2008年4月

固体废弃物低温烧制优等节能保温砖 强度机理及热性能分析

徐子芳 张明旭 闵凡飞

(安徽理工大学材料科学与工程学院,淮南 232001)

摘 要 采用废弃物粉煤灰和煤矸石为主要原料焙烧实心墙体保温砖。正交实验优化结果为:焙烧温度 950 ℃,低于实心粘土砖 100 ℃的焙烧温度,属于低温焙烧。焙烧周期 24 h,粉煤灰和煤矸石的掺量比是 60%:35%,掺膨胀珍珠岩的保温砖 B7 抗压强度为 30.25 MPa,达到普通粘土砖 MU30 优等级;导热系数为 0.400 W/(m·K),低于普通粘土砖的导热系数 0.78 W/(m·K);此外,B7 的 XRD 图谱出现明显的石英、莫来石衍射特征峰及 TGA-DTA 图谱在 900~1 200 ℃的区间,随着温度的升高,坯体吸热开始熔融玻化,产生晶型转变,使力学性能得到提高;SEM 扫描可见:经 950 ℃焙烧后,球体状的实心玻璃珠、珠状皱晶的珍珠岩、絮凝状的铝硅酸盐相,原料颗粒之间的间隙被粘性玻璃质所填充,使 B7 产生很高的力学强度。

关键词 固体废弃物 焙烧 保温砖 性能分析

中图分类号 X705 文献标识码 A 文章编号 1673-9108(2008)04-0548-05

Thermal performance and strength mechanism analysis of using solid waste at low temperature to roast high-class heat insulation brick

Xu Zifang Zhang Mingxu Min Fanfei

(School of Material Science and Engineering, Anhui University of Science and Technology, Huainan 232001)

Abstract Fly ash and coal gangue were used as main raw materials to roast solid insulating brick . Cross experiment optimization results show that when roasting temperature is 950 °C (lower than solid clay brick 100 °C , belong to low temperature roasting) , roasting time cycle is 24 h ,fly ash and coal gangue scale is 60%: 35% , the B7 admixing expanded pearlite compressive strength is 30.25 MPa. Strength reach general clay brick MU30 high-class level. Thermal coefficient of conduction is 0.4 W/(m·K), lower than general clay brick thermal coefficient of conduction 0.78 W/(m·K). In addition , B7 XRD pattern has evident quartz mullite diffraction character peak and TGA-DTA pattern between 900 ~ 1 200 °C , following temperature rise , green body heat-absorbing , begin melt ,glass reduction . The result is high in strengths. SEM scanning shows that after be roasted at 950 °C , globular solid glass bead , pearlitic drusy pearlite ,flocculation aluminosilicate phase and so on , raw materials particle interstices are filled with viscous hyaline , so that B7 turns out high strengths.

Key words solid waste; roasting; insulating brick; performance analysis

长期以来,粘土实心砖作为建筑行业用量最大 最重要的墙体材料,每年不仅毁坏大量土地,而且破坏了生态环境。积极发展节能、节地、利废的新型墙体材料代替传统的实心粘土砖,对于转变经济增长 方式,促进我国建材业和建筑业技术进步,具有显著的社会效益和经济效益[1]。

我国煤炭资源丰富,火力发电厂粉煤灰排放量巨大,粉煤灰中有残余的未燃尽碳,内部存在大量的玻璃体,可以降低焙烧温度实现节能。利用固体废弃物在原有生产粘土实心砖企业的技术、设备和生

产场地的基础上,经过适当的更新改造和工艺调整,就可以生产具有保温、隔热的优质新型墙体材料,这对保护耕地,节约能源,变废为宝,治理污染,改善建筑材料功能,提高住宅质量,推进住宅产业现代化具有重要的现实意义。"十一五"期间,全国房屋年竣

