prompt-based techniques, our approach advances MT tasks

with LLMs without the need for fine-tuning, resulting in notable improvements in translation performance.

2. Related Work

2.1. Prompt of LLM for MT

Prompting techniques have gained significant attention as a powerful strategy for leveraging the capabilities of
large language models (LLMs) in machine translation (MT). Early research demonstrated the efficacy of LLMs in
executing zero-shot and few-shot translation tasks using simple prompts, even in the absence of parallel corpora
[19, 20, 21]. Building on this, Vilar [22] advanced the field by using prompts to control various translation attributes,
such as formality and dialect. Further research has focused on the effectiveness of few-shot learning paradigms in MT,
with particular emphasis on the critical role of prompt engineering in achieving high-quality translations, especially
for low-resource languages [23]. Recent studies have also explored the strategic selection of in-context examples
to enhance translation quality [24, 25]. By choosing examples that align closely with the target translation context,
these works demonstrated that LLMs can generate more accurate and contextually appropriate translations, even in
specialized domains. In parallel, other studies have explored the incorporation of external knowledge such as knowl-

edge graphs to improve machine translation performance [26, 27]. These approaches show that enhancing LLMs
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with structured, domain-specific knowledge allows for more precise translations, especially in cases involving tech-
nical terms and specialized contexts. In the realm of knowledge-intensive tasks, the Retrieval-Augmented Generation
(RAG) [14] framework integrates external knowledge retrieval into the generation process, allowing LLMs to incorpo-
rate relevant information from external databases or documents and produce more accurate, contextually appropriate
responses. Moreover, the RAMP [28] framework significantly improves attribute-controlled translation by amalga-
mating retrieval-augmented prompts with LLMs, thereby facilitating the generation of more contextually accurate and

nuanced translations.

2.2. Lexical-based in MT

Lexical augmentation through bilingual dictionaries remains pivotal in addressing rare-term translation challenges,
particularly for low-resource MT scenarios. Early work by Zhang [29] established a paradigm for neural machine
translation enhancement through systematic dictionary integration, demonstrating its efficacy in bridging lexical gaps
caused by training data sparsity. Subsequent studies extended this principle across multiple dimensions: Unsuper-
vised MT frameworks [30, 31] leveraged dictionary-derived phrase pairs as anchor points for cross-lingual alignment,
proving critical in zero-resource settings; Data synthesis techniques [32] utilized dictionaries to generate pseudo-
parallel corpora, enhancing model generalization despite limited authentic data; Pre-training integration exemplified
by Lin’s [33] Bilingual Dictionary-based Language Model (BDLM), which encodes translation pairs directly into
latent representations through contrastive dictionary learning. While these methods substantially enhance term-level
accuracy, two critical limitations remain unresolved [34, 35]. Firstly, static dictionary injection, whether achieved
through prompt engineering or data augmentation, fails to address contextual polysemy, often necessitating manual
disambiguation [36]. Secondly, the integration of dictionaries and prompts may lead to overly lengthy contextual
information, which can cause LLMs to generate non-target language hallucinations, particularly when processing

morphologically rich languages with complex syntactic structures.

2.3. Reflection on LLM

Reflection mechanisms in LLMs have emerged as a pivotal area of research, aiming to enhance the reliability
and accuracy of generated outputs by enabling models to introspect, verify, and refine their responses. Wang [37]
introduced a self-consistency technique that generates multiple potential solutions for a given problem and selects the
most consistent one, thereby improving reasoning tasks through ensemble-like methods. Yao [38] proposed the ReAct
framework, which integrates reasoning with actionable steps, enabling LLMs to adjust responses dynamically based
on contextual feedback and enhancing their adaptability. Additionally, Lightman [39] explored a self-verification
mechanism where each reasoning step is iteratively cross-checked against external knowledge sources, significantly
boosting factual accuracy in multi-hop reasoning tasks. In the context of fact-checking, Lee [40] embedded self-
verification capabilities within LLMs, allowing real-time assessment and correction of factual inaccuracies, which are

crucial for applications such as news generation and academic writing. Additionally, the Reflexion framework [41]
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leverages linguistic feedback rather than direct model updates to facilitate continuous improvement, demonstrating
substantial performance gains across various tasks and highlighting the potential of feedback-driven refinement in

enhancing model capabilities and adaptability.

3. Methodology

This section outlines the core principles and implementation details of our proposed methodology, providing a

clear overview of the technique and the rationale behind its design.

3.1. Overview of Proposed Method

Our methodology introduces a three-stage framework to enhance translation fidelity through contextually grounded
lexical alignment, as illustrated in Figure 2. In step 1, leveraging the latent linguistic knowledge of LLMs, we dynam-
ically identify keywords within the source text by evaluating semantic saliency scores proportional to sentence length
and term specificity. In step 2, prioritized keywords are encoded into dense vector representations to retrieve contex-
tually appropriate translations from bilingual dictionaries via similarity-based retrieval. These aligned term pairs are
then synthesized with the source sentence within structured prompts, guiding LL.Ms to generate initial translations.
In step 3, a dual-agent refinement process emulates professional translation workflows: the LLM alternates between
generating current translations and iteratively editing outputs as an autonomous proofreader, ensuring strict adherence
to retrieved bilingual pairs while resolving omissions through multi-step contextual verification. This paradigm shifts
from static dictionary injection to adaptive term prioritization, from rigid prompt appending to role-aware lexical inte-
gration, and from single-pass decoding to closed-loop error correction, collectively relieving data scarcity challenges

in low-resource MT.

{ Step 1: Keywords Extraction J { Step 2: Retrieval-Augmented Translation J [ Step 3: Self-checking J
"We now have 4-month-old mice that __)[ Y rt lator. Refine th
are non-diabetic that used to be mice Jiabetig(mon Erc wordj ftgt_word Ou are an expert trans'ator. refine the
diabetic,” he added retrieve following existing translation of a English
g : v ((mice ) ( tikus ] sentence into Standard Malay, ensuring that all
[ specified terms are included.
Bilingual m I P
) ) ) victi VectorD month bul
Analyze the importance of words in the following Dll(mﬂy - m Unmet L
sentence for translation. Assign a score between 0-1 v - - Dictionary prompt—
to each word based on its importance in translation. Embedding Model
Where 0 is least important and 1 is most important. 9 based Or\T Erc word] ét word!
Word like name, places, or professional terms(e.g., ) N P
Wi-Fi) should have low scores. Translate the follownng sentence f_rom Erjgl_lsh /
to Standard Malay using the provided Dictionary m
information. Ensure that each dictionary enty is
prompt: appropriately applied in the translation. For any Llama |
_ am— polysemous words, select the translation that best \
m ‘ ) e fits the contest of the sentence. -
. .
promp — final translation
Liama) (09)| Topr || v p

"Kita kini mempunyai tlkus

berusia 4 bulan yang bukan [ - . )
diabetes yang pernah "Kita kini mempunyai tikus berusia 4 bulan tua yang

-~ m (08)

D2 :
:

o) oy (D)

menjadi diabetes", beliau g“l‘fan diabetez Y:"Q pernah menjadi diabetes",
menambah 8 ellau menamban.

EEBEEE

Figure 2: The proposed method of translation process.
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3.2. Dictionary Extraction

In machine translation, accurately translating keywords such as domain-specific or low-frequency terms, is crucial
for preserving semantic integrity. These words have a significant impact on translation quality, and errors can lead to
ambiguity or loss of meaning. However, LLMs often focus on sentence sequences, neglecting the importance of these
key terms. Our approach emphasizes the identification and extraction of keywords to enhance translation accuracy.

The first step in our approach involves analyzing the source sentence to identify the words that are most critical
for accurate translation. We hypothesize that certain words, due to their semantic weight or specificity, play a more
crucial role in preserving the intended meaning of the sentence. Given a source sentence X = {xj, x2,..., X}, the

LLM generates a priority score P = {py, p2, ..., P}, as:

pi = fuem(xi| X, Prompty) (D

Keywords Evaluating Prompt }

#H#H#System###

Analyze the importance of words in the following sentence for translation.

Assign a score between 0-1 to each word based on its importance in translation.
Where 0 is least important and 1 is most important.

Words like names, places, or professional terms (e.g., Wi-Fi) should have low scores.

#E#HHEHUMan###
{sentence}

Figure 3: The prompt template for evaluating the grade of keywords.

where x; represents individual words, our objective is to generate a priority score p; for each word x; in X, and
Prompt;, represents the prompt for evaluating the importance of keywords, as shown in Figure 3. This score reflects
the importance of the word in determining the quality of the translation. f;;, is the function implemented by the
LLM, which takes the entire sentence X and outputs the priority score p; for each word x;. The LLM processes the
sentence and outputs a sequence of priority scores {py, p2, ..., pn}, Where each p; € [0, 1] indicates the importance of
word s;. The higher the score, the more critical the word is for maintaining translation fidelity.

Ultimately, based on the above sentence X = {xi, X2, ..., X,} and priority score P = {p1, p2, ..., pu}, using k as the
number of top-scoring words to be selected. The goal is to select the subset ‘W of k words from sentence X that have

the highest scores in P. This can be mathematically described as:
W ={wi|lw; € X, p; € Topi(P)} @)

k=a~L+ZJI(p,~2ﬁ) A3)
i=1

Here, Top;(P) denotes the set of the top k scores from the score set P. The selected words ‘W are those whose
scores belong to the top k scores in the list. Our approach prioritizes influential keywords and dynamically adjusts

the value of k based on keyword priority scores and input sentence length, optimizing the use of bilingual dictionary

6 Data Intelligence



Refining Translations with Large Language Models: A Constraint-Aware Iterative Prompting Approach

information. The L represents the length of the input sentence, p; is the priority score for the i-th keyword, « is a
scaling factor that determines how much influence sentence length has on &, g is a threshold for the minimum priority
score a keyword must meet to be included, 7 is the sentence length, which refers to the total number of words in a
sentence. Additionally, the words are lemmatized to their base forms using the NLTK [42], which facilitates a more
consistent analysis by reducing inflected forms to their root form. where I(-) is an indicator function that equals 1 if
pi = 8 and 0 otherwise, and # is the total number of candidate keywords.

