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Multibody musculoskeletal modeling of human gait has been proved helpful in investigating the pathology of musculoskeletal
disorders. However, conventional inverse dynamics methods rely on external force sensors and cannot capture the nonlinear mus-
cle behaviors. Meanwhile, the forward dynamics approach is computationally demanding and only suited for relatively simple
tasks. This study proposed an integrated simulation methodology to fulfill the requirements of estimating foot-ground reaction
force, tendon elasticity, and muscle recruitment optimization. A hybrid motion capture system, which combines the marker-based
infrared device and markerless tracking through deep convolutional neural networks, was developed to track lower limb move-
ments. The foot-ground reaction forces were determined by a contact model for soft materials, and its parameters were estimated
using a two-step optimization method. The muscle recruitment problem was first resolved via a static optimization algorithm,
and the obtained muscle activations were used as initial values for further simulation. A torque tracking procedure was then
performed by minimizing the errors of joint torques calculated by musculotendon equilibrium equations and inverse dynamics.
The proposed approach was validated against the electromyography measurements of a healthy subject during gait. The simula-
tion framework provides a robust way of predicting joint torques, musculotendon forces, and muscle activations, which can be
beneficial for understanding the biomechanics of normal and pathological gait.
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1. Introduction

Human locomotion is driven and supported by the muscu-
loskeletal system. It is made up of bones, skeletal muscles,
joints, along with soft connective tissues, and all of them
consist a typical multibody system. Human gait analysis via
multibody dynamics simulations can obtain joint torques and
muscle forces which are difficult to measure from experi-
ments [1]. Multibody modeling of human musculoskeletal
system provides a simulation platform for understanding the
biomechanics of human locomotion, and it has broad ap-
plications in sports engineering [2], ergonomics [3-5], and
clinical treatments [6-10].
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However, musculoskeletal multibody simulation is a com-
plex problem due to the nonlinearity originated from the dy-
namic equations of motion, muscle contraction dynamics,
and foot-ground contact forces [1, 11]. The solution meth-
ods for the musculoskeletal models can be categorized into
inverse and forward approaches. The inverse dynamics ap-
proach needs to use the measured joint kinematics and exter-
nal forces as model inputs to calculate joint torques and mus-
cle forces [12, 13]. By this means, human locomotion was
assumed time-independent, and static optimization (SO) [14]
was further adopted to solve the muscle redundancy prob-
lem. However, this assumption ignores the force equilibrium
within the musculotendon unit and its contraction dynamics
[15]. In addition, it is difficult to obtain the foot-ground reac-
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tion forces without force plates or plantar pressure measure-
ment sensors [16]. The forward dynamics approach takes
the neural commands acquired via electromyography (EMG)
measurements [17-19] or controllers [20-24] as model inputs
to calculate human body movements. Researchers have de-
veloped numerous dynamic optimization methods to mini-
mize metabolic costs and kinematic errors [25, 26]. How-
ever, compared with inverse dynamics analysis, this method
is computationally inefficient and thus difficult to apply to
three-dimensional gait analysis.

Recently, researchers have tried to combine the forward
and inverse dynamics approaches [27] to compromise accu-
racy and efficiency [28]. For example, Skipper Anderson
et al. [29] provided the force-dependent kinematics method
to determine the ligament forces within the non-conforming
joints including the hip [30], knee [31], spine [32, 33], etc.
However, this approach still cannot consider the musculo-
tendon equilibrium equation [29]. Computed muscle control
(CMC) [20, 34] is another forward-inverse coupling method
that has been widely used by many researchers. However,
according to Wesseling et al. [35], the moment tracking per-
formance of the CMC method is poorer than SO. Shouri-
jeh et al. [15] proposed a forward-muscular inverse-skeletal
(FMIS) framework by solving the muscle redundancy prob-
lem via a torque tracking algorithm. They also developed for-
ward static optimization (FSO) methods based on kinematic
tracking [36]. However, the utilization of the FSO methods
was still limited within the planar musculoskeletal systems
with few degrees of freedom (DOFs) due to their low com-
putational efficiency.

The forward-inverse coupling framework is feasible to be
combined with the foot-ground contact model, providing the
possibility to estimate the walking kinetics outside the lab-
oratory. Based on the parameter identification method, one
can obtain the ground reaction forces without force plates.
For example, Pàmies-Vilà et al. [37] combined the parameter
optimization strategy and the extended Kalman filter to pre-
dict human gait patterns, while the estimated tangential force
results were not agreed with the experimental data. Shouri-
jeh and McPhee [38] provided the hyper-volumetric contact
model to consider the non-local contact behavior at the plan-
tar soft tissues. Based on this model, a two-dimensional
torque-driven gait model was developed by Ezati et al. [39],
while this method cannot eliminate the residual loads on the
pelvis imposed by motion constraints. Lopes et al. [40] sim-
plified the foot-ground contact geometry as a super-ellipsoid
to a plane, reducing the spatial resolution compared with
point-to-plane contact models like Refs. [41, 42]. Recently,
Van Hulle et al. [43] provided a foot-ground contact model
that fits for inverse dynamics calculations, but its validity
and reliability strongly depend on the accuracy of the land-

marks attached to the feet. Therefore, how to combine a foot-
ground contact model with muscle-driven gait models is still
needed to be investigated.

In addition, the mixture of forward and inverse dynamics
approaches enables some joint angles to be calculated rather
than merely measured from experiments. These DOFs can
use markerless motion capture data [44] as kinematic inputs,
preventing the time-consuming tasks of attaching the reflec-
tive markers. Kinect-driven musculoskeletal models were
developed by Skals et al. [45] and Hirano et al. [46], and
these models can be used to evaluate the gait abnormalities of
Parkinson’s disease patients [47]. However, the accuracy of
lower limb kinematics was low since only two virtual mark-
ers were attached to a rigid body segment. Moreover, the
accuracy of the video-based markerless motion capture sys-
tems [48] can be improved by combining it with multibody
kinematics calculation [49-51]. This hybrid motion capture
method can be used to obtain the kinematic inputs of the mus-
culoskeletal models.

