CBr₂与 CH₂O 插入反应机理的密度泛函理论研究

李志锋 吕玲玲 康敬万 卢小泉

(天水师范学院生命科学与化学学院, 天水 741001; 西北师范大学化学化工学院, 甘肃省高分子材料重点实验室, 兰州 730070. E-mail: sciresli@163.com)

摘要 用密度泛函 $B3LYP/6-311G*和高级电子相关耦合簇[CCSD(T)/6-311G*]方法计算研究了 <math>CBr_2$ 与 CH_2O 的插入反应机理,全参数优化了反应势能面各驻点的几何构型,用内禀反应坐标 (IRC)和频率分析方法,对过渡态进行了验证. 研究结果表明: 反应(1)是单重态二溴卡宾与甲醛插入反应的主反应通道. 该反应由两步组成: () 两反应物首先经一无能垒的放热反应,放出 $8.62~kJ \cdot mol^{-1}$ 的热量,生成中间体 IM1; () IM1 经过渡态 TS1,发生 H 的转移,生成产物 P1,其能垒为 $44.53~kJ \cdot mol^{-1}$. 用经 Wigner 校正的 Eyring 过渡态理论研究了不同温度下该反应的热力学和动力学性质. 从热力学和动力学的角度综合分析,在 1~atm~(101325~Pa)下,该反应在温度为 200~1900~K 时进行既有较大的自发趋势和平衡常数,又具有较快的反应速率.

关键词 CBr_2 CH_2O 插入反应 密度泛函理论 热力学与动力学性质

卡宾是有机合成中的一种重要试剂, 它不仅在 合成药物及张力小环方面有重要的价值, 而且由于 卡宾的引入, 使得许多有机合成方便且迅速, 因而受 到许多科学家的重视[1~3]. 有关卡宾与 C=C、, C=N-及 C=S等多重键的反应以及卡宾的插入 反应等已有了一些系统的报道[4~6],关于二卤卡宾与 羰基化合物的加成反应研究也在逐步深入[7~9]. 量子 化学计算方法是研究化学反应机理的一种有效手 段[10~12]. 人们利用量子化学计算方法对卡宾与甲醛 及其他有机化合物的环加成反应机理进行了深入的 研究和探讨[13,14]. 有关卡宾与有机化合物的插入反 应也有报道[15,16]. 最近, 林启君等[17~19]对卡宾与醚类 有机化合物的插入反应进行了系统的理论研究. 迄 今为止, 未见卡宾与甲醛插入反应的有关报道. 本文 选取单重态二溴卡宾 CBr2 与甲醛 CH2O 的插入反应 为理论模型, 在B3LYP/6-311G*水平上探讨了其可能 的反应途径,研究了其反应机理及热力学与动力学 性质,并做了理论分析和说明,以弥补人们在实验及 理论上对其插入反应研究的不足.

1 计算方法

利用 Gaussian 03 程序,采用密度泛函理论(DFT),在 B3LYP/6-311G*水平上对反应势能面上各驻点的构型进行了全参数优化,计算了 CCSD(T)/6-311G*水平的各物种的单点能量,同时用内禀反应坐标(IRC)

和频率分析方法对过渡态进行了确认. 另外, 分别在 MP2/6-311G*水平及 G2MP2 方法下对主反应通道构型 进行了优化及能量计算,所得结果分别与 B3LYP/6-311G*水平下构型及 CCSD(T)/6-311G*方法下能量变化一致, 进一步证实了 B3LYP/6-311G* 及 CCSD(T)/6-311G*方法在本研究中的可靠性. 反应速率常数的准确理论是目前活跃的研究领域之一. 最近, 居冠之 $^{[20-22]}$ 和卢秀慧等 $^{[13]}$ 将经 Wigner 校正的 Erying 理论用于反应热力学与动力学性质的研究, 并得到了研究体系反应进行的适宜温度范围, 所得结果对实验具有指导意义. 本文根据统计热力学方法和用 Wigner 校正的 Eyring 过渡态理论, 利用自编程序, 计算反应的热力学函数的变化和反应速率常数 k(T).