After extracting keywords from the sentence, the next step involves retrieving their corresponding translations
from a bilingual dictionary. Specifically, the dictionary D is defined as a set of source-target word pairs: D = {S, T},
where S = {s1, 52, , 5;,} denotes the set of source language words and T = {t1,1,, - ,t,} represents the set of
target language words. An embedding function f : © — R" maps each word to a shared n-dimensional vector
space, facilitating the computation of semantic similarities. The embeddings {f(d) |d € D} are stored within a vector
database to enable efficient retrieval and similarity operations.

Subsequently, for each selected keyword w; € ‘W, which resides in the source language set S, a similarity matching
operation is performed against the vector database using the Maximal Marginal Relevance (MMR) [43] algorithm.
The MMR algorithm balances the relevance of candidate target words to the keyword w; with the diversity among the

selected candidates, thereby mitigating redundancy. The MMR selection criterion is mathematically defined as:

MMR(w;, S) = argmasx(/l -Sim(w;, s) — (1 = Q) - nllal)e(Sim(s, s’)) @
. e(x) - e(y)

S ) = ————— 5

) = ol e ©)

Dy ={(d}, d})|d =w; € MMR(w;, )} (6)

Where w; denotes the i-th keyword selected from the subset W of influential words within the input sentence, A is a
scalar parameter within the range 0 < A4 < 1 that balances the importance of relevance versus diversity in the MMR
algorithm. The similarity function Sim(x, y) is defined as the cosine similarity between the embedding vectors of word
x and word y, thereby quantifying the semantic similarity between the two words in the vector space. Specifically,
e(x) and e(y) are the embedding vectors of words x and y, respectively. In the MMR equation, the set R represents the
subset of target words that have already been selected for inclusion in Dqy. By considering the maximum similarity
between a candidate word and the words in R, the MMR algorithm ensures that newly selected words are not only
relevant to w; but also diverse relative to the previously selected words. Ultimately, the retrieved bilingual dictionary
Day is constructed by pairing each source keyword w; with its corresponding source-target translations pair (d?, d!)

identified through the MMR algorithm.

3.3. Retrieval-Augmented Translation

Building upon the previously established methodology for keyword selection and bilingual dictionary formation,

the subsequent translation enhancement phase focuses on leveraging the tailored bilingual dictionary Dy to ensure
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that each dictionary entry is effectively utilized during the translation process. This is achieved by designing a prompt-
ing mechanism that integrates the entire dictionary information into the LLM-based MT pipeline, thereby enhancing
translation accuracy and contextual relevance. To guarantee that every entry in the bilingual dictionary D4y is applied

during translation, the prompt is meticulously structured to incorporate explicit instructions for the LLM.

Translation Prompt}

###HSystem###

Translate the following sentence from {source language} to {target language} using the provided Dictionary information.
Ensure that each dictionary entry is appropriately applied in the translation.

For any polysemous words, select the translation that best fits the context of the sentence.

Dictionary:{dictionary}

####HUMan# ##
{sentence}

Figure 4: The prompt template for translation based on dictionary.

The proposed translation prompt is illustrated in Figure 4, which delineates the prompt designed to guide the
LLM in utilizing the bilingual dictionary Dy effectively. The prompt comprises three primary components: the
system directive, the dictionary entries, and the source sentence. The system directive explicitly instructs the LLM to
perform the translation task using the provided dictionary information. Here, {dictionary} is replaced with the tailored
bilingual dictionary Dy, and {sentence} represents the input sentence to be translated. This prompt ensures that the
LLM utilizes the dictionary entries as a reference, aligning the translation output with the specified lexical mappings.
To further mitigate the impact of polysemy, an additional instruction is incorporated into the system directive: “For
any polysemous words, select the translation that best fits the context of the sentence.” This modification addresses a
critical limitation in dictionary-based translation, where polysemous words may have multiple possible translations.
Without explicit guidance, the LLM might select a translation that does not align with the intended meaning in the
given context, thereby reducing translation accuracy. By instructing the model to consider contextual appropriateness,
this addition enhances lexical disambiguation and ensures that the selected translation better preserves the semantic
fidelity of the source sentence.

Based on the above translation prompt, the translation process initiates by systematically integrating a bilingual
dictionary, denoted as Dy, to guide the LLM in generating an initial translation with contextual accuracy. This
integration ensures that specific terminology and subtle nuances from the source language are accurately conveyed in
the target language. Let Y! represent the initial translation output, which is obtained by conditioning the LLM with
the source sentence X, the retrieved bilingual dictionary Dy, and the translation prompt Prompt,. Mathematically,
this process is expressed as:

Y' = fum(X, Day, Prompt,) @)

Here, Y' = {y],y,...., ¥y} denotes the sequence of tokens forming the initial translation. The function f;, represents

the operation of the LLM, which processes the input data to produce the translation. The source sentence X provides
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the contextual and semantic foundation for the translation, while the bilingual dictionary D4y supplies relevant lexical
mappings to ensure the precision and consistency of term translations. The translation prompt Prompt, includes

specific instructions and contextual information that further refines the translation task.

3.4. Self-Checking

To ensure the effective utilization of all translation notes throughout the machine translation procedure, we imple-
ment an iterative prompting strategy. Although LLMs are capable of producing high-quality translations, they do not
always incorporate all of the provided dictionary information in a single iteration. Consequently, we have developed
an iterative mechanism in which the translation process is repeated until all constraints of the dictionary are fully

satisfied.

Algorithm 1 Iterative Constrained Translation Using Large Language Models
Require: Sentence X, Pre-trained LLM, Bilingual Dictionary, Maximum Iterations N

Ensure: Final Translation Y;n.
1: Extract keywords W = {wy,wy, ..., w;} from X using LLM
2: Retrieve translations for keywords W from the Bilingual Dictionary
3: Initialize retrieved dictionary Dy = {d} : d},....d} : d}}
4: Set current translation 7 « None
5: Initialize iteration count n < 0
6: while Dy # 0 and n < N do
7. Increment iteration counter: n < n + 1
8:  Generate translation Y, en; With Dy using LLM
9:  Check unmet constraints in Dy based on Y,,rens
10:  Remove satisfied constraints from Daqy
11: end while
12:

13: return Final Translation Y,y

The Iterative Constrained Translation Using Large Language Models as shown in Algorithm 1, employs an it-
erative prompting strategy to enforce lexical constraints derived from a bilingual dictionary, ensuring accurate and
contextually appropriate translations. The process begins by extracting key translation-relevant words from the in-
put sentence using the LLM. These identified words are then matched with their corresponding translations retrieved
from a bilingual dictionary, forming a set of lexical constraints. The LLM is prompted to generate translations while
adhering to these constraints, with the process repeating iteratively to refine the output. A key challenge in iterative
prompting is ensuring that all translation constraints are successfully incorporated without leading to an infinite loop.

To address this, the algorithm includes a termination mechanism based on two criteria: (1) the number of iterations

Data Intelligence 9
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must not exceed a predefined maximum N, and (2) the translation must demonstrate progress in constraint satisfaction
between iterations. Specifically, after each translation attempt, the algorithm evaluates whether any remaining con-
straints remain unmet. If the output translation has not changed from the previous iteration or if no new constraints
are satisfied, the iteration terminates early to prevent unnecessary computation. The choice of the maximum iteration
count N is crucial for balancing translation accuracy and computational efficiency. A larger N allows for a more
thorough refinement of the translation but increases computational costs and latency. Empirical analysis suggests that
N should be set based on the complexity of the input sentence, particularly its length and the number of constrained
terms. In practice, an adaptive N strategy may be employed, where the iteration limit is dynamically determined based
on factors such as sentence length and the initial number of constraints. This ensures that longer sentences or those
with a higher number of constraints receive sufficient iterations for refinement, while shorter sentences do not undergo
unnecessary processing.

For maximum iteration count N, initially, we set N = 10 during early experiments and recorded the number
of iterations required for each sentence in a given language pair. We found that over 70% of sentences completed
translation within one iteration, and more than 90% within three iterations, indicating that most sentences reached
the desired state where all dictionary information was successfully utilized. The remaining 10% of sentences either
required more than three iterations or reached the maximum iteration limit without achieving perfect translation.
For these cases, we retained the result from the final iteration. To balance computational efficiency and translation
quality, we implement a stratified iteration strategy based on sentence complexity. Sentences with lengths less than
10 are categorized as simple sentences and assigned a maximum iteration number N = 1. For moderate-complexity
sentences exhibiting both length less than 20 and count of keywords less than 10, we set N = 3. Complex sentences
characterized by either length greater than 20 or count of keywords greater than 10 require more intensive processing,
thus N = 5 is applied in these cases.