This paper aims to provide a FMIS framework for calcu-
lating joint reaction torques and muscle forces. In Sect. 2,
a hybrid motion capture system including eight infrared and
four video cameras was established. Based on the measured
kinematics data, we further optimized the ground reaction
forces and then estimated the muscle recruitment patterns of
the lower limb. To validate the presented modeling approach,
the obtained data were compared against literature data and
EMG measurements in Sect. 3. Section 4 further discussed
the main findings and limitations of our research.

2. Methods

2.1 Experimental setup and procedures

2.1.1 Gait kinematic analysis

A healthy male subject (29 years, 175 cm, 59 kg) was se-
lected in this study and signed informed consent before the
experiment. The recruited subject reported no lower limb in-
juries within half a year and did not engage in strenuous exer-
cise 48 hours before the experiment. This study has been ap-
proved by the ethics committee of Beijing Institute of Tech-
nology.

The subject performed one static calibration trial before
gait testing. Then, he was instructed to walk at self-selected
speed, see Fig. 1a. Based on a modified Helen Haynes
marker arrangement [52], nineteen reflective markers were
placed on the following anatomical landmarks: the left/right
anterior superior iliac spine, the midpoint of the posterior
superior iliac spine, the front side of the left/right thigh,
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Figure 1 Experimental setup and procedure. a Infrared-AI hybrid motion capture system; b modified Helen Haynes marker arrangement; c landmark positions
obtained via hybrid motion capture system.

the left/right lateral femoral condyle, the left/right medial
femoral condyle, the left/right tibial trochanter, the left/right
lateral malleolus of the fibula, the left/right medial malleo-
lus of the tibia, the left/right toe, and the left/right heel. As
shown in Fig. 1a, motion data were collected synchronously
using an eight-lens infrared motion tracking system (Nokov
Tech., Beijing, China) and four Z-CAM cameras (ImagineVi-
sion Tech., Shenzhen, China) at a sample rate of 60 Hz. Both
camera systems were calibrated simultaneously based on a
L-frame calibration object.

Video data were processed using Fastmove software (Fast
Move Tech., Dalian, China) to estimate the position of
twenty-one anatomical landmarks of humans [53, 54]. The
markerless pose estimation was accomplished using deep
convolutional neural networks [55] trained on over 1200000
manually annotated digital images of human postures. The
obtained virtual landmark positions were then transformed
to the same global coordinate as that shared by the reflected
markers, see Fig. 1c. The gait events were determined based
on the position and velocity of the right heel marker [56].

To obtain the lower limb joint angles based on the mark-
erless motion capture system, some kinematic assumptions
were adopted [57, 58]. Here, the knee flexion angle was de-
fined as the angle of intersection between the longitudinal
axes of the thigh and the thank, without considering its ad-
duction/abduction and external/internal rotation. The ankle
joint was also simplified as a revolute joint. Its dorsiflex-
ion was inclination angle between the shank and the foot.
Moreover, the relative rotation between the pelvis and the
lower trunk was neglected, and the pelvis reference frame
[iLTK, jLTK, kLTK] was defined as [57]

kLTK =
rrh/lh∥∥∥rrh/lh

∥∥∥ , jLTK = kLTK ×
rms/mh∥∥∥rms/mh

∥∥∥ ,
iLTK = jLTK × kLTK.

(1)

Here, rrh/lh denotes the vector of the right hip joint center rel-
ative to the left one, and rms/mh is the vector that connects
the middle point of both shoulders and the intermediate land-
mark of both hips. For simplicity, the hip flexion was quan-
tified by sagittal angle between the longitudinal axis of the
thigh and jLTK. The hip abduction angle corresponded to the
inclination angle between the longitudinal axis of the thigh
and kLTK in the coronal plane.

2.1.2 Lower limb muscle activities

During each gait trail, the activation patterns of lower limb
muscles were synchronously measured via a 8-channel EMG
system (Fast Move Tech., Dalian, China) using the sampling
rate of 1000 Hz. Surface EMG data were collected from the
gluteus maximus, gluteus medius, rectus femoris, vastus lat-
eralis, biceps femoris, lateral gastrocnemius, and tibialis an-
terior muscles for the right leg. Moreover, the subject was
asked to perform three repetitive trails of maximum voluntary
contractions (MVCs) to obtain the maximal force-generating
capabilities of each muscle group.

The EMG signals recorded during gait and MVC trails
were first rectified and then band-pass filtered between 10
and 250 Hz [19]. After that, the smoothed EMG data were
filtered using a 4-order Butterworth filter with a 6 Hz low-
pass cut-off frequency [17]. The MVC value for each muscle
was determined as the root mean square of the EMG signal in
a 250 ms window [59]. To further acquire the linear envelope,
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the EMG signals measured during gait tests were normalized
by the obtained MVC. Finally, the obtained smooth signal,
named muscular excitation level u, was used as the input of
a first-order time delay differential equation to calculate the
activation a [60]:

da
dt
=

u − a
τa(a, u)

, (2)

where τa(a, u) has the mathematical form:

τa(a, u) =

 τact(0.5 + 1.5a), u > a,

τdeact/(0.5 + 1.5a), u ≤ a,

and τact and τdeact are the time constants for activation and
deactivation, respectively.

2.2 Musculoskeletal modeling

The multibody musculoskeletal model included seven rigid
bones and forty-three musculotendon units, see Fig. 2. The
bone geometry was originated from generic database within
the OpenSim gait2392 model [61]. It was then scaled based
on the stick diagram reconstructed from the calibration in
standing posture (Fig. 1c). Each bone segment was regarded
as a rigid body ignoring the deformation caused by human lo-
comotion [62]. The bone segment lumped the inertial proper-
ties of its surrounding muscle and connective tissue, and the
mass and inertia values were scaled according to the subject’s
height and weight [63]. The human joint was described based
on mathematical constraints, and the head-and-torso (HAT)
model was assumed fixed to the pelvis. As a result, the gait
model consisted of six DOFs for the pelvis, and five DOFs
for each leg (hip flexion, abduction, rotation, knee flexion,
and ankle flexion), see Fig. 2a. The range of motion of each
rotational DOF was limited by a torsional spring [64,65], re-
flecting the passive stiffness of ligaments, joint capsules, and
other soft tissues surrounding the joint.
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Figure 2 Three-dimensional musculoskeletal gait model. a Joint DOF
definition; b muscle bundles considered within the model.