基金项目: 2008 年度安徽省高校省级自然科学研究项目 (KJ2008B274);安徽省淮南市2007年市本级科技项目

收稿日期:2007-10-15;修订日期:2008-01-31

作者简介:徐子芳(1972~),女,博士研究生,讲师,主要从事硅酸盐 材料专业的教学与研究工作。E-mail: zhfxu@ aust. edu. cn 工面积超过了 20 亿 m²,建筑业增加值年均约 7 500 亿元。其中城乡住宅年需求量保持在 15 亿 m² 左右,住宅产业的投资增长率远远大于 GDP 的年均增长率,从而使得新型墙体材料具有广阔的市场前景,这对我国正在实施的可持续发展战略有着重要的意义^[2,3]。

实验表明,通过利用固体废弃物生产出的实心 墙体保温砖,具有保温,隔热,耐酸碱,可承重等优 点,可以取代传统的实心粘土砖,达到节能,节地,利 废的目的。产品焙烧温度 950 ℃,低于实心粘土砖 1050 ℃的焙烧温度,属于低温焙烧产品,无二次污 染,产品使用过程中具有环境安全性,具有实施开发 的技术应用价值。所谓一次污染物,即在自然条件 的作用下,改变了原有性质,特别是那些反应性较 强的物质,性质极不稳定,容易发生化学反应,而产 生新的污染物,即出现二次污染。建筑材料的二次 污染主要是考虑工业废渣在利用过程中的是否出现 放射性,用放射性的材料作为居室装饰材料时会对 人们健康有影响,粉煤灰和煤矸石中的放射性大小 与原料中SiO₂的含量有直接关系,产生辐射主要是 钍系衰变子体和钾 -40,本实验研制产品是 950 ℃ 焙 烧后的产品,原料中的 SiO, 焙烧后发生晶相反应, 产生辐射的源头已经消失,完全可以替代传统粘土 砖的使用[4]。

1 实验方法

1.1 材料选择、焙烧设备和样品制备

将淮南新集煤矿煤矸石破碎为粒度为≤3 mm, 粉煤灰为淮南洛河电厂出厂原灰,膨胀珍珠岩处理 为≤2 mm,膨润土为出厂原土。根据前阶段一系列 探索实验结果:以焙烧温度、原料配比、焙烧时间等 因素进行正交实验设计,然后制样、养护,温度为 (21 ± 1) ℃, 养护 24 h 烘干脱摸, 脱模后陈化 4 d, 用 实验室最高温度为 1 200 ℃电炉在中性气氛条件下 焙烧,取不同焙烧周期、焙烧温度的产品进行强度实 验,大量正交强度实验结果得到:当粉煤灰:煤矸 石:膨润土为60%:35%:5%,掺膨胀珍珠岩作为保 温材料时(其比例为前三者之和的5%),焙烧温度 为950 ℃,烧成周期24 h的产品为最佳样B7,B7 试 样属于一次焙烧,按 B7 试样焙烧条件在隧道窑中 焙烧,实验结果显示 B7 仍是最佳方案样。最佳样 B7 粉煤灰掺量为 65%, 高于目前国内焙烧粉煤灰 砖,粉煤灰50%掺量仍需掺高塑性外加剂的记录。

1.2 对最佳样的性能测试与表征

对样品进行 XRD、TGA-DTA 实验,使用日立 D/MAX- γ A 旋转阳极 X 射线衍射仪进行 XRD 分析;SDT 2960 型 DSC-TGA 热分析仪(Simultaneous DSC-TGA)进行 TGA-DTA 实验。温度参数为:室温~1000 ℃,升温速率:15 ℃/min,空气为载气的条件下进行分析。分析固体废弃物参与反应的情况。利用 SEM 采用 X65-D 型场扫描电子显微镜(scanning electron microanalyser),分析焙烧后的固体废弃物在矿化物形貌上发生的变化。利用物理性能测试方法测试了强度和导热系数(λ)。