Additionally, the rationale for not employing a uniform N = 5 setting across all cases stems from empirical obser-
vations regarding large language models’ inherent translation behavior. Preliminary experiments revealed that LLMs
consistently maintain high confidence in their initial translation outputs, primarily relying on internal knowledge rep-
resentations rather than external resources during the generation process. This phenomenon can be attributed to the
models’ extensive pre-training on multilingual corpora, which enables them to prioritize internal linguistic patterns
over external lexicon resources even for simple sentences. Consequently, excessive iterations (particularly N < 3)
on low-complexity sentences yield diminishing returns in translation accuracy while significantly increasing com-
putational overhead. Our comparative analysis demonstrated that iterative refinements beyond N = 1 for length of
sentence < 10 resulted in only marginal improvements (< 0.8 BLEU score) but consumed additional GPU memory
resources. This observation underscores the critical need for adaptive N strategies that dynamically adjust iteration
depth according to sentence complexity metrics. To address this challenge, our stratified approach strategically allo-
cates computational resources through complexity-driven iteration control. By implementing progressive N thresholds

based on both syntactic (sentence length) and semantic (keyword density) indicators, this adaptive mechanism effec-
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tively prevents redundant iterations for structurally simple sentences while ensuring adequate refinement for complex

linguistic constructs.

Self-checking Prompt }
You are an expert translator. Refine the following existing translation of a {source language} sentence \
into {target language}, ensuring that all specified terms are included..

**QOriginal Sentence:** {original sentence}
**Existing Translation:** {current translation}
**Missing Terms:** {unmet dictionary}
**Instructions: **

- Ensure the translated sentence is fluent and natural in {target language}.
- Incorporate all the missing dictionary listed above.

- Maintain the original meaning and context of the sentence.
- For any polysemous words, select the translation that best fits the context of the sentence. /

Figure 5: The prompt template for revised translation based on self-checking.

After generating the initial translation ¥' , the next step involves a self-checking mechanism that refines the
translation. This self-checking step uses the current translation Y i = {yi1 , yé, e, yfn} and the unmet dictionary Dy

unmet

to improve the quality of the next translation Y**!. The self-checking process can be represented as:

Y*' = fum(X, Day,,... Y', Prompty) ®)

Here, the Dy

unmet

represents the unmet dictionary containing terms that were not included in the current translation
Y!, Y' is the current iteration of the translated sentence, and Prompt, refers to the self-checking prompt used to
guide the LLM in refining the translation. These parameters work collectively to facilitate an iterative enhancement
process, ensuring that each subsequent translation Y**! incorporates all specified terms while maintaining the fluency
and accuracy of the translation. The self-checking prompt template is shown in Figure 5. It directs LLMs through an
iterative translation refinement process by presenting the original sentence, its current translation, and a list of missing
terms from the dictionary. The prompt ensures the inclusion of specified terms, maintains fluency and naturalness in
the target language, preserves the original meaning and context, and selects appropriate translations for polysemous
words based on contextual relevance. This approach facilitates comprehensive review and enhancement, ensuring
both linguistic accuracy and contextual integrity.

The final translation is generated after the self-checking and refinement steps conclude either when the unmet

dictionary Dqy

unmet

becomes empty or the maximum number of iterations is reached. Thus, the final output is the

refined translation obtained either by satisfying all lexical constraints through the depletion of Dqy

unmet

or by reaching

the predefined iteration limit.
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4. Experimental Setup

Models We employed a multi-step prompting approach for keyword extraction and translation, leveraging the
strengths of different models. Specifically, we utilized the Mete-Llama-3.1-70B-Instruct [44] and the Qwen2-72B-
Instruct [45] for extracting keywords that have a significant impact on the quality of translation. These models
are chosen for their advanced natural language understanding capabilities, which enable them to accurately extract
crucial words from the source sentences. For the embedding retrieval process, we used the bge-m3 [46] model,
which is specifically designed to handle large-scale embedding tasks. This model facilitates the mapping of identified
keywords to their corresponding translations in a bilingual dictionary, thereby ensuring the maintenance of semantic

integrity throughout the translation process.

Table 1: The low-resource languages chosen from the FLORES-200 dataset.

Language FLORES-200 code Language FLORES-200 code
Catalan cat_Latn Indonesian ind_Latn
Croatian hrv_Latn Italian ita_Latn
Danish dan_Latn Malay zsm_Latn
Dutch nld_Latn Norwegian nob_Latn
Tagalog tgl_Latn Slovak slk_Latn

Table 2: The five selected low-resource language pairs for direct translation, bypassing English as an intermediary.

Source Target
Language FLORES-200 code Language FLORES-200 code
Ambharic amh_Ethi Lao lao_Laoo
Bashkir bak_Cyrl Ambharic amh_Ethi
Buginese bug_Latn Tajik tgk_Cyrl
Igbo ibo_Latn Armenian hye_Armn
Kyrgyz kir_Cyrl Buginese bug_Latn

Datasets While LLMs have shown exceptional performance in high-resource language tasks, we aim to assess
their effectiveness in handling underrepresented languages, where data scarcity significantly challenges translation
accuracy and quality. Our study focuses on evaluating the robustness and adaptability of LLMs in translating low-
resource languages and those not encountered during training. We employed FLORES-200 devtest [15], which is a
benchmark dataset for machine translation between English and low-resource languages. The creation of FLORES-
200 doubles the existing language coverage of FLORES-101 [47]. FLORES-200 consists of translations from 842
distinct web articles, totaling 3001 sentences. On average, sentences are approximately 21 words long. As we
aim to focus on low-resource languages, we selected 10 languages as shown in Table 1. We conducted translation
experiments in both directions: from English to these languages and from these languages back to English. In addition,
we selected five language pairs as shown in Table 2 for low-resource language to low-resource language translation,

without using English as an intermediary. This approach further emphasizes the challenges faced when directly
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translating between low-resource languages, as it bypasses the more commonly used high-resource languages like
English. Meanwhile, [48] reported an issue that due to the fact that most of the corpus used for training large language
models is publicly available, this indirectly leads to data pollution issues during the evaluation process of the model.
To reduce this risk, we also evaluated the language pairs from the WMT22, WMT23, and WMT?24 test sets, which
can effectively reduce the impact of data pollution.

Evaluation Metrics For evaluation metrics, we reported the chrF++ [49] and the BLEU [50] evaluations provided
by sacreBLEU!. We employed MTME? which is a simple toolkit to evaluate the performance of Machine Translation
metrics on WMT test sets. Additionally, we also report COMET scores using the Unbabeliwmt22-comet-da model
[51], specifically trained for the WMT dataset to assess translation quality based on human rankings. COMET offers
a more nuanced evaluation by measuring the semantic similarity between reference and translated texts, providing a
deeper understanding of how well a model captures the meaning of the input text.

Dictionary For the translation between English and low-resource languages, we utilized the ground-truth bilin-
gual dictionaries provided by [52]. These dictionaries command * were meticulously crafted using Meta’s internal
translation tool, ensuring the accurate representation of word meanings, with particular attention given to polysemy,
ensuring that multiple meanings of a single word are correctly captured. Baseline In the baseline experiments, we
compare the performance of the current SOAT models from the FLORES-200 dataset, specifically the NLLB-200-1.3B
and NLLB-200-3.3B models. These models serve as a benchmark for evaluating translation quality in a low-resource
setting. Additionally, we include comparisons with similar works, such as DiPMT [8] and CoD [11], to provide a
broader context for our evaluation. DiPMT employs the OPT [53] and BLOOM [3] models for dictionary-guided
translation, using BLEU scores as the primary evaluation metric to assess translation quality. In contrast, CoD intro-
duces an innovative approach by linking language dictionary information in a chain structure, leveraging ChatGPT
[54] to further enhance translation accuracy and fluency. For our experiments, we employ a straightforward prompting
strategy to evaluate the zero-shot translation performance in which LLMs are guided using the prompt “Translate the
following sentence from {source language} to {target language}.” This approach allows us to establish a fundamental
benchmark, enabling us to compare and assess the improvements introduced by our proposed method.

Parameter Settings and Reproducibility In this section, we provided detailed information regarding the key
parameters used in our method to ensure experimental reproducibility. These parameters include the scaling factor &
and threshold 8 in Equation 3 the scalar parameter A in Equation 4, and the maximum iteration count N in Algorithm 1.

All parameters described above are shared across language pairs and are not adapted per language.

e «: The scaling factor @ was determined through grid search during early experiments. We observed that the
best performance improvement occurred when o was within the range of 0.3 to 0.4. To mitigate the impact of

keyword omission, we selected a relatively larger value of @ = 0.4.

"https://github.com/mjpost/sacrebleu
’https://github.com/google-research/mt-metrics-eval
Shttps://github.com/facebookresearch/MUSE
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e [3: For 3, we first conducted offline experiments where LLMs were used to evaluate priority scores for translation
candidates across language pairs. These scores were saved in JSON files. Subsequently, we manually reviewed
these scores and found that the majority of keywords were assigned scores above 0.6. Based on this observation,

we set S = 0.6 in the final translation process.

e 1 : The parameter A, which controls the diversity of selected translation candidates in Equation 4, is adopted
from the Maximal Marginal Relevance (MMR) algorithm. We followed the default setting used in previous
work [43], setting 4 = 0.5.

e N: The maximum iteration count N is set adaptively based on sentence complexity. To balance efficiency and
quality, we follow the description in Section 3.4 and apply a stratified strategy: N = 1 for simple sentences
(Iength < 10), N = 3 for moderate sentences (length < 20 and keywords < 10), and N = 5 for complex

sentences (length > 20 or keywords > 10).

5. Results and Discussion

In this section, we provide a detailed account of a series of experiments conducted for our proposed method,
including main results, low-resource language pair translation results, contamination-free evaluation, comparative
analysis of keyword identification methods, analysis and discussion of computational efficiency, ablation study and

case study aimed at comprehensively evaluating the effectiveness of our proposed approach.