As shown in Fig. 2b, we neglected the left limb muscles
of the gait2392 model and reduced some internal ones. As
a result, the muscle groups in our model were gluteus max-
imus, psoas major, gluteus medius, hip abductors, quadriceps
femoris, hamstring, triceps surae, and tibialis anterior. The
muscle path was determined using the fixed via point paths
[66].

A Hill-type muscle model [67] was utilized to describe
its force-generating capacities, see Fig. 3a. It consisted
of three force elements: a contractile element (CE), repre-
senting the active muscle force produced by sarcomeres, a
parallel-connected passive element (PE) corresponding to the
passive stiffness within the muscle belly, and a passive elas-
tic tendon element in series connection with CE and PE. The
pennation angle α, i.e., the angle between the muscle fiber di-
rection and the tendon axis, was also included in the Hill-type
model. For a pennated muscle, the contractile force Fmus

CE ,
passive muscle force Fmus

PE , and tendon force F tend satisfied
the following equilibrium equation:(
Fmus

CE + Fmus
PE

)
cosα = F tend. (3)

The active contractile properties of the Hill-type muscle
model were controlled by its fiber length lmus, fiber contrac-
tion velocity l̇mus, and muscle activation a(t). Muscle fibers
contracted after being stimulated by motor neurons, and its
activation level a(t) reflected the proportion of the stimulated
fibers to the total amount of the physiological cross-sectional
area. As shown in Fig. 3a and b, the contractile force Fmus

CE
can be expressed as below:

Fmus
CE = a(t)Fmus

0 fl
(
lmus, lmus

0

)
fl̇
(
l̇mus, l̇mus

0

)
. (4)

Here, Fmus
0 is the maximum isometric force, lmus

0 corre-
sponds to the optimum fiber length, and l̇mus

0 is the maximum
contractile velocity [68]. fl and fl̇ are the two functions rep-
resenting the muscle force-length and force-velocity correla-
tions, respectively [19, 68, 69].

fl
(
lmus, lmus

0

)
=exp

−
[
9
4

(
lmus

lmus
0
− 19

20

)]4

−
[
9
4

(
lmus

lmus
0
− 19

20

)]2
 ,
(5)

and

fl̇
(
l̇mus, l̇mus

0

)

=



0, − l̇mus
0 > l̇mus,

− 1
arctan(5)

arctan
−5

l̇mus

l̇mus
0

+1, 0.2l̇mus
0 ≥ l̇mus ≥ −l̇mus

0 ,

π

4 arctan(5)
+ 1, l̇mus > 0.2l̇mus

0 .

(6)
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Figure 3 Hill-type muscle model. a Equilibrium musculotendon model of a bipennate muscle; b muscle force-length curve; c muscle force-velocity curve.

The PE is independent of neuromuscular control. It starts
to produce force when lmus is stretched beyond lmus

0 . The PE
force Fmus

PE is expressed as

Fmus
PE =


0, lmus

0 > lmus,

8Fmus
0

(
lmus

lmus
0
− 1

)3

, 1.63lmus
0 ≥ lmus ≥ lmus

0 ,

2Fmus
0 , lmus > 1.63lmus

0 .

(7)

The tendon force F tend is nonlinear in the toe region (ε ≤
2εtend

0 ) and then linear with the stiffness ktend. Therefore, the
tendon force F tend can be expressed as [70]

F tend =


0, 0 > ε,

ktend

4εtend
0

ε2, 2εtend
0 ≥ ε ≥ 0,

ktend(ε − εtend
0 ), ε > 2εtend

0 .

(8)

Here, the reference length of the tendon strain ε is taken as
the tendon slack length ltend

0 , i.e., ε = 0.5[(ltend/ltend
0 )2 − 1].

The governing equations of the musculoskeletal multibody
system can be written as

M(q, t)q̈ − Q(q, q̇, a, t) + Cᵀqλ = 0,

C(q, t) = 0,

τa(a, u)ȧ − (u − a) = 0,

(9)

where M is the system mass matrix, q is the vector of
the generalized coordinates, and Q is the generalized force
vector. The vector of the constraints of the whole system
C = [Cᵀjoint,C

ᵀ
mot]

ᵀ includes all anatomical joints Cjoint and
exerted motion constraints Cmot, and λ = [λᵀjoint, λ

ᵀ
mot]

ᵀ de-
notes its corresponding vector of the Lagrange multipliers.
The muscle control vector a consists of the activation level
of each muscle, and the vector u is composed of each mus-
cular excitation.

2.3 Inverse kinematics

Based on the musculoskeletal model presented above,
we first performed an inverse kinematics analysis us-
ing the measured infrared and virtual landmark positions,
see Fig. 4a. Firstly, the anatomical landmarks embed-
ded in the musculoskeletal model were located to cor-
relate the gait kinematics with the bone segment posi-
tions. Their time-dependent coordinates were denoted as
r̃i

infra (i = 1, 2, · · · , Ninfra), r̃i
AI (i = 1, 2, · · · , NAI), where

Ninfra and NAI correspond to the number of landmarks ob-
tained from infrared and markerless motion tracking systems,
respectively. Considering the anatomical difference between
the linear-scaled multibody model [63] and the actual hu-
man skeleton, together with the soft tissue elasticity [71], a
spring-damper unit was introduced between each landmark
measured by infrared ri

infra and markerless motion capture
systems ri

AI and their corresponding anatomical positions:

Qi
infra=−

(
kinfra

∥∥∥ri
infra − r̃i

infra

∥∥∥ + cinfra

∥∥∥∥ṙi
infra − ˙̃ri

infra

∥∥∥∥) n,

Qi
AI = −

(
kAI

∥∥∥ri
AI − r̃i

AI

∥∥∥ + cAI

∥∥∥∥ṙi
AI − ˙̃ri

AI

∥∥∥∥) n.
(10)