2 结果和讨论

2.1 X 射线衍射和 TGA-DTA 热机理分析

图 1 是样品 B7 的 XRD 图谱,从图 2 和图 3 的 对比分析可见:比较烧结砖与粉煤灰、煤矸石的 XRD 图谱,可以看出: B7 样品的石英峰值明显高于 粉煤灰的石英峰值,主要是 B7 样品煅烧过程中,煤 矸石中的碳被燃烧,而高岭石和白云母脱去—OH, 生成无定形物质,致使石英晶体含量相对总晶体提 高。 $2\theta:20^{\circ}\sim40^{\circ}$ 范围内出现的弥散峰较大,这主要 是粉煤灰引入大量玻璃相所致,相比煤矸石 XRD 图,B7 样品图在 CAS, 峰高增大,粘土中含有较多的 低熔杂质,在此温度下与粉煤灰发生作用,并且煤矸 石中原有的 CAS。成为晶种,使粉煤灰中的玻璃相 析晶,由原来的1100 ℃提前到900 ℃左右;粉煤灰 XRD 图中在 2θ : $15^{\circ} \sim 35^{\circ}$ 的区域出现的较宽大衍 射特征峰,在 B7 样品图中消失,表明烧成后的粉煤 灰中存在的玻璃体已经转化为晶态物质。粉煤灰玻 璃体在升温及降温过程中,一方面有晶相化的可能, 重新结晶形成莫来石;另一方面,玻璃体直接参与粘 土质成分的共融,形成共融体,在高温作用下 B7 样 品发生一系列理化反应,使粘土和粉煤灰都失去本 身的塑性,原料铝、铁、钙、镁、钾和钠等氧化物与硅 氧化物结合形成复杂的硅酸盐共熔物,在砖坯中产 生液相,熔化的玻璃体也把未熔颗粒包裹起来,相互 牢固地粘结在一起。在冷却时重新结晶形成稳定的 莫来石晶格,产生很高的力学强度[5,6]。

图 4 是样品 B7 的热形成机理图。从热重曲线见:样品 B7 有 2 个明显的放热峰,第一个对应 478.88 $^{\circ}$,第二个对应 1 174.59 $^{\circ}$,因为珍珠岩中 72% ~78% 为无定形 SiO_2 ,这些游离的 SiO_2 具有 很高的化学反应活性,与焙烧过程中生成的其他矿

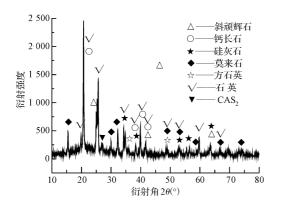


图 1 B7 样品的 XRD 图谱 Fig. 1 XRD pattern of B7 sample

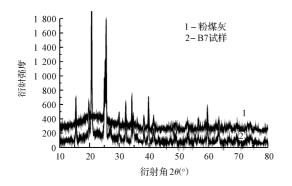


图 2 粉煤灰与 B7 试样的 XRD 图谱比较 Fig. 2 Difference of the XRD pattern between fly ash and B7 sample

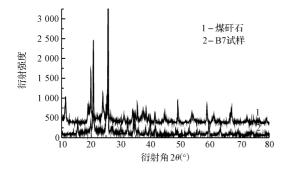


图 3 煤矸石与 B7 试样的 XRD 图谱比较 Fig. 3 Difference of the XRD pattern between coal gauge and B7 sample

物质反应,膨胀珍珠岩的加入使得在高温产生更多的玻璃相,同时降低了液相出现的温度。由于试验过程中载气为空气,样品料中部分化学成分与空气中的 CO₂ 等发生化合反应,使得总重量稍微增加,膨胀珍珠岩的加入增大了活化粒子的数目,提高了化合空气中 CO₂ 等气体的化合能力,样品 B7 在室

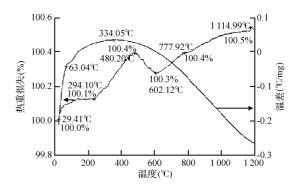


图 4 B7 试样的 TGA-DTA 曲线 Fig. 4 TGA-DTA curves of B7 sample

温~900 ℃的区间:无论是生成新的硅酸盐矿物还是再结晶,都是放热的化学反应过程。由于粉煤灰不参与吸热的分解反应,坯体升温较快,加速了粘土中矿物质的分解速度,当温度达到800 ℃以上时,由于粘土原料的分解吸热效应的作用已经微乎其微,而粉煤灰预分解矿物参与的放热化学反应加剧,强化了放热反应,尽管存在各种散热损失,但并不能有效地抵消粉煤灰预分解矿物化学反应的放热效应,致使坯体温度快速升高,图谱显示出很明显的放热峰。在900~1 200 ℃的区间:随着温度的升高,坯体吸热开始熔融玻化,发生晶型转变,导致材料强度提高 $^{[7]}$ 。