5.1. Main Results

This section presents the experimental results of our proposed method for enhancing low-resource MT perfor-
mance in LLMs. Evaluations were conducted on the FLORES-200 benchmark for bidirectional translation between
English and low-resource languages, with performance measured using BLEU and chrF++ metrics. As shown in
Table 3, our method implemented with the Meta-Llama-3.1 achieves superior performance over the NLLB baseline.
Specifically, it outperforms NLLB in 7 directions for English to low-resource languages translation and 8 direc-
tions for low-resource language to English translation. This improvement stems from LLM’s architectural advan-
tages which decoder-only transformer, pretrained on trillions of multilingual tokens via causal language modeling,
exhibits stronger cross-lingual generalization than NLLB’s encoder-decoder architecture, which relies on curated par-
allel data. The LLM’s scale further enables finer-grained modeling of low-resource linguistic phenomena during
autoregressive generation. Our method capitalizes on three key innovations to leverage these architectural strengths:
1) Active Keyword Identification: Unlike NLLB’s static terminology injection, our approach dynamically detects con-
textually salient keywords using the LLM’s emergent reasoning capabilities, improving domain-specific vocabulary
handling. 2) Retrieval-Augmented Translation: We bridge lexical gaps by integrating matched bilingual dictionary

pairs with the input sentence, addressing NLLB’s limitations with polysemous terms and neologisms. 3) Dual-Agent
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Refinement: An iterative quality control loop reduces hallucinations, mitigating the “direct translation fallacy” preva-
lent in single-pass encoder-decoder systems. These innovations collectively enhance semantic preservation through:
Context-sensitive term prioritization, minimizing over-translation of irrelevant content; Adaptive lexical alignment,
enabling dynamic updates for rare/emerging terms without retraining; Iterative error correction, improving output
robustness.

We compared our method with similar approaches, including DiPMT and CoD. DiPMT reported BLEU scores
using the OPT and BLOOM models, focusing on low-resource language translation tasks. In contrast, CoD used
the ChatGPT model and provided both BLEU and chrF++ scores, incorporating multilingual chain-based dictionary
information into the prompts to enhance translation performance. In order to reduce the gap between different models,
we evaluated Qwen2 and Meta-Llama-3.1 using the method reported in their paper. The result showed that our
method consistently outperforms the DiPMT method and is only weaker than the CoD method in the English to
Danish direction. Compared to DiPMT and CoD, which primarily focus on maximizing the coverage of bilingual
dictionary terms within the input sentence, our approach introduces a more refined strategy that prioritizes high-impact
vocabulary dynamically. While ensuring comprehensive dictionary coverage can provide useful lexical constraints, it
often leads to excessive prompt length, increasing computational overhead and diluting the model’s focus on critical
terms. In contrast, our method prioritizes keywords that exert the greatest influence on translation adequacy, allowing
LLMs to allocate more attention to essential word alignments rather than processing redundant lexical constraints.
Moreover, our approach integrates an iterative self-checking mechanism to further enhance translation robustness.
This mechanism ensures that external knowledge provided in the prompt is effectively incorporated while mitigating
the model’s tendency to rely excessively on its internal priors. By continuously refining the translation output through
self-verification, our method reduces hallucinations and improves terminology consistency across different contexts.
This is particularly advantageous in low-resource language translation, where the absence of extensive parallel data
often results in misaligned or incomplete translations.

In a comprehensive evaluation across 20 translation directions (10 English to low-resource and 10 low-resource
to English translation tasks), the proposed method consistently outperformed the 0-shot baseline, yielding significant
gains in translation quality. Specifically, on Qwen2, the method achieved an average improvement of +3.05 BLEU
points and +3.06 chrF++ points. On Meta-Llama-3.1, the corresponding average improvements were +2.63 BLEU
points and +2.01 chrF++ points. Notably, Qwen2 showed better improvement than Meta-Llama-3.1 in 13 of the 20
directions, whereas Meta-Llama-3.1 led in the remaining 7 directions. Despite its lower zero-shot baseline perfor-
mance, Qwen?2 benefited more from the proposed method, demonstrating larger relative gains than Meta-Llama-3.1.
These results underscore that the proposed method is effective across different models and particularly beneficial for
enhancing Qwen2’s translation performance.

Our findings reveal that Qwen2 exhibits superior relative gains over its 0-shot baseline compared to Meta-Llama-
3.1, despite its lower absolute performance. This suggests that Qwen2, while initially constrained by pretraining

biases, benefits more substantially from the integration of external linguistic constraints and iterative refinement. The
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Table 3: The BLEU / chrF++ scores for translation tasks across different models and methods. We report the evaluation scores of the NLLB model

alongside comparable works, including DiPMT [8] and CoD [11]. For clarity, the bold font indicates the highest score achieved by the same model

type across different methods, the notation “(—/—)" denotes the overall best system performance for a specific language pair, irrespective of the

model architecture. The “Avg.” column shows the average scores across all language pairs.

Model Method cat_Latn hrv_Latn dan_Latn nld_Latn tgl_Latn Avg.
English to Low-resource Languages
NLLB-200-1.3B 0-shot 38.80/65.21 25.94/57.48 39.89/64.54 25.46/58.19 32.57/61.84 32.53/61.45
NLLB-200-3.3B 0-shot 41.38/66.92 (28.49/59.22) 41.83/68.97 26.36/58.93 (34.92/63.38) 34.60/63.28
0-shot 25.19/51.99 17.00/46.19 27.18/52.36 22.10/51.95 19.52/47.08 22.20/49.91
Qwen? w/DiPMT 26.43/53.28 18.26 /47.63 28.14/53.02 23.06/53.23 21.82/48.96 23.54/51.22
wen
w/CoD 27.24 /54.37 19.35/49.22 28.88/53.76 23.87/54.12 22.77/49.57 24.42/52.21
w/ours 30.04 / 56.56 21.05/50.54 30.11/ 54.60 25.22/55.59 24.12/51.63 26.11/53.78
0-shot 38.41/64.58 25.31/55.65 42.22/68.68 25.17/57.18 30.90/60.73 32.40/61.36
w/DiPMT 39.18/65.23 27.18/57.34 43.18/68.89 25.32/57.46 31.67/61.29 33.31/62.04
Meta-Llama-3.1
w/CoD 41.57/67.02 26.93/57.12 (44.74 / 70.02) 26.03/58.12 33.48/63.12 34.55/63.08
w/ours (42.31/68.31) 28.22 / 58.65 44.09/69.71 (27.44 / 59.30) 34.19/63.38 (35.25/63.87)
Low-resource Languages to English
NLLB-200-1.3B 0-shot 46.11/69.71 36.84/64.14 47.46/70.56 32.51/60.87 46.22/67.82 41.83/66.62
NLLB-200-3.3B 0-shot (48.04/70.87) 38.13/65.10 48.75/71.56 33.97/61.56 (48.25/69.27) (43.43/67.67)
0-shot 44.59/68.19 35.88/62.25 46.26 / 69.30 31.24/59.49 43.21/65.69 40.24 / 64.98
Qwen? w/DiPMT 45.12/68.88 36.47/63.28 47.34/70.28 31.92/60.13 44.17/ 66.74 41.00/ 65.86
wen
w/CoD 45.78 /69.43 36.89/63.92 48.02/71.43 32.78 /61.04 45.38/67.92 41.77/ 66.75
w/ours 46.12/70.01 37.56 / 64.43 48.52/71.89 33.79/61.98 45.89 / 68.89 42.38/67.44
0-shot 45.97/69.39 36.84/63.75 47.20/70.40 31.98/60.32 44.18 /65.98 41.23/65.97
MetaLL 1 w/DiPMT 46.43 /69.82 37.14/ 64.85 48.88/72.14 32.43/61.85 44.62/66.23 41.90/ 66.98
eta-Llama-3.
w/CoD 47.14 / 69.98 37.78/65.12 48.12/71.65 33.92/63.61 44.76 / 66.84 42.34/67.44
w/ours 47.29/70.23 (38.13/ 65.56) (49.54/73.14) (34.28/ 63.93) 45.28/ 67.60 42.90 / 68.09
Model Method ind_Latn ita_Latn msa_Latn nob_Latn slk_Latn Avg.
English to Low-resource Languages
NLLB-200-1.3B 0-shot 44.56/70.58 28.62/61.41 39.24/68.30 30.47/ 60.99 29.63/59.34 34.50/ 64.12
NLLB-200-3.3B 0-shot 4559/71.3 29.94/62.07 (40.94 / 69.54) 31.99/62.23 31.97/61.37 36.09 / 65.30
0-shot 39.42/65.41 27.56/57.26 30.43/59.95 19.32/46.33 15.68 /42.36 26.48 /54.26
Qwen? w/DiPMT 41.23/67.86 28.98 /58.87 31.23/60.46 21.89/48.52 17.43 / 44.86 28.15/56.11
wen
w/CoD 42.75/68.32 30.62/60.03 32.77/62.14 22.34/49.08 17.89/45.23 29.27/56.96
w/ours 43.88/69.29 31.73/60.72 33.81/63.36 23.26 / 50.56 19.20 / 46.26 30.38/58.04
0-shot 42.62/69.50 28.52/60.48 36.78 / 65.82 29.58/59.87 27.47/58.13 32.99/62.76
w/DiPMT 44.15/71.38 29.03/61.07 38.24/67.35 30.88/61.04 29.32/60.84 34.32/64.34
Meta-Llama-3.1
w/CoD 43.29/70.88 30.83/62.15 37.82/66.43 31.43/61.79 29.87/61.15 34.65/ 64.48
w/ours (46.85/73.23) (31.19/ 62.57) 38.88/67.98 (32.70 / 62.64) (32.06/ 62.36) (36.34/ 65.76)
Low-resource Languages to English
NLLB-200-1.3B 0-shot 42.98 / 68.66 34.02/61.28 44.03/69.0 39.99/65.28 38.69/65.42 39.94/65.93
NLLB-200-3.3B 0-shot 45.21/70.12 34.68/61.95 46.05/70.07 4272/ 67.05 40.32/66.43 41.80/67.12
0-shot 43.83/68.51 32.98/60.17 43.43/67.06 41.84/66.43 37.70 / 63.89 39.96/65.21
Qwen? w/DiPMT 44.23/69.15 33.56/61.48 45.78 / 68.43 42.34/67.85 38.42/64.53 40.87/ 66.29
wen
w/CoD 45.06/69.73 34.63/62.56 45.92/69.01 4278 / 68.23 38.88/65.04 41.45/66.91
w/ours 45.36 /70.02 34.71/ 62.82 46.11/69.52 43.25/68.77 39.02 / 65.66 41.69 / 67.36
0-shot 44.18 /68.76 33.81/61.16 43.40/67.85 42.99/67.51 38.11/64.40 40.50/ 65.94
MetaLL 1 w/DiPMT 46.38/70.23 34.46/62.15 45.34/69.26 43.86/68.97 38.86/65.34 41.78 /67.19
eta-Llama-3.
w/CoD 45.68/69.54 35.02/62.98 44.48 / 68.88 44.52/69.74 39.43 / 66.52 41.83/67.53
w/ours (47.23/71.33) (35.28/63.44) (46.91/70.94) (45.88/70.62) (40.47 / 67.07) (43.15/ 68.68)