 $k(T) = g(k_b T/h) \exp(\Delta_r^{\neq} S_m^{\ominus}/R - \Delta_r^{\neq} H_m^{\ominus}/RT),$ $g = 1 + (hv^{\neq}/k_b T)^2/24,$

 $A = g(k_b T/h) \exp(\Delta_r^{\neq} S_m^{\ominus}/R),$

g 为 Wigner 校正因子, A 为频率因子, k_b 为玻尔兹曼常数, $\Delta_r^{\neq} H_m^{\ominus}$ 和 $\Delta_r^{\neq} S_m^{\ominus}$ 分别为反应体系的标准摩尔活化焓和活化熵.

2 结果与讨论

部分物种的优化构型及参数如图 1 所示. 图中斜体 参数为用 P2/6-311G*方法计算的结果. 部分构型的能量 及过渡态的唯一虚频率列于表 1. 反应的势能面示于图 2.

²⁰⁰⁶⁻¹⁰⁻¹⁷ 收稿, 2007-02-13 接受

天水师范学院科研基金资助项目(批准号: TSA0604)

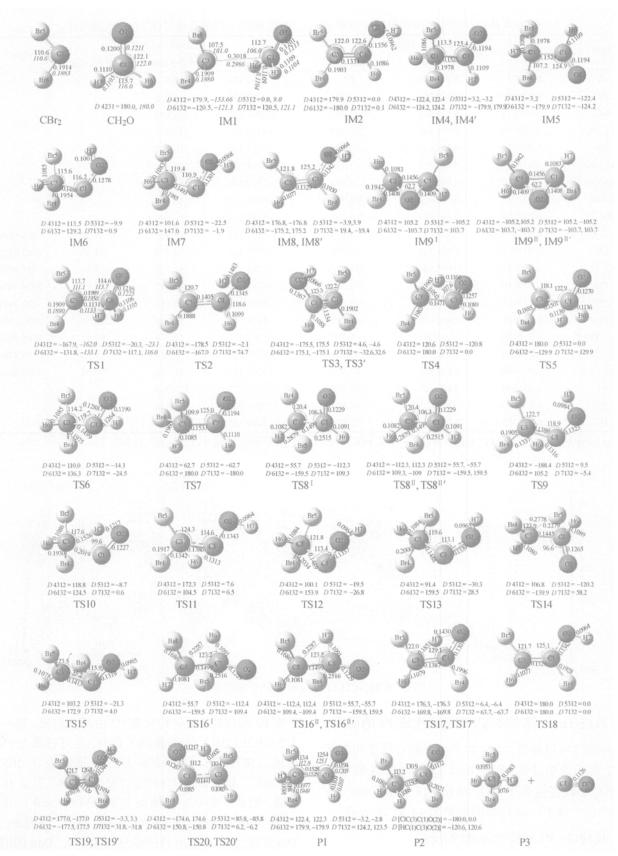


图 1 CH₂O+CBr₂ 反应中部分物种的构型示意图 (键长: nm, 键角: (°))