2.2 扫描电镜(SEM)分析

图 5(a,b)是 B7 样未掺保温材料膨胀珍珠岩的 SEM 扫描图片,从图中非常清晰地看见球体状的实 心玻璃珠。呈球体的只有实心玻璃珠、空心玻珠、厚 壁微珠。但焙烧温度为950℃,这时空心玻珠、厚壁 微珠已爆破。从图 5 可见已破裂的空心玻珠、厚壁 微珠及形似蜂窝的多孔玻璃体。图片可见实心玻璃 珠非常多但处于比较疏松的状态,镶嵌或浮于其他 物质之间或表面。图 5(b) 呈六方薄片状, 瓦片状的 鳞石英呈层状排布,实心玻珠浮于或镶嵌于石英及 板状钙长石表面,从中也可看见粒状的莫来石少量 的纤维状硅灰石。粘性玻璃体几乎包住了所有的原 料颗粒及烧结过程中所产生的新物质,紧紧把它们 包裹或粘接在一起,类似于构成比较结实的内部结 构,使得砖结构加强,测试抗压强度结果高达33.75 MPa,超过 MU30。图 6(a、b)是掺保温材料后 B7 试 样SEM照片。由于加入膨胀珍珠岩从而影响了粉 煤灰烧结砖的内部结构,烧结砖的致密度下降,可看 见珠状皱晶的珍珠岩,图6(a)可看见多孔状的珍珠

岩;图 6(b)可看见块状、浮石状珍珠岩,由于有块状、浮石状的珍珠岩从而使结构不密实出现孔洞,相

比不掺珍珠岩强度下降,强度为 30.25 MPa 仍达到 优等粘土砖的强度等级^[8,9]。

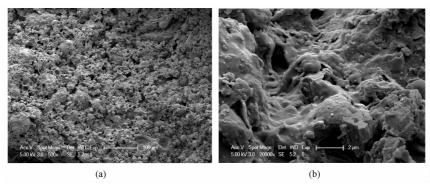


图 5 B7 试样未掺膨胀珍珠岩扫描电镜照片

Fig. 5 Scan electron microscope (SEM) image of B7 sample without admix expanded pearlite

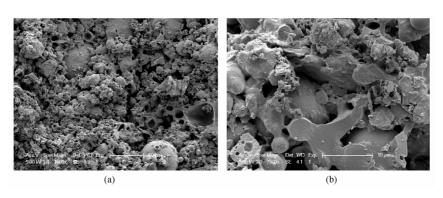


图 6 B7 试样掺膨胀珍珠岩扫描电镜照片

Fig. 6 Scan electron microscope (SEM) image of B7 sample admix expanded pearlite

2.3 强度分析和导热系数测定

根据 1.1 正交试验的结果对试样进行了强度和导热系数的测定,结果见表 1。

表 1 正交试验测定结果

Table 1 Results of cross experiment

•	实验	焙烧温度	粉煤灰	煤矸石	强度(MPa)		导热系数
	编号	$(\ \mathcal{C}\)$	配比(%)	配比(%)	抗压	抗折	W/(m·K)
	В1	950	40	55	26.25	4.1	0.448
	B2	850	40	55	19.75	2.5	0.473
	В3	750	40	55	15.25	1.9	0.571
	B4	950	50	45	24.75	4.2	0.406
	В5	850	50	45	18.25	2.7	0.428
	В6	750	50	45	14.75	2.5	0.552
	В7	950	60	35	30.25	5.8	0.400
	В8	850	60	35	20.5	3.6	0.431
	В9	750	60	35	16.25	3.0	0.506