I6
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model’s ability to internalize and adapt to lexical guidance enables more effective mitigation of pretraining deficien-
cies, resulting in a steeper performance gain relative to its zero-shot translation capabilities. In contrast, Meta-Llama-
3.1, with its stronger baseline performance, exhibits a smaller performance improvement, indicating that models with
higher initial proficiency may derive relatively smaller gains from post-hoc constraint-based refinements. Further
analysis reveals that Qwen2’s heavy reliance on Chinese corpora during pretraining introduces inherent biases that
manifest as cross-lingual interference in zero-shot scenarios, particularly for typologically distant low-resource lan-
guages. This data imbalance initially leads to suboptimal lexical choices and unintended code-switching tendencies
in non-Chinese target languages and we will further analyze this situation in Section 5.7. However, the proposed
method’s integration of explicit linguistic constraints effectively mitigates these biases by enforcing target-language
structural alignment and suppressing hallucinated content. Crucially, Qwen2 demonstrates enhanced capacity to inter-
nalize external linguistic priors during constrained decoding cycles, enabling progressive error correction even when
initial translations diverge significantly from target norms. This adaptability proves particularly impactful in morpho-
logically complex languages, where the model compensates for pretraining deficiencies by dynamically incorporating

domain-specific rules through multi-stage verification.

5.2. Low-Resource Language Pair Translation Results

Table 4 presents the chrF++ scores for low-resource to low-resource language translation tasks using the Meta-
Llama-3.1 and Qwen2 models. Three translation strategies were assessed: 0-shot where the models perform direct
translation without external guidance; D where Dictionary information is incorporated into the translation process;

and D+S which combines Dictionary information with the Self-checking mechanism to refine translations.

Table 4: The chrF++ scores for low-resource to low-resource language translation tasks using Meta-Llama-3.1 and Qwen2 models. Three trans-
lation strategies are evaluated: O-shot (direct translation without additional information), D (incorporating Dictionary information), and D+S
(combining Dictionary information with the Self-checking mechanism). The results highlight the effectiveness of combining dictionary constraints

and self-checking in improving translation quality for low-resource language pairs.

Language Pair Meta-Llama-3.1 Qwen2
0-shot w/D w/D+S 0-shot w/D w/D+S

amh_Ethi — lao_Laoo 13.86 14.58 16.74 11.52 10.26 12.58
bak_Cyrl — amh_Ethi 10.11 13.47 14.62 2.99 4.62 7.78
bug_Latn — tgk_Cyrl 23.14 23.78 24.62 6.88 7.62 8.31
ibo_Latn — hye_Armn 16.81 18.24 19.47 8.89 10.12 9.78
kir_Cyrl — bug_Latn 23.71 24.53 24.68 12.61 13.23 14.18
System Average: 17.53 18.91 20.03 8.58 9.16 10.53
System Wins: 0/5 0/5 5/5 0 1/5 4/5

The results demonstrate that incorporating dictionary information (D) significantly improves the translation quality
for both models compared to the 0-shot baseline. Specifically, the Meta-Llama-3.1 model achieves an average chrF++

score improvement from 17.53 (0-shot) to 18.91 (D) and further to 20.03 when using the (D+S) strategy. This
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highlights the combined benefits of lexical constraints and self-checking in enhancing translation accuracy. Moreover,
Meta-Llama-3.1 achieves the highest chrF++ scores across all five language pairs under the (D+S) framework. For
the Qwen2 model, the D+S strategy also yields substantial performance improvements, with the average chrF++
score increasing from 8.58 (0-shot) to 10.53. Notably, Qwen?2 achieves the highest scores in four out of five language
pairs when using (D+S), showcasing its potential in low-resource translation tasks with additional guidance.

These findings underscore the importance of integrating external linguistic knowledge, such as dictionary informa-
tion, and leveraging self-checking mechanisms to address the challenges of low-resource language translation. While
both models benefit from these strategies, Meta-Llama-3.1 demonstrates superior overall performance, particularly

under the (D+S) framework.

5.3. Contamination-Free Evaluation

Moreover, experiments were conducted using the most recent machine translation evaluation datasets, specifically
WMT22, WMT23, WMT24. These datasets provide a valuable benchmark for evaluating the performance of LLMs
in translation tasks. One of the key advantages of utilizing these updated datasets is their ability to mitigate the issue of
data contamination that can arise during the training process. Data contamination refers to the inadvertent encounter
of portions of the test set by models during training, which can result in performance scores that are artificially inflated

and do not accurately reflect the model’s true capabilities in a real-world setting.

Table 5: The BLEU / COMET score with WMT testset using Meta-Llama3.1 and Qwen2.

Meta-Llama-3.1 Qwen2
Dataset Language Pair
Baseline Ours Baseline Ours

WMT22 en-de 32.51/86.15 33.92/86.45 26.34/84.12 28.45/85.14

en-hr 23.88/86.32 26.09/87.75 14.96 /79.02 18.42/84.63
WMT23 en-de 38.69/82.51 40.13/82.72 34.97/ 80.45 36.28 / 81.56

en-he 22.54/81.60 24.26 / 82.74 7.90/ 66.85 16.78 / 78.53
WMT24 en-de 29.42/80.21 30.79 / 80.86 24.58/77.48 25.64/79.02

en-es 41.81/81.64 42.64 / 81.81 37.55/79.84 38.71/ 81.25

By incorporating WMT22-24, we ensured that the evaluation process was more robust and free from the potential
issues associated with overfitting to previously seen data. As shown in Table 5, the results from our experiments using
these newer datasets demonstrated a consistent improvement in translation quality across various language pairs.
The experimental results demonstrate consistent performance improvements across multiple configurations. For the
Meta-Llama-3.1 model, the proposed method achieves absolute BLEU score gains ranging from +0.90 to +2.21
across high-resource language pairs (en-de, en-es), with the most significant improvement observed in WMT22 en-de
(+1.41 BLEU). COMET scores show stable enhancements from 0.30 to 1.43 points, indicating improved translation

quality coherence. Notably, low-resource pairs exhibit more pronounced gains: en-hr (WMT22) shows +2.21 BLEU
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improvement, while en-he (WMT23) achieves +1.72 COMET increase, suggesting the method’s effectiveness in data-
scarce scenarios. The Qwen2 model displays even stronger relative improvements. The Baseline-to-Ours comparisons
reveal BLEU score increments of 2.11-8.88 points, with particularly remarkable progress in challenging low-resource
settings: en-he (WMT23) achieves the 112.4% relative improvement (+8.88 BLEU), accompanied by a substantial
+11.68 COMET gain. The exceptional improvements observed with the Qwen2 model can be attributed to its initial
struggle with zero-shot translation, where it frequently generated substantial non-target language hallucinations and
our method significantly mitigated these issues. High-resource pairs maintain competitive enhancements, exemplified
by en-es (WMT24) with +1.16 BLEU and +1.41 COMET improvements. Cross-model analysis shows Meta-Llama-
3.1 generally outperforms Qwen?2 in absolute scores (e.g., WMT24 en-de: 30.79 for Meta-Llama-3.1 vs. 25.64 for
Qwen?2 ), though Qwen2 exhibits greater relative gains in low-resource conditions. The upward trend in performance
across all experimental conditions underscores the effectiveness of these datasets in providing a cleaner and more
reliable evaluation framework. This improvement serves to validate the robustness of our methodology and also
highlights the importance of using up-to-date and diverse data for evaluating LLMSs in machine translation tasks.
These results underscore the importance of addressing data contamination in training large-scale models, as re-
liance on outdated or overly familiar datasets can obscure the true performance capabilities of the models. By employ-
ing the latest evaluation datasets, we were able to obtain a more accurate and meaningful assessment of translation

quality, thereby providing a clearer picture of the improvements brought about by our approach.