物种 –	B3LYP/6-311G*				CCSD (T)/6-311G*			
120111	$E_{\mathrm{ZPE}}\left(\mathrm{a.u.}\right)$	$E_{\mathrm{HF+ZPE}}$ (a.u.)	$E_{\rm R}/{\rm kJ \cdot mol}^{-1}$	E (a.u.)	$E_{\rm R}/{\rm kJ \cdot mol}^{-1}$	$E^{\neq}/\mathrm{kJ \cdot mol}^{-1}$	$-v/cm^{-1}$	
R	0.02978	-5300.796	0.0	-5297.154	0.0			
IM1	0.031001	-5300.797	-3.298	-5297.158	-8.616			
IM2	0.037375	-5300.888	-242.047	-5297.255	-264.890			
IM4, IM4'	0.036840	-5300.909	-297.509	-5297.279	-327.993			
IM6	0.035826	-5300.833	-98.270	-5297.196	-110.862			
IM8, IM8'	0.036961	-5300.895	-261.137	-5297.261	-279.993			
IM9*	0.037712	-5300.879	-219.292	-5297.249	-247.768			
IM10	0.037053	-5300.912	-306.309	-5297.282	-336.618			
IM11	0.037160	-5300.897	-267.103	-5297.264	-287.266			
TS1	0.031874	-5300.787	22.235	-5297.141	35.908	44.53	266.609i	
TS2	0.031671	-5300.784	31.320	-5297.145	23.473	351.46	1307.412i	
TS3, TS3'	0.036141	-5300.884	-231.876	-5297.251	-252.712	12.18	415.027i	
TS6	0.030710	-5300.779	43.394	-5297.140	38.275	152.78	2074.385i	
TS8*	0.034113	-5300.812	-43.281	-5297.163	-22.451	305.54	392.281i	
TS16*	0.034111	-5300.812	-43.287	-5297.163	-22.422	225.35	392.299i	
TS17, TS17'	0.030659	-5300.794	5.590	-5297.150	12.224	292.21	1595.708i	
TS19, TS19'	0.036166	-5300.892	-253.550	-5297.257	-270.728	9.26	356.874i	
TS20, TS20'	0.031466	-5300.806	-27.948	-5297.163	-21.709	265.56	2086.054i	
P1	0.036840	-5300.909	-297.509	-5297.279	-327.993			
P2	0.037490	-5300.935	-366.635	-5297.302	-388.850			
P3	0.033905	-5300.920	-326.988	-5297.295	-370.016			

表 1 CBr_2+CH_2O 反应中部分物种的零点能 (E_{ZPE}) 、总能量(E)、过渡态能垒 (E^{ϵ}) 和相对能量 $(E_R)^{al}$

a) IM9*表示 IM9, IM9^I, IM9^{II}, IM9^{II}; TS8*表示 TS8, TS8^I, TS8^{II}, TS8^{II}; TS16*表示 TS16, TS16^I, TS16^{II}, TS16^{II}

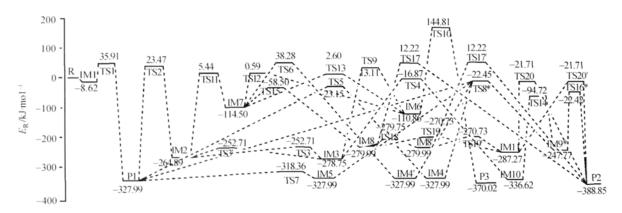


图 2 CBr₂+CH₂O 反应的能量变化示意图

2.1 反应(1): 二溴卡宾与甲醛插入生成 P1 的反应

由图 2 可以看出,当卡宾 C 与甲醛 C 原子相互靠近时,经无能垒过程,释能 $8.62~{\rm kJ\cdot mol^{-1}}$,生成中间体 IM1, IM1 经过渡态 TS1,放出 $327.99~{\rm kJ\cdot mol^{-1}}$ 的能量生成产物 P1,该过程的能垒为 $44.53~{\rm kJ\cdot mol^{-1}}$.

2.2 反应(2): P1 异构化为 P2 的反应

从图 2 可以看出, P1 异构化为 P2 的途径有 12 条.

产物 P1 经途径 P2₁ 异构化为 P2 由两步组成,第一步为 P1 中 Br(4)从 C(3)转移到了 C(1),经过过渡态 TS8* 形成二溴环氧乙烷中间体 IM9*,其能垒为 305.54 kJ·mol⁻¹.第二步为 IM9*经过渡态 TS16,发生 H 的转移,形成产物 P2,其能垒为 225.35 kJ·mol⁻¹.由于 P1 异构化为 IM9 需翻越 305.54 kJ·mol⁻¹的能垒,且 TS8*的能量与两反应物的能量相差不大, IM9 的能量比 P1 的高 $80.22 \text{ kJ·mol}^{-1}$,所以从热力学和动力学的

角度综合分析, P1 的异构化途径 P2₁ 将难以发生, 二 溴卡宾与甲醛插入反应将终止于产物 P1.