物理性能试验按国家标准《烧结普通砖-GB5101-2003》进行。将试验结果与新型墙体材料

技术指标对比,实验结果中的 B7 试样强度 30.25 MPa, 导热系数 0.400 W/(m·K), 性能明显优于普 通粘土烧结砖,达到普通实心粘土砖 MU30 优等粘 土砖的指标,符合国家建材行业标准(JC239-2001)。 分析可见:粉煤灰和煤矸石的配比对强度的影响要 小于焙烧温度对其的影响。随着温度的逐渐升高, 强度还将有提升的空间;对于粉煤灰和煤矸石配比 的相对多少对强度影响性能显示:随着粉煤灰比例 的增加,强度的平均值在增加。整体分析可知,在粉 煤灰比例增加的同时,焙烧温度也增加对强度的提 高效果更明显。从表1还可见:对比导热系数与焙 烧温度,导热系数的级差为0.125,也说明粉煤灰和 煤矸石的配比对导热系数的影响要小于焙烧温度因 素的影响。随着温度的逐渐升高,导热系数还将有 下降的趋势,因为高温下,物料内的化学成分反应更 加充分,内部产生的气体不能有效的外排,产生了更 多的气孔,增大了孔隙率,从而提高了保温性能。从

经济效益上讲,提高焙烧温度本身就是能源的耗费,最优样 B7 焙烧温度为 950 ℃,低于实心粘土砖 1 050 ℃的焙烧温度,属于低温焙烧。目前国内粉煤灰焙烧砖,粉煤灰掺量为 50%时需加高塑性外加剂才能达到 MU20 传统粘土砖的标准。从节约能源和利用废弃物开发新型墙体砖的经济效益分析:B7产品强度已经达到优等粘土砖,导热系数、密度测试结果都优于优等粘土砖,已经达到研究目的[10,11]。

3 结 论

- (1)通过前期大量的正交基础实验分析,获得了用固体废弃物烧结实心优等节能保温砖 B7 的最佳配比。在此基础上,对 B7 试样的物理性能和微观形成机理进行了分析。分析可见:B7 的烧结温度低于实心粘土砖最低烧结温度 100 ℃,属于低温烧结,但性能指标却达到优等,是开发大量利用固体废弃物生产环保节能墙体材料的一个突破口。
- (2)B7产品的粉煤灰掺量为65%,在950℃焙烧温度下一次烧成,产品性能达到MU30传统粘土砖的优等标准。
- (3)针对用 B7 产品实施墙体材料的节能核算及用其他类保温材料替代膨胀珍珠岩,采用合适的外加改性剂处理,在室温研制保温墙体材料是亟待研究的方向。

参考文献

- [1] 马脊荣,同继锋.绿色建材与建材绿色化.北京:化学工业出版社,2003
- [2] 张文生,陈益民,欧阳世翁. 粉煤灰与水泥熟料共同水化

- 硬化的基础研究进展与评述. 硅酸盐学报,**2000**,(2): 160~164
- [3] 吴清仁,吴善淦. 生态建筑与环保. 北京:化学工业出版社,2003
- [4] 陶有生. 墙体材料与工业固体废弃物的利用. 砖瓦, **2001**,(6):56~57
- [5] Dong Faqin. The elementrary materials of eco-function. The Papers of the International Forum on Advanced Material Science and Technology, Anshan, 2002
- [6] Liker Bekir Topcu, Burak Isikdag. Manufacture of high heat conductivity resistant clay bricks containing perlite. Building and Environment, 2005, 40(1):1~4
- [7] Osman Unala, Tayfun Uygunog lua, Ahmet Yildizb. Investigation of properties of low-strength lightweight concrete forthermal insulation. Building and Environment, 2007, 42 (1): 584 ~ 590
- [8] Collet F., Serres L., Miriel J., Bart M. Study of thermal behaviour of clay wall facing south. Building and Environment, 2006, 41(2):307 ~ 315
- [9] Mo Liwu, Deng Min. Thermal behavior of cement matrix with high-volume mineral admixtures at early hydration age. Cement and Concrete Research, 2006,36(3):1992 ~ 1998
- [10] Hanifi Binici A., Orhan Aksogan B., Mehmet Nuri Bodur C., et al. Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Construction and Building Materials, 2007,21(1):901~906
- [11] Dincyurek O., Mallick F. H., Numan I. Cultural and environmental values in the arcaded mesaorian houses of cyprus. Building and Environment, 2006,41(3):307 ~ 315