Here, Qi
infra and Qi

AI denote the viscoelastic force vec-
tors induced by minimizing the tracking errors between the
subject-specific motion capture data and the linear-scaled
model, and n is the unit vector between the measured and
the palpated landmarks. Equation (10) was endowed with
two sets of stiffness-damping coefficients, i.e., {kinfra =

5 × 106 N/m, cinfra = 5 × 104 N s/m}, and {kAI = 5 ×
105 N/m, cAI = 5 × 103 N s/m}, due to the spatial accuracy
difference between two tracking systems (markerless track-
ing: in cm level; infrared tracking: in mm level). If the stiff-
ness parameters were high enough, the kinetic energy of hu-
man locomotion and the potential energy generated by grav-
ity and soft tissue stiffness can be ignored. By this means,
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Eq. (9) can be solved by the principle of minimum potential
energy:

min V =
Ninfra∑
i=1

∥∥∥Qi
infra

∥∥∥2
+

NAI∑
i=1

∥∥∥Qi
AI

∥∥∥2
. (11)

2.4 Inverse dynamics and foot-ground contact

The inverse kinematics approach took the vector of the joint
angles θ(t) and the vector of the muscle fiber lengths Lmus =

{lmus
1 , lmus

2 , · · · , lmus
Nmus
}ᵀ as model outputs. Here, Nmus denotes

the number of muscle bundles. Then, the moment arm can
be expressed as [64]

Rmus =
∂Lmus

∂θ
. (12)

The joint angles obtained from inverse kinematics calcula-
tions were then used as motion constraints:

Cmot = θ(q) − θ(t) = 0. (13)

The obtained vector of the constraint equations constitutes
part of the governing equations for inverse dynamics simula-
tions:

M(q, t)q̈ − Q(q, q̇, t) + Cᵀqλ = 0,

C(q, t) = [Cᵀjoint,C
ᵀ
mot]

ᵀ = 0.
(14)

Obviously, the mathematical form of Eq. (14) is identical
to that of multibody mechanical systems. In other words, nu-
merical simulation procedures developed based on machin-
ery multibody systems [72-75] were also suitable for biody-
namics simulations. The vector of the joint torques MID can
be expressed based on the vector of the Lagrange multipliers
associated with the motion constraints:

MID =

(
∂θ

∂q

)−ᵀ(
∂Cmot

∂q

)ᵀ
λmot. (15)

In Eq. (14), the generalized force vector Q contains the
effect of foot-ground contact force FN and friction force Fµ.
Without generality, a contact force model proposed by Flo-
res et al. [76] which can characterize the energy dissipation
behavior during foot-ground reactions was adopted in this
study:

FN = kNδ
n + χδnδ̇,

χ =
8(1 − cr)

5crδ̇0
,

(16)

where kN denotes the contact stiffness, n is the nonlinear co-
efficient, cr is the restitution coefficient, and δ̇0 corresponds
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to the initial contact velocity. The universal form of the foot-
ground friction force Fµ is written as

Fµ = µ(vT )FN . (17)

In general, the friction coefficient µ is a nonlinear function
of the relative velocity vT between the foot and the ground
[77, 78]. For the sake of simplicity, we further assumed that
the kinetic friction coefficient and the static one take the same
value µ. Therefore, the unknown parameters for the foot-
ground contact model were kN , χ, n, µ.

To describe the contact geometry of the foot sole, four
viscoelastic contact spheres were arranged at geometric cen-
ter of the calcaneus, cuneiform, metatarsal, and phalanges,
see Fig. 4b. The initial value of each sphere radius Ri (i =
1, 2, 3, 4) was fitted by the generic bone geometry. To op-
timize the modeling parameters of the foot-ground contact,
the following two-step optimization scheme was adopted:

(1) All joint angles were determined by inverse kinemat-
ics calculations without forward dynamics predictions. The
parameter values of kN , χ, n, µ were taken from Shourijeh
and McPhee [38] and remained unchanged, and the radius of
each contact sphere ri was selected as the optimization vari-
ables. The biomechanical responses of human locomotion
were then calculated by Eq. (15). The residual load corre-
sponding to the pelvis vertical movement Fvert was taken as
the objective function. Its value should always be zero if the

calculated foot-ground contact force was consistent with the
real-world case.

(2) The optimized parameters of the contact geometry
were kept unchanged in the following step. The pelvic move-
ment constraint that determined its vertical motion was then
released at this step, and the contact and friction force pa-
rameters (kN , χ, n, µ) were taken as optimization variables.
A time-dependent sagittal torque Msagit was exerted at the
pelvic mass center to prevent falling. This value was selected
as the objective function, since that Msagit should approxi-
mate zero when the contact model parameters were close to
real-world situations.

2.5 FMIS analysis

As shown in Fig. 5, the resultant torque of each joint gen-
erated by its surrounding muscles was calculated via the
inverse dynamics approach. Numerous simulations have
shown that it is plausible to resolve the muscle redundancy
problem according to the SO hypothesis while satisfying
the dynamic equilibrium equation of each joint. However,
the conventional SO approach cannot consider the muscle-
tendon force equilibrium. The concept of FMIS frame-
work [15] aims to release the dynamic equilibrium constraint
by introducing the torque tracking errors into the objective
function. However, a robust way to find the initial activa-
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Figure 5 FMIS dynamics framework.
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tion values was in need to tackle the nonlinearities from the
musculotendon equilibrium equation along with the muscle
excitation-contraction coupling characteristics.

Firstly, it was assumed that the muscle activation patterns
are only related to the current state of human locomotion and
have nothing to do with their time histories [79]. Therefore,
Eq. (9) was equivalent to a series of overdetermined equa-
tions. To speed up the computational efficiency of the FMIS
method, the guess values of each muscle excitation were first
obtained by solving a SO problem. By this means, the mus-
cle forces were resolved by minimizing the sum of squared
muscle excitation:

min Jstatic =

Nmus∑
i=1

(wiui)2, (18)

where the constraint functions were taken as

RmusFmus(a) = MID + ∆M,(
∂θ

∂q

)ᵀ
Mθ = Mq̈ +

(
∂C
∂q

)ᵀ
λ − Qext,

C(q, q̇, t) = 0,
0.01 ≤ ai ≤ 1, i = 1, 2, · · · , Nmus.