5.4. Comparative Analysis of Keyword Identification Methods

English to Slovak Translation for Meta-Llama-3.1-70B-Instruct English to Slovak Translation for Qwen2-72B-Instruct
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Figure 6: Performance analysis of keyword selection strategies with English to Slovak Translation task.

In order to evaluate the impact of different keyword identification methods, four approaches were compared:

e (-shot: Translations without word constraints, which corresponds to a zero-shot translation approach.
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e fix-10: Fixing the number of words extracted from the source sentence, referred to as “fix-10” in the table,

where we select exactly 10 words from the source sentence.

e random-10: Randomly selecting words from the source sentence, denoted as “random-10” in the table, where

we use a random function to select 10 words from the source sentence.

e LLM-Based: Using the LLM to identify important words in the source sentence, referred to as “LLM-based”

in the table, which is the method proposed in this paper.

Table 6: BLEU scores for different translation methods by keywords identification across various language pairs, the bold font indicates the method

of obtaining the highest score.

Model Method cat Latn hrv_ Latn danLatn nld Latn tglLatn ind Latn itaLatn msa Latn nob_Latn slk Latn

English to low-resource languages

0-shot 25.19 17.00 27.18 22.10 19.52 39.42 27.56 30.43 19.32 15.68
fix-10 27.35 18.52 28.93 23.57 20.14 40.52 29.00 31.24 20.52 16.81
Quen2 random-10 28.76 20.37 29.75 24.86 21.63 42.73 30.58 32.92 22.33 18.56
LLM-Based 30.04 21.05 30.11 25.22 24.12 43.88 31.72 33.81 23.26 19.20
0-shot 38.41 25.31 42.22 25.17 30.90 44.62 28.52 36.78 29.58 27.47
fix-10 39.85 26.12 43.54 26.38 31.25 45.23 29.40 37.53 30.65 28.32
Meta-Llama-3.1
random-10 41.21 27.86 43.95 26.92 3275 45.86 30.78 38.22 31.54 29.82
LLM-Based 42.31 28.22 44.09 27.44 34.19 46.85 31.19 38.88 32.70 32.06

Low-resource languages to english

0-shot 44.59 35.88 46.26 31.24 43.21 43.83 32.98 4343 41.84 37.70
fix-10 45.11 36.72 46.78 32.69 44.56 44.95 33.51 44.23 42.55 38.23
Quen2 random-10 45.78 36.64 47.48 33.34 45.74 44.62 34.28 45.73 43.08 38.74
LLM-Based 46.12 37.56 48.52 33.79 45.89 45.36 34.71 46.11 43.25 39.02
0-shot 45.97 36.84 47.20 31.98 44.18 44.18 33.81 43.40 42.99 38.11
fix-10 46.63 37.65 48.37 33.14 44.73 45.06 34.54 44.57 44.43 39.29
Meta-Llama-3.1
random-10 47.13 37.96 49.21 34.03 45.08 46.75 34.89 46.51 4545 40.28
LLM-Based 47.29 38.13 49.54 34.28 45.28 47.23 35.28 46.91 45.88 40.47

To validate the effectiveness of LLM-based keyword identification, we focus on introducing the following two
methods: (1) fix-10, a fixed strategy for extracting the first 10 words from a source sentence. This method serves as
a control to assess the impact of context-agnostic keyword selection. And (2) random-10, a random strategy where
10 words are selected uniformly at random from the source sentence. This evaluates the necessity of semantic-aware
keyword prioritization. The choice of “10 keywords” was determined through preliminary experiments, where we
observed that increasing keyword counts beyond 10 led to diminishing returns in translation quality while significantly
increasing computational overhead. We conducted preliminary experiments on the English — Slovak translation task,
varying the number of keywords from 5 to 20. Figure 6(a) and Figure 6(b) show that BLEU scores plateau at 10

keywords, while computational cost (tokens that prompt evaluation count) increases linearly.Selecting 10 keywords
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achieves a Pareto-optimal balance between translation quality (retaining 97.6% of peak BLEU performance) and
efficiency (reducing 42% of computational overhead compared to 20 keywords). By comparing the design with fix
and random methods, we aim to further demonstrate the performance improvement brought about by our approach.
As shown in Table 6, our LLM-based approach significantly outperforms both the fixed and random extraction
methods, as well as the unconstrained translation approach. This demonstrates the efficacy of using a large language
model to identify contextually important words in the source sentence, providing more targeted and relevant word
constraints during the translation process. The fixed extraction method, while offering a controlled selection of words,
does not account for the varying importance of different words in the sentence, potentially leading to suboptimal
translations. Similarly, the random extraction method introduces unnecessary variability, as the selected words may
not be those that contribute most significantly to translation quality. In contrast, the LLM-based approach dynamically
adapts to the linguistic context, identifying key terms that are crucial for accurate translation. As a result, it yields

higher-quality translations.

5.5. Analysis and Discussion of Computational Efficiency

This study quantitatively evaluates the impact of our proposed method (both with and without the iterative self-
checking mechanism) by analyzing its performance in terms of computational efficiency and translation quality com-
pared to existing baseline methods. This detailed analysis seeks to substantiate our claims and clearly elucidate the
contributions of each component of our approach. Due to the addition of an iterative self-checking mechanism, our
method does indeed have multiple calls to LLMs, resulting in increased computational overhead, as we will no longer
count their input tokens. To comprehensively understand computational efficiency, this study introduces two key

metrics:

¢ Input Tokens (tokens/it): This metric quantifies the average number of tokens processed per translation item
by Large Language Models (LLMs) during inference. It includes both prompt tokens and source text tokens.
Lower input token values indicate more efficient prompt engineering, as the model requires less contextual

information to generate translations, thereby reducing the computational load associated with token processing.

e Time Cost (s/it): This metric measures the average wall-clock time required to generate one translated output,
representing the end-to-end latency from input submission to completed translation. It encompasses computa-
tion time, memory access overhead, and decoding time. Time cost is a critical indicator for real-time applica-

tions, where low latency is essential for user experience and system responsiveness.

The data presented in Table 7 provides strong evidence for the computational efficiency of our proposed dictionary-
driven single-pass translation method (“Ours w/D”’) compared to DiPMT and CoD. Firstly, in terms of input token
efficiency, “Ours w/D” consistently processes fewer input tokens per translation item across both Qwen2-72B-Instruct

and Meta-Llama-3.1-70B-Instruct models. For instance, in the English-to-non-English direction for Qwen2, “Ours

Data Intelligence 21



Refining Translations with Large Language Models: A Constraint-Aware Iterative Prompting Approach

Table 7: Computational Efficiency and Translation Quality Comparison across Methods. “Ours w/D” denotes our method using dictionary informa-
tion without self-checking, forming a single-pass translation comparable to DiPMT and CoD. “Ours w/D+S” incorporates dictionary information
with iterative self-checking. BLEU scores, average input tokens per item (tokens/it), and average time cost per item (s/it) are reported for English

to low-resource languages (en—xx) and low-resource languages to English (xx—en) directions.

en—Xxx XX—en
Method
BLEU input tokens (tokens/it) time cost (s/it) BLEU input tokens (tokens/it) time cost (s/it)
Qwen2-72B-Instruct
DiPMT 25.85 348 12.27 40.94 336 13.12
CoD 26.85 693 14.66 41.61 623 15.87
Ours w/D 26.99 319 11.82 41.71 298 12.65
Ours w/D+s 28.24 - 18.84 42.03 - 19.28
Meta-Llama-3.1-70B-Instruct
DiPMT 33.82 283 5.61 41.84 273 6.38
CoD 34.60 684 6.80 42.09 692 8.64
Ours w/D 34.84 278 5.42 41.92 285 6.16
Ours w/D+s 35.79 - 8.52 43.02 - 9.12

w/D” uses only 319 tokens/it, significantly less than DiPMT’s 348 tokens/it, and markedly lower than CoD’s 693 to-
kens/it. Similar trends are observed across all language pairs and models. This empirically confirms our assertion that
our method, through a refined strategy of dynamically prioritizing high-impact vocabulary, avoids the “overly lengthy
prompts” issue that can “increase computational overhead while diluting focus on critical terms”. Our LLM-based
keyword identification method effectively filters for the most relevant lexical constraints, leading to more concise
and efficient prompts. In addition, regarding reduced time cost, “Ours w/D” demonstrates lower average wall-clock
time. For the English to low-resource languages direction with Qwen2, “Ours w/D” takes 11.82 s/it, outperforming
DiPMT (12.27 s/it) and CoD (14.66 s/it). Meta-Llama-3.1 also shows “Ours w/D” as the most efficient single-pass
translation method (5.42 s/it for English to low-resource languages). The direct correlation between reduced input
tokens and lower time cost highlights the practical efficiency gains of our method, making it more suitable for sce-
narios requiring rapid inference. Finally, in terms of translation quality, despite the reduced computational overhead,
“Ours w/D” maintains or slightly improves BLEU scores compared to DiPMT and CoD. For example, on Qwen2’s
English to low-resource languages, “Ours w/D” achieves 26.99 BLEU, surpassing DiPMT (25.85) and CoD (26.85).
This indicates that our method effectively focuses the LLM’s attention on critical terms without “diluting focus,”
thereby achieving competitive or superior translation quality with higher efficiency. The observed efficiency gains of
“Ours w/D” over DiPMT and CoD are not merely incremental improvements but highlight a fundamental difference
in prompt engineering philosophy. Our method’s “refined strategy that prioritizes high-impact vocabulary dynami-
cally” suggests that carefully curated, high-quality context is more effective than simply voluminous context. This
finding has significant implications for broader principles of interacting with LLMs: for specific tasks like machine
translation, intelligent filtering and prioritization of input information can lead to superior performance and efficiency,