途径 $P2_2$ 为 P1 经过渡态 TS7,翻跃一小的能垒 $(9.63~kJ\cdot mol^{-1})$ 经过二面角的变化,沿路径 $P1\rightarrow TS7\rightarrow IM5\rightarrow TS8^I\rightarrow IM9^I\rightarrow TS16^I\rightarrow P2$ 进行. 该途径类似于 $P2_1$,所以 IM5 的异构化也难以发生. 可以看出, IM5 与 P1 的能量相同,因 Br(4)与 Br(5)并无差别,所以可以认为该途径插入反应将终止于产物 P1.

途径 $P2_3$ 为 P1 经 TS5,发生 H 的转移形成 IM4, IM4 再经过 $TS8^{II}$ 和 $TS16^{II}$ 两个过渡态,生成产物 P2. 该途径第一步翻越的能垒为 $304.84~kJ \cdot mol^{-1}$,且 TS5 的能量与两反应物的能量相差不大,IM4 与 P1 的能量相同,所以该途径也难以发生,反应将终止于产物 P1.

途径 $P2_4$ 与 $P2_5$ 为 P1 翻跃一 $351.46~kJ \cdot mol^{-1}$ 的 能垒, 经过渡态 TS2 形成具平面结构的中间体 IM2, 随着二面角 D7132 的变化, 分别经过 TS3 及其对映 异构体 TS3', 形成一平面中间体 IM3, IM3 再经过 H(7)从 O(2)到 C(3)的转移, 形成 IM10, IM10 经过 TS14, 发生 Br(5)的转移, 形成 $IM9^I$, 后续过程同 $P2_2$.

途径 $P2_6$ 与 $P2_7$ 是 IM2 发生 1,3-H 转移形成 IM7, 跨越 270.33 kJ·mol $^{-1}$ 的能垒,经 TS15,发生 Br(4)的 转移,形成近乎平面的 IM8,IM8 经过 TS19,形成平 面中间体 IM11,IM11 分别经过 TS20 及其对映异构体 TS20',生成产物 P2.当 IM8 到 IM11 之间为一两步 骤过程 (IM8 \rightarrow TS18 \rightarrow IM8' \rightarrow TS19' \rightarrow IM11)时,反应 途径分别为 $P2_8$ 和 $P2_9$.

途径 $P2_{10}$ 为 IM7 经过 TS6 发生 2,1-H 的转移,生成 IM4', IM4'经过渡态 $TS8^{II}$ 的对映异构体 $TS8^{II'}$ 生成 $IM9^{II}$ 的对映异构体 $IM9^{II'}$, $IM9^{II'}$ 再经过 $TS16^{II}$ 的对映异构体 $TS16^{II}$, 生成 P2.

途径 $P2_{11}$ 和 $P2_{12}$ 为 IM8 和 IM8'分别经过渡态 TS17 及其对映异构体 TS17',一步生成产物 P2,该步骤需要跨越的能垒为 292.21 kJ·mol $^{-1}$.

可以看出,途径 $P2_{4\sim12}$ 的异构化过程都要经过过渡态 TS2 生成 IM2,该步骤要翻越 $351.46~kJ\cdot mol^{-1}$ 的能垒,且 TS2 的能量比两反应物的能量高 $23.47~kJ\cdot mol^{-1}$,IM2 的能量比 P1 的能量高 $63.10~kJ\cdot mol^{-1}$,所以该 9 条反应途径比途径 $P2_{1\sim3}$ 更难以进行,故 P1 的异构化反应将难以发生,反应将终止于产物 P1.

2.3 反应(3): P1 异构化分解为 P3(CO+CH₂Br₂)的反应

途径 $P3_1$ 和 $P3_2$ 分别与 $P2_4$ 和 $P2_5$ 相似,它们分别 具有相同的起始反应路径及一共同的中间体 IM3,随 后跨越 $291.86 \text{ kJ} \cdot \text{mol}^{-1}$ 的能垒,生成中间体 IM6,该步骤主要是 1,3-H 的转移和 C(1)—C(3)键的拉长断裂过程,经过 TS10, C—C 键断裂生成产物 P3.