(19)

Here, Fmus = {F tend
1 , F tend

2 , · · · , F tend
Nmus
}ᵀ is the generalized

musculotendon force vector, a nonlinear function of a ac-
cording to Eq. (4), and ∆M represents the controlling torque
depended upon the torque tracking error.

The obtained excitation value of each muscle was then
substituted into Eq. (3) to calculate the muscle fiber and
tendon lengths. Afterward, the CE and PE forces can be
calculated by Eqs. (4) and (7), respectively. The dynamic
equilibrium constraint was then released to account for the
time delay between the neural excitation and its correspond-
ing muscular activation [80]. The muscle activation was used
as an input to calculate the joint torque. Therefore, the ob-
jective function of the hybrid optimization problem was then
expressed as

min JFMIS = (1 − γ)
Nmus∑
i=1

(wiai)2 + γ

Njoint∑
i=1

(MID − MFD)2, (20)

where γ is the weight of the joint torque, and Njoint denotes
the number of joints within the proposed model. The opti-
mization problem is subjected to the following constraints:

MFD = RmusFmus(a),(
∂θ

∂q

)ᵀ
MID = Mq̈ +

(
∂C
∂q

)ᵀ
λ − Qext,

C(q, q̇, t) = 0,
0.01 ≤ ai ≤ 1, i = 1, 2, · · · , Nmus.

(21)

Then, a linear proportional feedback controller with the
feedback gain kmom = 1 was used to update ∆M:

∆M = kmom(MFD − MID). (22)

The musculoskeletal model was implemented based on
our in-house code developed using C/C++ [19, 24, 69, 81].
The code expressing muscle contraction dynamics and solv-
ing activation optimization was produced using MATLAB
R2020a (MathWorks, Inc., Natick, MA). All the simulations
were performed on a 2.60-GHz, 64-bit laptop with 16 Gb of
memory.

3. Results

Validation of the inverse kinematics results is shown in Fig.
6. The estimated sagittal angle based on the markerless mo-
tion capture system was correlated with infrared data (R2 =

0.96±0.05). Here, the observed standard deviation of the hip
flexion angle was generated by the variability of its baseline
value. The hip abduction angle also showed a promising re-
sult (R2 = 0.82). Using the landmarks from hybrid motion
capture as inputs, the sagittal joint angles proposed by the
multibody model agreed well with that measured by infrared
motion capture (R2 = 0.97 ± 0.03). However, the hip adduc-
tion angle obtained from both methods shows a loose correla-
tion (R2 = 0.60) due to the mismatch between the real-world
skeleton and the linear-scaled generic model.

The optimal geometrical and contact parameters are listed
in Table 1. The viscosity coefficient of each contact sphere
was taken from Shourijeh and McPhee [38], and the foot-
ground contact parameters of spheres 2 and 3 (see Fig. 4)
were assumed identical for simplicity. The optimized con-
tact stiffness of spheres 1 and 4 was one order of magnitude
larger than the others because, during normal gait, the cal-
caneus and phalanges tend to withstand greater contact force
than those of the cuneiform and metatarsal [82].

The obtained ground reaction forces over a gait cycle were
then depicted in Fig. 7. Compared with the experimental data
proposed in Ref. [40], the first peak of the estimated con-
tact force was higher (see Fig. 7a) due to the sensitiveness
of the contact detection method. Meanwhile, the estimated
contact phase was shorter than the typical experimental data,
which can attribute to the difference of the contact geometry
between the sphere and the real-world plantar tissues [83].
As shown in Fig. 7b, the averaged horizontal force estimated
based on a simple friction model was qualitatively in agree-
ment with Lopes et al. [40].

We further compared the calculated joint torques based on
different calculation methods, see Fig. 8. SO aims to satisfy
the equilibrium of torque. However, by introducing the PE
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Table 1 Optimal foot-ground contact parameters

Parameter Initial value Lower bound Upper bound Optimal value

Geometry

R1 (mm) 64 44 84 73.6

R2 (mm) 58 38 78 62.8

R3 (mm) 61 41 81 51.9

R4 (mm) 30 27 67 42.1

Contact stiffness

kN1 (N m) 9.8 × 103 9.8 × 101 9.8 × 105 9.46 × 105

kN2 = kN3 (N m) 2.2 × 103 2.2 × 101 2.2 × 105 4.57 × 104

kN4 (N m) 6.6 × 103 6.6 × 101 6.6 × 105 3.52 × 105

Nonlinear coefficient

n1 0.93 0.50 2.50 2.07

n2 = n3 0.95 0.50 2.50 2.41

n4 0.89 0.50 2.50 1.87

Friction coefficient

µ1 0.33 0.10 0.75 0.13

µ2 = µ3 0.41 0.10 0.75 0.10

µ4 0.45 0.10 0.75 0.12

force, the obtained hip abduction (Fig. 8b) and ankle torques
(Fig. 8d) generated non-negligible errors. The FMIS proce-
dure with a full parametric Hill-type model can largely re-
duce the joint torque error by imposing the torque tracking
algorithm.

Meanwhile, the FMIS algorithm can largely alternate the
recruitment patterns of the lower limb muscles, see Fig. 9.
Compared with the EMG observations, the SO along with
FMIS schemes can qualitatively capture the activation char-

acteristics of the gluteus medius, biceps femoris, and tib-
ialis anterior muscles. However, the SO approach cannot
accurately obtain the activation patterns of bi-articular mus-
cles like the rectus femoris and gastrocnemius. In compar-
ison, considering the musculotendon equilibrium equations
regardless of muscle paths, the FMIS approach successfully
captured the activations of the rectus femoris at mid-stance.
The passive dorsiflexion ankle stiffness led to the gastrocne-
mius activation in the swing phase of gait, in agreement with
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the EMG observations. Moreover, compared with the excita-
tion results only taking the Hill-type force-length condition
into account, the activation patterns predicted by FMIS were
strongly alternated by introducing the tendon stiffness and
the muscle contraction dynamics.