challenging the intuitive “more data is better” prompting approach.
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As anticipated, the “Ours w/D+S” method incurs a significantly higher time cost compared to “Ours w/D”. For
instance, the time cost for Qwen2 English-to-non-English jumps from 11.82 seconds/item for “Ours w/D” to 18.84
seconds/item for “Ours w/D+S”, an increase of approximately 60%. A similar increase is observed for Meta-Llama-
3.1 (e.g., from 5.42 s/it to 8.52 s/it for English to low-resource language). This increased latency is a direct con-
sequence of the iterative nature of the self-checking process , where the model performs multiple inference calls to
refine its output. Our method explicitly acknowledges this trade-off, stating that “a larger N allows for a more thor-
ough refinement of the translation but increases computational costs and latency”. Regarding the input tokens for
the iterative process, the “input tokens” metric for “Ours w/D+S” is marked with “-”, indicating that a single static
value is not directly applicable or easily comparable to single-pass methods. The iterative self-checking mechanism
involves multiple rounds of prompting, where the model processes the original source sentence, the current transla-
tion, and unmet dictionary constraints. Therefore, the total input tokens for “Ours w/D+S” would be the accumulation
of these iterations, making “time cost” a more representative end-to-end metric for actual latency and overall compu-
tational load. Despite the increased computation time, “Ours w/D+S” consistently yields higher BLEU scores. This
demonstrates that the iterative refinement process brings substantial quality benefits. Ablation studies further confirm
this, showing that the self-checking mechanism “significantly enhances translation quality” by “ensuring consistency,
reducing errors, and increasing overall accuracy” through “verification and adjustment of its outputs”. The signifi-
cantly increased time cost of “Ours w/D+S” might initially be perceived as a drawback. However, the consistent and
notable improvement in BLEU scores (and the observed ability to mitigate hallucinations in case studies) justifies
this overhead. This highlights a critical design consideration in LLM-driven applications: for tasks where accuracy,
consistency, and robustness are paramount (e.g., professional translation, domain-specific contexts, or low-resource
languages with poor initial quality), investing additional computational cycles for iterative refinement is a worthwhile
trade-off. This positions the “Ours w/D+S” method as a high-quality, robust solution for demanding scenarios, even

if it is not the fastest.

5.6. Ablation Study

In addition, we also explored the effects of different translation strategies, including the O-shot translation ap-
proach, using only a translation dictionary without the Self-Checking mechanism, and incorporating the Self-Checking
mechanism into the translation process. The results as shown in Figure 7, indicate that while the use of a translation
dictionary without the Self-Checking mechanism leads to an improvement in BLEU scores compared to the baseline
(0-shot), it still falls short of the performance achieved when the Self-Checking mechanism is applied.

The observed improvement with the translation dictionary alone can be attributed to the additional lexical con-
straints provided by the dictionary, which helps guide the translation model towards more accurate word choices.
However, this approach does not fully capture the context and intricate nuances of sentence-level meaning. Without
the Self-Checking mechanism, the translation process remains somewhat static, as it does not involve any form of post-

translation evaluation or correction. The model may still produce translations that are syntactically or semantically

[\S)
W

Data Intelligence



Refining Translations with Large Language Models: A Constraint-Aware Iterative Prompting Approach

Meta-Llama-3.1-70B-Instruct Qwen2-72B-Instruct
4
45 0-shot I > 0-shot
w/o Self-checking 40 w/o Self-checking -
40 W w/ Self-checking - B w/ Self-checking

BLEU Score

& & & NS S & @ & L N ' & & NS S & <@ & &L N
¢ & & F S ¢ & & & & & & ¢ & &
& & & & [ & & & s & & & & & [ & & & &
Meta-Llama-3.1-70B-Instruct Qwen2-72B-Instruct
— 7] 50
50 0-shot 0-shot

w/o Self-checking - - w/o Self-checking -
B w/ Self-checking i - || B w/ Self-checking

g
D201

Figure 7: Comparison of BLEU scores for Meta-Llama-3.1-70B-Instruct and Qwen2-72B-Instruct with and without self-checking versus 0-shot.

flawed, especially when dealing with ambiguous or polysemous terms, which are common in low-resource language
pairs. On the other hand, the inclusion of the Self-Checking mechanism significantly enhances the translation quality.
This mechanism allows the model to verify and adjust its outputs after the initial translation, ensuring consistency,
reducing errors, and increasing overall accuracy. The ability of the Self-Checking mechanism to dynamically refine
the translation output based on context makes it particularly effective in addressing issues such as mistranslations or
poor lexical choices, which are more prevalent when only a dictionary is used. Furthermore, Self-Checking helps
to maintain fluency and grammatical correctness, which contributes to the higher BLEU scores observed with this
approach.

In summary, our ablation study highlights the superiority of the LLM-based keyword identification method com-
bined with the Self-Checking mechanism. The LLM-based approach significantly outperforms both fixed and random
word extraction methods, as well as the zero-shot translation approach, by dynamically identifying contextually im-
portant words for more accurate translations. Furthermore, the integration of the Self-Checking mechanism further
enhances translation quality by allowing the model to refine its output and correct errors, ensuring greater consis-
tency and fluency. Together, these innovations demonstrate the effectiveness of our method in improving machine

translation performance.
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5.7. Case Study

The case study as shown in Figure 8 examines the translation quality of Meta-Llama-3.1 for English-to-Slovak
tasks, focusing on the impact of incorporating dictionary constraints and self-checking mechanisms. The source
sentence and its corresponding reference translation highlight the challenges of accurately translating low-resource

sentences, particularly when specific keywords significantly influence the overall translation quality.

Meta-Llama-3.1 (translation from English to Slovak)

No extra transport is being put on and overground trains will not stop at Wembley, and car

Source Sentence parking and park-and-ride facilities are unavailable at the ground.

K dispozicii nie je Ziaden dal$i druh dopravy, nadzemné vlaky nezastavuji vo Wembley a

Ref RN - e . 5 , .
erence taktiez nie su k dispozicii parkoviska ani zariadenia s moznostou park-and-ride.

Keywords ["transport", "trains", "parking”, "facilities", "ground"]

{'transport': ['dopravy', 'dopravné', 'transport’],

'trains': ['vlaky', 'vlakov'],

Dictionary 'parking': ['parkoviska, 'parkovanie’],

‘facilities": ['vybavenie', 'zariadenia'],

'ground": ['mleté’, 'pozemné’, 'zemi', 'zem', 'pozemny'l}

BLEU=3.39
chrF++=27.74

Ziadne dalsie dopravné sluzby nebudu zavedené a nadzemné vlaky sa neudia zastaveni na
stanici Wembley, a parkovacie plochy a sluzba park and ride budi uzamknuté pri $tadiéne.

BLEU=8.69
chrF++= 46.38

Nie st k dispozicii Ziadne dalie prepravy a nadzemné i8Rl sa nezastavujui na Wembley,
a PERKOVISKE aut a park-and-ride EEfig0eNIg nie su dostupné na $tadidne.

{'transport': ['dopravy', 'dopravné’,

Unmet Dictionary ‘ground": ['mleté’, 'pozemné’, 'zemi', 'zem', '‘pozemny'l}

BLEU: 8.86 Nie st k dispozicii Ziadne dalsie HSBEEM a nadzemné JIBRY sa nezastavuji na Wembley, a
chrE++-47 38 [PERKOVISKE 2ut a park-and-ride EBli@@ENIE nie su dostupné na FEZEHIRY Stadion.

Figure 8: A case study with Meta-Llama-3.1 model for translation task from English to Slovak.

In the zero-shot translation scenario, where the model directly generates translations without external guidance,
the BLEU score is 3.39, and the chrF++ score is 27.74. The output demonstrates limited accuracy, failing to capture
the semantic and lexical nuances of the reference sentence. Keywords such as “transport”, “trains”, and “ground”
are inadequately translated, leading to a significant loss in meaning.By integrating dictionary constraints, the BLEU
score improves to 8.69, and the chrF++ score increases to 46.38. This improvement underscores the importance of
providing the model with explicit lexical information. Keywords such as “vlaky” (trains) and “parkovanie” (park-
ing) are accurately translated, resulting in better alignment with the reference sentence. However, certain contextual
nuances remain unresolved, as indicated by discrepancies in the translation of “ground” and “facilities”. To address
these issues, the addition of a self-checking mechanism further enhances translation performance. With the combined

use of dictionary constraints and self-checking, the BLEU score reaches 8.86, and the chrF++ score improves slightly
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to 47.38. This approach ensures a higher degree of consistency and semantic accuracy, particularly for critical terms

such as “dopravny” (transport) and “pozemny” (ground). The self-checking mechanism effectively resolves lexical

ambiguities and ensures the integrity of the final translation.

Qwen2 (translation from English to Norwegian)

Duvall, who is married with two adult children, did not leave a big impression on Miller, to whom

Source Sentence the story was related.

Duvall, som er gift og har 2 voksne barn, hadde liten innvirkning pa Miller, som historien var

Refence relatert til.
Keywords [“married”, "adult", "children”, "impression", "story", "related"]
{'married": ['gift'],
'adult": ['voksen', 'voksent', 'voksne'],
Dicti ‘children’: ['barn,
ictionary

'impression’: ['inntrykk'],
'story": ['hendelse’, 'story', 'historien’],
'related": ['relatert', 'relaterte']}

Zero-Shot Output Duvall, som er gift med to voksne barn,B8 T~ 3Eet ikke et stort inntrykk pa Miller, til hvem

BLEU=26.19 . .

chrF++= 49 65 historien ble relatert.