途径 $P3_3$ 和 $P3_4$ 与 $P2_6$ 的起始反应路径相同, 生成同一中间体 IM7. 伴随着二面角的变化, 沿途径 $P3_3$ 与 $P3_4$, 分别经中间体 TS12 和 TS13, 生成了它们的共同中间体 IM6, 后续过程同于途径 $P3_1$ 和 $P3_2$.

可以看出, P1 异构化分解的 4 条反应途径均要经过过渡态 TS2 和中间体 IM2, 从 P1 的异构化反应讨论可知, 该步骤也难以进行.

综上可得, 二溴卡宾与甲醛生成 P1 的途径是发 生插入反应的主要通道. 该反应的反应机理可借助 于分子轨道图(图 3)和图 1 进行分析. 根据轨道对称 性匹配条件, 当卡宾与甲醛相互靠近时, 卡宾 C 原子 的σ 孤对电子与甲醛的 C(1)端的反键π*空轨道初步 形成了 $\sigma \to \pi^*$ 授受键,从而生成了中间体 IM1,但由 于在 IM1 构型中, C-C 过长(0.3018 nm), 初步形成 的 σ → π *授受键太弱, IM1 中 C—C 键的键序值仅为 0.014821, 故使得 IM1 处于较高的能量状态. 通过 H(7)的转移及 C-C 键长的缩短, IM1 经过渡态 TS1 生成了产物 P1, 系统降低了能量. 在 P1 构型中, C-C 键的键序值增大到了 0.115906, 键长缩短到了 0.1528 nm, 由原来的不成键变为成键, 这是由于 C(3)原子的 σ 孤对电子与 C(1)端的反键π*空轨道形成了较强的 σ → π *授受键而导致, 这也是 P1 构型稳定的主要原 因.

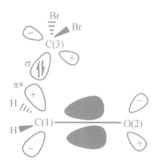


图 3 CBr₂和 CH₂O 的轨道对称性匹配

2.4 反应(1)的热力学和动力学性质

由图 2 可知, 生成产物 P1 的速控步骤为反应 $IM1 \rightarrow TS1 \rightarrow P1$, 在 1 atm (101325 Pa)和不同温度下, 根据统计热力学方法和用 Wigner 校正的 Eyring 的过渡态理论计算得到的反应 $R \rightarrow P1$ 的热力学函数改变值

和平衡常数 K列于表 2; 速控步骤 $IM1 \rightarrow TS1 \rightarrow P1$ 的热力学函数改变值, $\Delta_r^{\neq} S_m^{\ominus}, \Delta_r^{\neq} H_m^{\ominus}, A, g$ 和 k 列于表 3.

由表 2 可知,在 100~1900 K 温度范围内,R \rightarrow P1 是一个熵减少、放热的自发反应。随着温度的降低,平衡常数 K(T)升高了大约 148 个数量级。在 100 K 温度下,K(T)达到了 4.533×10^{148} 。由此可见,在低温条件下更有利于生成产物 P1。因此, CBr_2 和 CH_2O 在所研究的温度范围内是放热的自发反应,在低温下更

具有热力学优势.

由表 3 可见,在低温时反应 $IM1 \rightarrow TS1 \rightarrow P1$ 的 Wigner 因子 g 较大,从而校正了 Eyring 过渡态理论中未考虑到钻穿效应而导致低温时计算结果偏低的缺陷。在 $100 \sim 1900$ K温度范围内, $IM1 \rightarrow TS1 \rightarrow P1$ 反应也是一个熵减少、放热的自发反应。随着温度的升高反应的自发趋势和反应限度逐渐变小,反应速率明显增大。从动力学角度分析,在高温下反应 $IM1 \rightarrow TS1 \rightarrow P1$