4. Discussion

Kinematics and kinetic analysis of human gait rely on reli-
able motion capture data. According to our validation results
(see Fig. 6), the markerless motion capture system can obtain
reliable joint angles. However, only two virtual landmarks
within a body segment were identified based on deep convo-
lutional neural networks. Therefore, the three-dimensional
joint angles should be calculated based on some simplifica-
tions [57, 58], and the estimated landmark positions cannot
directly drive the three-dimensional musculoskeletal model.
However, the hybrid motion capture system can improve
the accuracy of inverse kinematics results by adding virtual
markers to the original Helen Haynes marker set. Automatic
identification of anatomic landmarks also reduced the time
for preparing the gait test.

Accurate kinematic measurement provided a solid founda-
tion for the parameter identification of the foot-ground con-
tact model. Foot-ground reaction forces were usually mea-
sured via force plates or plantar pressure sensors. However,
the force plate is not portable enough to be utilized in sports
or rehabilitation conditions, and the insole sensor system can-
not measure the friction between the foot and floor. Unlike
other foot-ground contact modeling methods [43,84], the
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proposed parameter identification methods did not need any
knowledge in priori. Moreover, the two-step optimization
scheme successfully reduced the sensitivity of the estimated
contact parameters. Further studies could introduce some in-
formation such as the spatiotemporal gait parameters to im-
prove the accuracy of the estimated reaction forces.

In this study, the FMIS framework took the nonlineari-
ties of muscle dynamics into account. Conventional muscu-
loskeletal modeling frameworks, such as OpenSim and Any-
body, tended to neglect the passive properties of individual
muscles in SO analysis. However, this assumption could re-
sult in huge errors in the estimated joint loading [85,86]. Our
simulation further demonstrates that the SO method overesti-
mated the ankle torque (Fig. 8d) and overlooked the gastroc-
nemius activations without the passive stiffness (Fig. 9). The
FMIS framework was also compatible with the deformation
of tendon by implementing the musculotendon equilibrium
equation [87]. The time delay induced by muscle activation
dynamics, which has been proved crucial to the simulation
results [88], can be considered within the proposed method.
The basic idea of the proposed FMIS method is similar to the
inverse-forward dynamics optimization method [21], but the
current approach does not need to perform forward muscu-
loskeletal simulations at each time step.

Compared with other forward dynamics approaches like
CMC [20, 34] or FSO [36], the FMIS approach was more

robust and reliable since the movements of bone segments
were driven by kinematic measurements rather than muscle
forces. As shown in Fig. 8d, the FMIS procedure predicted a
non-negligible error of ankle plantarflexion torque during the
terminal stance phase, which means that the dynamic bal-
ance equation of the ankle joint cannot be satisfied. Under
this condition, the CMC and FSO methods depending on tra-
jectory tracking tend to be divergent without introducing arti-
ficial joint torque actuators [89]. Moreover, the optimization
methods based on trajectory tracking often used the higher
derivatives of the measured landmark positions [20, 28, 34],
whereas the virtual landmark positions estimated by deep
neural networks were often highly oscillated. The proposed
framework only needs the position signal as kinematic in-
puts. The oscillatory patterns of the landmark positions can
be filtered by the damper force in Eq. (10).

However, some limitations are worth noting. Firstly, the
sample size was limited to only one subject with repeated
gait analysis. More locomotive tasks could be performed to
compare the performance between FMIS and other forward-
inverse coupling methods. Then, to quantitatively verify the
estimated foot-ground reaction forces, the force plate mea-
surements should be performed synchronously with the mo-
tion capture analysis. Next, the activation patterns of the
muscles crossing the knee were not consistent with the EMG
measurements. Muscle synergies [90, 91] could be intro-
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duced into the optimization framework to improve the cor-
relation between the estimated activation patterns with the
real-world data. Moreover, many modeling parameters, such
as the muscle insertion sites and optimal fiber lengths, were
not subject-specific. Last but not least, the study only investi-
gated the healthy gait with self-selected speed. Other typical
human postures (i.e., standing, squatting) and daily activities
(i.e., running, cursing) could be further investigated to vali-
date our modeling and simulation procedures.

5. Conclusion

In this paper, a forward-inverse modeling framework was
established to estimate joint torques and muscle activations
in the lower extremity. The markerless motion capture sys-
tem accurately predicted the sagittal lower limb kinematics,
and the hybrid kinematic measurement approach reduced the
number of attached markers. The proposed parameter identi-
fication method successfully estimated the foot-ground reac-
tion forces without a priori knowledge. Compared with SO,
the FMIS framework reduced the errors of hip adduction and
ankle plantarflexion moments by introducing passive mus-
cle stiffness. Implementation of the equilibrium musculoten-
don model together with the muscle contraction dynamics al-
ternated the estimated bi-articular muscle activations during
gait. The computational procedure of the current framework
was hard to diverge by constraining joint kinematics using
the measured data, which seems to be suitable for analyzing
complex human movements such as athletic sports and re-
habilitation exercises. Moreover, without using acceleration
data as control inputs, the proposed framework can be poten-
tially used in any multibody simulation software.

Author contributions Xinyue Wang designed the research, set up the ex-
periment set-up, processed the numerical and experiment data, and wrote
the first draft of the manuscript. Jianqiao Guo helped designed the research,
set up the simulation set-up, and helped organize the manuscript. Jianqiao
Guo and Qiang Tian revised and edited the final version.

Acknowledgements This work was supported by the National Natural
Science Foundations of China (Grant Nos. 12102035 and 12125201), the
China Postdoctoral Science Foundation (Grant No. 2020TQ0042), and the
Beijing Natural Science Foundation (Grant No. L212008). The authors
would like to thank Yi Qu for his technical support and Prof. Gexue Ren for
his helpful discussion of this paper.