\élech_tlonary Duvall, som er [ift med to WGKHE B&, gav ikke et stort KR pa Miller, til
e ma e NSHSHEN vor FEEEER

chrF++= 55,07 vem var :

Unmet Dictionary {}

wi Dictionary + Self-=Checking |5 a1 som er i med to NEKHE &M, gav ikke et stort [TERK pa Miller, til

BLEU=26.97 hvem [TSIGHEH var FEIEEH

chrF++= 55.07

Figure 9: A case study with Qwen2 model for translation task from English to Norwegian.

For the case study of Qwen2 model is shown in Figure 9, the model’s performance for English-to-Norwegian
translation is analyzed, highlighting challenges in zero-shot translation. In the zero-shot scenario, the model unex-
pectedly introduced non-target language content, outputting Chinese characters instead of Norwegian, which indicates
a hallucination issue. The BLEU and chrF++ scores for zero-shot translation were 26.19 and 49.65, respectively. By
incorporating dictionary constraints, the model achieved improved accuracy, with BLEU increasing to 26.97 and
chrF++ to 55.07, correctly translating critical terms such as “gift” (married) and “voksne barn” (adult children).
Adding a self-checking mechanism maintained these improvements, ensuring consistent translations aligned with the
reference. This study highlights the limitations of zero-shot translation in Qwen2 and demonstrates the effectiveness
of dictionary constraints and self-checking in mitigating hallucination issues and enhancing translation quality.

Meanwhile, we also added Table 8 that compares with DiPMT and CoD by Qwen2-72B-Instruct. As shown in Ta-

ble 8, DiPMT and CoD overload prompts with exhaustive term mappings, causing the LLM to prioritize low-relevance
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Table 8: A case study that comparison with DiPMT and CoD by Qwen2-72B-Instruct.

Source Sentence (English) Travelling by plane can be a scary experience for people of all ages and backgrounds, particularly if they’ve not flown before
or have experienced a traumatic event.
Target Sentence (Slovak) Cestovanie lietadlom mdZe by¥ strasidelngm zazitkom, bez ohladu na vek & povéd cestujicich. A to najmi v pripade, ak

nikdy predtym neleteli alebo zaZili traumatizujicu udalost.

DiPMT’s Prompt

“traumatic” means “traumatické”. “if” means “ak”. “people” means “ludia”. “event” means “udalost”. “all” means “vietky”.

“flown” means “vyletel”. “or” means “alebo”. “backgrounds” means “pozadie,”. “and” means “a)”. “for” means “pre”.

TSP LI

“particularly” means “najmd”. “a” means “a)”. “experience” means “skisenosti”. “scary” means “straSidelny”. “by” means

Py

v”. “plane” means “lietadlo”. “have” means “maji”. “before” means “pred”. “not” means “nie”. “Travelling” means

-
“Cestovanie”. “experienced” means “skiiseny”. “of”” means “z”. “be” means “by{”. “can” means “mdZze”. “they’ve” means
P

“Oni maju”. “ages” means “vek”.

Translate the following text from English to Slovak: {Source Sentence}

CoD’s Prompt

4

“traumatic” means “traumatické” means “traumatisant” means “traumatico” means “Traumatische”. “if” means “ak” means

»

“si le” means “si el” means “wenn”. “people” means “ludia” means “Les personnes” means “personas” means “Menschen”.

“event” means “udalost” means “événement” means “El evento” means “Veranstaltung”. “all” means “vietky” means “tout”

50

means “todos” means “alle”. “flown” means “vyletel” means “volé¢” means “No se puede” means “Fliige”. “or” means
“alebo” means “ou” means “o el” means “oder”. “backgrounds,” means “pozadie,” means “les antécédents,” means “los
antecedentes,” means “Hintergriinde”. “and” means “a)” means “et de” means “y el” means “und”. “for” means “pre”

means “pour” means “para el” means “fiir”. “particularly” means “najmd” means “particulierement” means “En particu-

et}
a

lar,” means “Besonders”. means “a)” means “le” means “a) EI” means “a)”. “experience” means “skisenosti” means

“expérience” means “‘experiencia en el trabajo” means “Erfahrung”. “scary” means “strasidelny” means “effrayant” means

e »

“Es un susto.” means “Angst machen”. “by” means “v”’ means “par” means “por el” means “von”. “plane” means “lietadlo”

235

means “plan” means “avién” means “Flugzeug”. “have” means “maji” means “ont” means “tiene” means “haben”. “before”

means “pred” means “avant” means “antes de” means “vor”. “not” means “nie” means “pas” means “No” means “nicht”.

o« ey

“Travelling” means “Cestovanie” means ‘“Voyage” means “Viajes” means “Reisen”. “experienced” means “skiseny” means

0

“expérimenté” means “con experiencia” means “Erfahrene”. “of” means “z” means “de” means “de las” means “von”. “be”

wa Ay 9

means “by{” means “&tre” means “ser” means “sein”. “can” means “mdZe” means “peut’ means “puede” means “kann”.

235

“they’ve” means “Oni maji” means “Ils ont” means “Ellos han” means “Sie haben”. “ages” means “vek” means

wpn

ages”
means “edad” means “Alter”.

Translate the following text from English to Slovak:{Source Sentence}

Ours’ Prompt

Translate the following sentence from English to Slovak using the provided Dictionary information. Ensure that each dic-
tionary entry is appropriately applied in the translation. For any polysemous words, select the translation that best fits the
context of the sentence.

Dictionary: {‘traumatic’: [‘traumatické’], ‘persons’: [‘osobdm’, ‘osoby’, ‘0s6b’], ‘event’: [‘podujatie’, ‘udalost’, ‘event’,
‘udalosti’], ‘flown’: [‘letel’, ‘leteli’], ‘backgrounds’: [‘pozadia’], ‘particularly’: [‘obzvl4s{’, ‘zvl4st’], ‘experience’:
[‘skidsenost’, ‘prax’, ‘skisenosti’], ‘scary’: [‘strasidelné’, ‘desivé’], ‘plane’: [‘lietadlo’, ‘rovina’, ‘lietadlom’], ‘have’: [‘maj’,
‘maf’, ‘majd’], ‘before’: [‘pred’, ‘predtym’, ‘predtym’], ‘travelling’: [‘cestovanie’], ‘experienced’: [‘skdseny’, ‘zazil’,
‘skusenych’, ‘skdsenosti’, ‘skiseného’], ‘age’: [‘age’, ‘veku’, ‘vek’]}.

Sentence: {Source Sentence}

DiPMT’s Result (BLEU=9.70)

Cestovanie lietadlom mdZe byt strasidelnd skiisenosi pre Tudi vsetkych vekov a pozadiel, najmé ak predtym nesia leteckou

cestu alebo maju zaZif traumati¢né udalosti.

CoD’s Result (BLEU=10.40)

Cestovanie lietadlom mdZe byt strasidelné skisenosti pre Tudi vSetkych vekov a pozadiel, najmi ak predtym nevyleteli alebo

mali traumatuju udalost.

Ours’s Result (BLEU=16.27)

Cestovanie lietadlom mdZe byt strasidelné zaZitok pre osoby vietkych vekov a pozadif, obzvl4st ak predtym neleteli alebo

zazili traumtické podujatie.
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words (e.g., conjunctions). And both baselines generate ungrammatical outputs (DiPMT: “straSidelnd skdsenost”;
CoD: “strasidelné skisenosti”). Errors stem from mechanical term injection without syntactic/semantic verification.
This dilutes focus on semantically critical terms, resulting in grammatical errors and unnatural collocations. In con-
trast, our constraint-aware prompting filters 54% of low-impact terms and enforces context-aware translation selec-
tion, improving BLEU by 67% over CoD. Our Solution’s Efficacy: Keyword filtering reduces prompt terms by 46%

(28 — 15), prioritizing high-impact words (e.g., “traumatic”, “scary”). Self-checking iteratively corrects errors. The

67% BLEU improvement over CoD confirms reduced focus dilution.

6. Conclusion

In this paper, we have presented a novel multi-step prompting approach for enhancing the faithfulness and ro-
bustness of LLM-based MT. Our method addresses the challenges faced by LLMs in translating rare or specialized
terminology by explicitly focusing on key terms in the source sentence and strategically integrating lexical knowledge
from high-quality bilingual dictionaries. We further leverage the reflective capabilities of LLMs by employing an
iterative self-checking mechanism that allows the model to refine its translations based on both lexical and semantic
constraints. Comprehensive experiments conducted on the FLORES-200 benchmark for low-resource languages and

contamination-free WMT datasets demonstrate the effectiveness of our approach.

7. Limitation and Future Work

One notable limitation of our approach is its reliance on the quality of the bilingual dictionaries used. The effective-
ness of the Retrieval-Augmented Translation and Self-checking methods depends on the accuracy and completeness
of these dictionaries. Errors, outdated entries, or incomplete translations in the dictionaries can negatively impact
the model’s ability to retrieve accurate word translations, thereby affecting overall translation quality. Additionally,
dictionary quality may vary across language pairs and domains, leading to inconsistent performance. To address
this, dictionaries should be continuously updated and refined. Future work could focus on dynamically improving

dictionary quality or integrating multiple translation data sources to alleviate these issues.
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