农 2 - 及应 R→11 自 加烈力于压烦									
T/K	$\Delta S^{\ominus}/\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	$\Delta H^{\odot}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	$\Delta G^{\ominus}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	K	T/K	$\Delta S^{\ominus}/\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	$\Delta H^{\ominus}/\mathrm{kJ} \cdot \mathrm{mol}^{-1}$	$\Delta G^{\ominus}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	K
100	-155.745	-300.158	-284.583	4.533×10^{148}	1200	-155.051	-292.683	-106.622	4.378×10^{4}
200	-164.855	-301.439	-268.468	1.316×10^{70}	1300	-153.874	-291.213	-91.176	4.609×10^{3}
300	-166.903	-301.927	-251.856	7.139×10^{43}	1400	-152.800	-289.755	-75.835	6.754×10^{2}
400	-166.575	-301.793	-235.163	5.132×10^{30}	1500	-151.759	-288.262	-60.623	1.292×10^{2}
500	-165.333	-301.229	-218.562	6.821×10^{22}	1600	-150.776	-286.726	-45.484	30.546
600	-163.744	-300.352	-202.106	3.94×10^{17}	1700	-149.854	-285.219	-30.466	8.633
700	-162.106	-299.286	-185.812	7.344×10^{13}	1800	-148.978	-283.683	-15.522	2.821
800	-160.526	-298.102	-169.681	1.201×10^{11}	1900	-148.142	-282.123	-0.654	1.042
900	-159.021	-296.829	-153.710	8.345×10^{8}	2000	-147.334	-280.558	14.109	0.428
1000	-157.604	-295.479	-137.876	1.593×10^{7}	2100	-146.575	-278.996	28.812	0.192
1100	-156.329	-293.329	-127.967	1.194×10^6	2200	-145.836	-277.418	43.421	0.093

表 2 反应 R→P1 的热力学性质

主 2	TM/1 \	TC1 \D	1 的 执 士	1学和动力	h 学 M 压

T/K	g	$\Delta S \ominus / \mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$	$\Delta H^{\ominus}/\mathrm{kJ} \cdot \mathrm{mol}^{-1}$	$\Delta G^{\ominus}/\mathrm{kJ}\cdot\mathrm{mol}^{-1}$	K	$\Delta_{\rm r}^{\neq} H_{\rm m}^{\ominus}/{\rm kJ \cdot mol}^{-1}$	A	$\Delta_{\rm r}^{\neq} S_{\rm m}^{\ominus}/{\bf J} \cdot {\bf K}^{-1} \cdot {\sf mol}^{-1}$	k/s^{-1}
100	1.61395	-57.708	-296.427	-290.656	6.739×10 ¹⁵¹	23.590	6.555×10 ⁹	-51.880	0.003
200	1.15349	-74.669	-298.853	-283.919	1.428×10^{74}	21.647	1.825×10^9	-65.480	4.057×10^{3}
300	1.06822	-82.607	-300.790	-276.008	1.146×10^{48}	20.035	1.149×10^9	-72.061	3.734×10^{5}
400	1.03837	-86.747	-302.219	-267.52	8.626×10^{34}	18.717	9.420×10^{8}	-75.870	3.389×10^{6}
500	1.02456	-89.057	-303.248	-258.719	1.07×10^{27}	17.607	8.617×10^{8}	-78.355	1.248×10^{7}
600	1.01705	-90.44	-304.001	-249.738	5.525×10^{21}	16.633	8.287×10^{8}	-80.135	2.955×10^{7}
700	1.01253	-91.33	-304.579	-240.648	9.079×10^{17}	15.740	8.157×10^{8}	-81.511	5.459×10^{7}
800	1.00959	-91.942	-305.036	-231.482	1.303×10^{15}	14.897	8.117×10^{8}	-82.638	8.646×10^{7}
900	1.00758	-92.38	-305.409	-222.267	7.953×10^{12}	14.091	8.133×10^{8}	-83.584	1.237×10^{8}
1000	1.00614	-92.712	-305.721	-213.009	1.339×10^{11}	13.301	8.161×10^{8}	-84.420	1.648×10^{8}
1100	1.00507	-93.697	-310.933	-207.866	7.432×10^9	12.518	8.200×10^{8}	-85.164	2.086×10^{8}
1200	1.00426	-93.17	-306.223	-194.418	2.905×10^{8}	11.744	8.242×10^{8}	-85.839	2.540×10^{8}
1300	1.00363	-93.335	-306.427	-185.092	2.738×10^{7}	10.972	8.285×10^{8}	-86.456	3.002×10^{8}
1400	1.00313	-93.468	-306.609	-175.754	3.611×10^6	10.197	8.323×10^{8}	-87.030	3.466×10^{8}
1500	1.00273	-93.582	-306.771	-166.399	6.234×10^{5}	9.423	8.357×10^{8}	-87.566	3.926×10^{8}
1600	1.0024	-93.675	-306.916	-157.036	1.339×10^{5}	8.646	8.391×10^{8}	-88.066	4.381×10^{8}
1700	1.00212	-93.755	-307.05	-147.666	3.447×10^4	7.863	8.420×10^{8}	-88.540	4.827×10^{8}
1800	1.00189	-93.825	-307.17	-138.285	1.031×10^4	7.081	8.445×10^{8}	-88.988	5.261×10^{8}
1900	1.0017	-93.884	-307.281	-128.902	3.498×10^{3}	6.296	8.469×10^{8}	-89.412	5.685×10^{8}
2000	1.00153	-93.935	-307.38	-119.510	1.322×10^{3}	5.508	8.490×10^{8}	-89.817	6.096×10^{8}
2100	1.00139	-93.98	-307.472	-110.113	5.483×10^{2}	4.718	8.510×10^{8}	-90.202	6.495×10^{8}
2200	1.00127	-94.019	-307.556	-100.714	2.462×10^{2}	3.925	8.528×10^{8}	-90.570	6.881×10^{8}