1 M. Ezati, B. Ghannadi, and J. McPhee, A review of simulation meth-
ods for human movement dynamics with emphasis on gait, Multibody
Syst. Dyn. 47, 265 (2019).

2 A. J. van den Bogert, M. Hupperets, H. Schlarb, and B. Krabbe, Pre-
dictive musculoskeletal simulation using optimal control: Effects of
added limb mass on energy cost and kinematics of walking and run-
ning, Proc. Inst. Mech. Eng. Part P-J. Sports Eng. Tech. 226, 123
(2012).

3 C. Zhang, X. Meng, D. E. Anderson, W. Wang, X. Tao, and B. Cheng,
Effects of stretch reflex on back muscle response during sinusoidal
whole body vibration in sitting posture: A model study, Int. J. Ind.
Ergonomics 71, 103 (2019).

4 X. Ma, J. Xu, H. Fang, Y. Lv, and X. Zhang, Adaptive neural control
for gait coordination of a lower limb prosthesis, Int. J. Mech. Sci. 215,
106942 (2022).

5 S. Barman, Y. Xiang, R. Rakshit, and J. Yang, Joint fatigue-based opti-
mal posture prediction for maximizing endurance time in box carrying
task, Multibody Syst. Dyn. 55, 323 (2022).

6 Y. Guo, X. Zhang, M. An, and W. Chen, Determination of quadriceps
forces in squat and its application in contact pressure analysis of knee
joint, Acta Mech. Solid Sin. 25, 53 (2012).

7 Y. Wang, L. Wang, C. Du, Z. Mo, and Y. Fan, A comparative study
on dynamic stiffness in typical finite element model and multi-body
model of C6-C7 cervical spine segment, Int. J. Numer. Meth. Biomed.
Eng. 32, e02750 (2016).

8 X. Liu, H. Huang, S. Ren, Q. Rong, and Y. Ao, Use of the nor-
malcy index for the assessment of abnormal gait in the anterior cruciate
ligament deficiency combined with meniscus injury, Comput. Meth.
Biomech. Biomed. Eng. 23, 1102 (2020).

9 L. Wang, X. Ding, W. Feng, Y. Gao, S. Zhao, and Y. Fan, Biome-
chanical study on implantable and interventional medical devices, Acta
Mech. Sin. 37, 875 (2021).

10 W. Wang, D. Wang, A. Falisse, P. Severijns, T. Overbergh, L. Moke,
L. Scheys, F. De Groote, and I. Jonkers, A dynamic optimization ap-
proach for solving spine kinematics while calibrating subject-specific
mechanical properties, Ann. Biomed. Eng. 49, 2311 (2021).

11 W. Schiehlen, On the historical development of human walking dy-
namics, in: The History of Theoretical, Material and Computa-
tional Mechanics-Mathematics Meets Mechanics and Engineering,
(Springer, Berlin, Heidelberg, 2014), pp. 101-116.

12 J. Rasmussen, M. Damsgaard, and M. Voigt, Muscle recruitment by
the min/max criterion—a comparative numerical study, J. Biomech.
34, 409 (2001).

13 M. P. T. Silva, and J. A. C. Ambrósio, Multibody Syst. Dyn. 8, 219
(2002).

14 M. Ackermann, and A. J. van den Bogert, Optimality principles for
model-based prediction of human gait, J. Biomech. 43, 1055 (2010).

15 M. S. Shourijeh, K. B. Smale, B. M. Potvin, and D. L. Benoit,
A forward-muscular inverse-skeletal dynamics framework for human
musculoskeletal simulations, J. Biomech. 49, 1718 (2016).

16 S. R. Hamner, A. Seth, K. M. Steele, and S. L. Delp, A rolling con-
straint reproduces ground reaction forces and moments in dynamic
simulations of walking, running, and crouch gait, J. Biomech. 46, 1772
(2013).

17 D. G. Lloyd, and T. F. Besier, An EMG-driven musculoskeletal model
to estimate muscle forces and knee joint moments in vivo, J. Biomech.
36, 765 (2003).

18 S. S. Razu, and T. M. Guess, Electromyography-driven forward dy-
namics simulation to estimate in vivo joint contact forces during nor-
mal, smooth, and bouncy gaits, J. Biomech. Eng. 140, 071012 (2018).

19 J. Guo, H. Huang, Y. Yu, Z. Liang, J. Ambrósio, Z. Zhao, G. Ren, and
Y. Ao, Modeling muscle wrapping and mass flow using a mass-variable
multibody formulation, Multibody Syst. Dyn. 49, 315 (2020).

20 D. G. Thelen, and F. C. Anderson, Using computed muscle control to
generate forward dynamic simulations of human walking from experi-
mental data, J. Biomech. 39, 1107 (2006).

21 A. Asadi Nikooyan, H. E. J. Veeger, E. K. J. Chadwick, M. Praagman,
and F. C. T. van der Helm, Development of a comprehensive muscu-
loskeletal model of the shoulder and elbow, Med. Biol. Eng. Comput.
49, 1425 (2011).

22 M. Kia, A. P. Stylianou, and T. M. Guess, Evaluation of a muscu-
loskeletal model with prosthetic knee through six experimental gait
trials, Med. Eng. Phys. 36, 335 (2014).