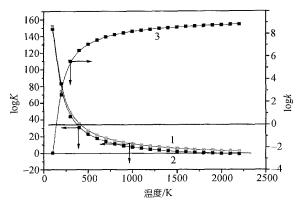


图 4 反应平衡常数 K 及速率常数 k 随反应温度 T 的 变化曲线

曲线 1, R→P1; 曲线 2, IM1→TS1→P1; 曲线 3, IM1→TS1→P1

更具有动力学优势. 在研究温度范围内 $\Delta_r^{\neq} S_m^{\ominus}$ 为负值, 这是由于过渡态 TS1 比中间体 IM1 的结构更加紧凑 所致; 而在研究温度范围内, 频率因子 A 变化不大, 可以认为 A 是不随温度变化的常数, 因此该反应属于 Arrhenius 类型反应.

图 4 为 K 及 k 的对数值随温度 T 的变化曲线. 从图可以看出,当温度高于 1900 K 时,反应 $R \rightarrow P1$ 的 K 值很小,而当温度低于 200 K 时, $IM1 \rightarrow TS1 \rightarrow P1$ 的 k 值很小. 结合表 2 和表 3,从热力学和动力学角度综合分析,在 1 atm 下,单重态 CBr_2 与 CH_2O 的插入反应在 200~1900 K 温度下进行为宜,如此,既具有较大的自发趋势和平衡常数,又具有较快的反应速率.

参 考 文 献

- 1 Houk K N, Rondan N G, Cielo S, et al. Theoretical studies of the structures and reactions of substituted carbonyl ylides. J Am Chem Soc, 1980, 102(5): 1504—1512
- 2 Gill H S, Landgrebe J A. Selective formation and trapping of dihalocarbonyl ylides derived from dihalocarbenes and substituted benzaldenhydes. J Org Chem, 1983, 48(7): 1051—1055
- 3 胡应模, 平进克幸, 福冈秀雄. 二(2,6-二甲基-4-甲氧基)苯基卡 宾的产生和反应. 化学学报, 2002, 60(11): 2056—2063
- 4 Seyferth D, Burlitch J M, Minasz R J, et al. Halomethyl-metal compounds. The preparation of gem-dihalocyclopropanes by the reaction of phenyl(trihalomethyl)mercury compounds with olefins. J Am Chem Soc, 1965, 87(19): 4259—4270
- 5 Seyferth D, Tronich W. Reactions of phenyl(bromodichloromethyl) mercury. Preparation of perchlorothiirane. J Am Chem Soc, 1969, 91(8): 2138—2139
- 6 Seyferth D, Darragh K V. Halomethyl-metal compounds.

- Phenyl(fluorodichloromethyl)mercury. A useful source of fluorochlorocarbene. J Org Chem, 1970, 35(5): 1297—1302
- 7 Houk K N, Rondan N G. Theoretical studies of halocarbene cycloaddition selectivities: A new interpretation of negative activation energies and entropy control of selectivity. Tetrahedron, 1985, 41(8): 1555—1563
- 8 Keating A E, Mrrigan S R, Singleton D A, et al. Experimental proof of the non-least-motion cycloadditions of dichlorocarbene to alkenes: kinetic isotope effects and quantum mechanical transition states. J Am Chem Soc, 1999, 121(16): 3933—3938
- 9 王洪星, 还振威, 张高举, 等. 二卤卡宾与羰基化合物反应的研究进展. 高等学校化学学报, 1996, 17(2): 241—248
- 10 Gracia L, Sambrano J R, Safont V S, et al. Theoretical study on the molecular mechanism for reaction of VO₂⁺ with C₂H₄. J Phys Chem A, 2003, 107(17): 3107—3120
- 11 李明,郑文旭,田安民. 嘧唑硼烷催化前手性酮肟醚不对称还原 反应的密度泛函研究.中国科学 B 辑: 化学,2006,36(2):119—129
- 12 Lu X H, Yu H B, Xü Y H, et al. Theoretical study on the mechanism of the cycloaddition reaction between methylidenesilene and ethylene. Chin J Chem, 2006, 24(3): 307—310
- 13 卢秀慧,武卫荣,于海彬,等.二甲基亚烷基卡宾与丙酮环加成 反应机理的理论研究.科学通报,2005,50(16):1693—1699
- 14 Peng L, Li Q S, Fang W H, et al. Theoretical study on cycloaddition of singlet dichlorocarbene with formaldehyde, acetaldehyde and benzaldehyde and subsequent rearrangement reactions. Chem Phys lett, 2003, 382(1): 126—132
- 15 Takashi H, Tomoki K, Tomomasa K, et al. Carbene insertion into oxygen-hydrogen bonds by metalloporphyrin catalysts. J Organomet Chem, 1994, 473(1): 323—327
- 16 Ramalingam M, Ramasami K, Venuvanalingam P, et al. C-H functionalisation through carbene and fluorocarbene insertion—ab initio and DFT investigations. J Mol Stru-Theochem, 2005, 755(1): 169—178
- 17 林启君, 冯大诚, 马万勇, 等. 卡宾与醚 C-H 键插入反应的理论研究()—— 二氯卡宾和二氟卡宾与二甲醚的插入反应. 高等学校化学学报, 2000, 21(9): 1427—1431
- 18 冯大诚, 林启君, 马万勇, 等. 卡宾与醚 C-H 键插入反应的理论 研究()—— CX₂(X =H, F, Cl)与甲乙醚 C-H 键插入反应. 高等学校化学学报, 2000, 21(11): 1708—1712
- 19 林启君, 冯大诚, 戚传松. 卡宾与醚 C-H 键插入反应的理论研究 ()—— CX₂(X=H, F, Cl)与甲基苄基醚 C-H 键插入反应. 高等学校化学学报, 2000, 21(12): 1922—1924
- 20 Chen X Y, Zhao C X, Ping Y, et al. Theoretical study of reactions between MH (M=B, Al) and the H_2S molecule. Int J Quant Chem, 2001, 85(3): 127—135
- 21 司维江, 居冠之. 次甲基硅 SiH 与 HF 反应的热力学及动力学性质研究. 无机化学学报, 2002, 18(8): 782—786
- 22 司维江, 禚淑萍, 居冠之. NH+O₃→ONH+O₂ 反应热力学和动力 学研究. 物理化学学报, 2003, 19(10): 974—977