23 R. S. Razavian, N. Mehrabi, and J. McPhee, A neuronal model of cen-
tral pattern generator to account for natural motion variation, J. Com-

https://doi.org/10.1007/s11044-019-09685-1
https://doi.org/10.1007/s11044-019-09685-1
https://doi.org/10.1177/1754337112440644
https://doi.org/10.1016/j.ergon.2019.02.005
https://doi.org/10.1016/j.ergon.2019.02.005
https://doi.org/10.1016/j.ijmecsci.2021.106942
https://doi.org/10.1007/s11044-022-09832-1
https://doi.org/10.1016/S0894-9166(12)60006-8
https://doi.org/10.1002/cnm.2750
https://doi.org/10.1002/cnm.2750
https://doi.org/10.1080/10255842.2020.1789119
https://doi.org/10.1080/10255842.2020.1789119
https://doi.org/10.1007/s10409-021-01116-9
https://doi.org/10.1007/s10409-021-01116-9
https://doi.org/10.1007/s10439-021-02774-3
https://doi.org/10.1016/S0021-9290(00)00191-3
https://doi.org/10.1023/A:1019545530737
https://doi.org/10.1016/j.jbiomech.2009.12.012
https://doi.org/10.1016/j.jbiomech.2016.04.007
https://doi.org/10.1016/j.jbiomech.2013.03.030
https://doi.org/10.1016/S0021-9290(03)00010-1
https://doi.org/10.1115/1.4038507
https://doi.org/10.1007/s11044-020-09733-1
https://doi.org/10.1016/j.jbiomech.2005.02.010
https://doi.org/10.1007/s11517-011-0839-7
https://doi.org/10.1016/j.medengphy.2013.12.007
https://doi.org/10.1115/1.4031086


X. Wang, et al. Acta Mech. Sin., Vol. 38, 522140 (2022) 522140-13

put. Nonlinear Dyn. 11, 021007 (2016).
24 J. Guo, W. Guo, and G. Ren, Embodiment of intra-abdominal pressure

in a flexible multibody model of the trunk and the spinal unloading ef-
fects during static lifting tasks, Biomech. Model. Mechanobiol. 20,
1599 (2021).

25 F. C. Anderson, and M. G. Pandy, Static and dynamic optimization so-
lutions for gait are practically equivalent, J. Biomech. 34, 153 (2001).

26 F. De Groote, A. L. Kinney, A. V. Rao, and B. J. Fregly, Evaluation of
direct collocation optimal control problem formulations for solving the
muscle redundancy problem, Ann. Biomed. Eng. 44, 2922 (2016).

27 M. Sharif Shourijeh, and J. McPhee, Forward dynamic optimization of
human gait simulations: A global parameterization approach, J. Com-
put. Nonlinear Dyn. 9, 031018 (2014).

28 T. Yamasaki, K. Idehara, and X. Xin, Estimation of muscle activity us-
ing higher-order derivatives, static optimization, and forward-inverse
dynamics, J. Biomech. 49, 2015 (2016).

29 M. Skipper Andersen, M. de Zee, M. Damsgaard, D. Nolte, and J. Ras-
mussen, Introduction to force-dependent kinematics: Theory and ap-
plication to mandible modeling, J. Biomech. Eng. 139, 091001 (2017).

30 X. Zhang, Z. Chen, L. Wang, W. Yang, D. Li, and Z. Jin, Prediction
of hip joint load and translation using musculoskeletal modelling with
force-dependent kinematics and experimental validation, Proc. Inst.
Mech. Eng. H 229, 477 (2015).

31 Z. Chen, Z. Zhang, L. Wang, D. Li, Y. Zhang, and Z. Jin, Evaluation of
a subject-specific musculoskeletal modelling framework for load pre-
diction in total knee arthroplasty, Med. Eng. Phys. 38, 708 (2016).

32 X. Meng, A. G. Bruno, B. Cheng, W. Wang, M. L. Bouxsein, and D.
E. Anderson, Incorporating six degree-of-freedom intervertebral joint
stiffness in a lumbar spine musculoskeletal model—method and per-
formance in flexed postures, J. Biomech. Eng. 137, 1010081 (2015).

33 H. Diao, H. Xin, J. Dong, X. He, D. Li, and Z. Jin, Prediction of cervi-
cal spinal joint loading and secondary motion using a musculoskeletal
multibody dynamics model via force-dependent kinematics approach,
Spine 42, E1403 (2017).

34 D. G. Thelen, F. C. Anderson, and S. L. Delp, Generating dynamic
simulations of movement using computed muscle control, J. Biomech.
36, 321 (2003).

35 M. Wesseling, L. C. Derikx, F. de Groote, W. Bartels, C. Meyer, N.
Verdonschot, and I. Jonkers, Muscle optimization techniques impact
the magnitude of calculated hip joint contact forces, J. Orthop. Res.
33, 430 (2015).

36 M. S. Shourijeh, N. Mehrabi, and J. McPhee, Forward static opti-
mization in dynamic simulation of human musculoskeletal systems:
A proof-of-concept study, J. Comput. Nonlinear Dyn. 12, 051005
(2017).
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人人人体体体肌肌肌肉肉肉骨骨骨骼骼骼多多多体体体系系系统统统的的的正正正逆逆逆向向向耦耦耦合合合动动动力力力学学学建建建模模模方方方法法法

王心悦,郭建峤,田强
摘要 人体步态的肌骨系统多体动力学建模已被证实在探讨肌骨系统损伤的病理机制等方面具有重要意义.然而,传统的逆动力学

分析方法需输入外力传感器测量数据,无法兼顾骨骼肌的非线性动力学特征. 此外,正向动力学方法往往计算量很大,仅能够应用在相

对简单的分析工况中. 本文提出了一种肌骨系统仿真方法,实现无力台条件下的足-地面力估计,并在肌肉力计算中兼顾肌腱弹性与优

化控制策略.我们结合基于红外相机的贴点动作捕捉与基于深度神经网络的无标记动作捕捉系统,实现对受试者下肢运动的同步测量.

足-地面相互作用力通过一类软物质接触力模型求得,接触参数通过两步优化方法辨识得到. 肌肉发力模式首先通过静态优化算法求

解,得到的肌肉激活度作为后续正逆向耦合仿真的初值.进一步,我们采用一种力矩跟踪方法,通过调整肌肉激活度,使基于肌肉-肌腱

内力平衡方程求得的关节力矩与逆动力学解算得到的关节力矩间误差最小. 为验证本文提出的计算方法的正确性,将仿真求得的肌肉

激活度与一名健康受试者实测表面肌电进行比较. 本文提出的仿真方法为人体关节力矩、肌肉-肌腱内力、以及肌肉激活模式提出了

一种可靠的求解方法,能够增进对健康人与患者步态生物力学的理解.
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