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Abstract The nonlinear Schrodinger equation with variable parameters is solved by means of variational tech- 

nique. A set of evolution equations for the solitary-wave solution is derived. The propagation properties of the solitons 

in an adiabatic amplification system and in a dispersion-decreasing fiber are analyzed. An explicit analytical approximate 

soliton solution in the exponentially dispersion-decreasing fiber is obtained using the derived dynamical equations. 
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The soliton concept is a sophisticated mathematical structure based on the integrability of a 

class of nonlinear differential equations['] . Integrable nonlinear differential equations have one fea- 

ture in common: they are all conservative and are thus derivable from a Hamiltonian. The nonlin- 

ear Schrodinger equation is one member of the class of integrable equations. It reads as 

where u is the envelope of the electric field as a function of propagation distance z andaretarded 

time t . It is well known that in a perfect, lossless optical fiber, the fundamental soliton, corre- 

sponding to solitary-wave solution of eq. ( I ) ,  has the desirable property that its shape and ampli- 

tude are invariant during propagation along the fiber. This characteristic makes it possible to use 

soliton pulses as information carriers in the high-bit-rate optical communication systems. In a 

practical fiber, however, the power of the pulses decreases exponentially with distance, and the 

nonlinear effect is weakened accordingly due to fiber loss. Ultimately the pulse loses its identity as 

a soliton and becomes subject to ordinary dispersion deterioration. For soliton communication sys- 

tems, the loss compensation can be achieved by slowly varying the fiber parameters (dispersion or 

nonlinearity) a~ i a l l y [~ - '~  or by using adiabatic amplification[8391 . Thus in a practical soliton-based 

communication system, the propagation of the pulse is described by the following nonlinear 

Schrodinger equation with variable parameters: 

where /3 ( z ) and y ( z ) are the group-velocity dispersion and nonlinear coefficients respectively; 

(Y ( z ) is the fiber loss or the amplification rate. If P (  z ) = y ( z ) = 1, eq. ( 2 )  describes dynamics 
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of solitons in the transmission system with periodical or adiabatic amplification[91 ; in this case, 

the soliton solution of the equation has been obtained by means of the perturbation theory[*', and 

the evolution equations of the parameters of the soliton have been derived using the variational ap- 

proach[91 . In ref. [2 ] ,  Tajima showed numerically that optical solitons in the so-called dispersion- 

decreasing fibers ( corresponding to the case of a ( z ) = 0, y ( z ) = 1 ) can propagate with their 

width and shape unchanged. In ref. [3]  the propagation of solitons in dispersion-decreasing fibers 

was investigated numerically and analytically, and a transformed soliton solution, corresponding 

to the case of /3( z ) = 7 ( z ) = 1 ,  a ( z ) = A ( constant equivalent gain), was obtained. ~ u e h l [ ~ ]  

has studied the propagation properties of solitons on an axially nonuniform optical fiber and ob- 

tained an analytical solution in the case of a ( z )  = 0, /3( z )  = 1. In the present paper, we consider 

a more general case which takes into consideration all the three variable parameters of eq. ( 2 ) .  
We will derive the evolution equations for the solitary-wave solution of eq. (2) by means of varia- 

tional t e ~ h n i ~ u e ' ~ " ~ ~  and apply the obtained evolution equations to the adiabatic amplification sys- 

tem and the dispersion-decreasing fiber. We have obtained an explicit analytical approximate soli- 

ton solution in the exponentially dispersion-decreasing fiber for the first time to our knowledge. 

1 Evolution equations of the parameters of the soliton 

We omit the gain or loss term on the right side of eq. ( 2 )  for simplicity. When this term has 

to be taken into consideration, it can be included in P ( z )  or y ( z )  term by a proper transforma- 

tion. It is easy to show that eq. ( 2 )  can be restated as a variational problem in terms of the follow- 

ing Lagrangian : 

where the asterisk denotes the complex conjugation. This means that eq. ( 2 )  results from the 

variational equations corresponding to the variational principle 

i. e .  the equation 

is equivalent to equation ( 2 ) .  

In order to describe the evolution of a pulse, we assume the following trial function: 

u ( z ,  t )  = Asech [: - I exp[ip + ibt2],  ( 6 )  

where A ,  a ,  p ,  b are the amplitude, the pulse width, the phase and the chirp parameter, respec- 

tively. They are all the real functions of the propagation distance z and the behavior of which is 

determined by the variational equation (eq. ( 4 ) ) .  We also assume that the initial value of the soli- 

ton parameters are Ao,  ao, PO, bo, respectively. 

Inserting eq. (6) into eq. ( 3 )  and integrating out the explicit t dependence, we arrive at an 

effective Lagrangian : 
m 7 r 2 ~ ' a 3  & + /3(z)A2 + x 2 ~ ( z ) A Z a 3 6 2  2 y ( z ) A 4 a  L = j Y d r  = 2 ~ ' a ~ + -  - 
- co d z  6 d z  3 a  3 3 . (7)  
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The Lagrange-Euler variational equations deduced from eqs. ( 7 )  and ( 4 )  produce the system of 

evolution equations of the parameters of the soliton: 

where the subscript z denotes the partial derivative. From (8a)-(8d), we have 

1 da  b = -- 
2/3(z)a  d z '  

It is obvious that if the profiles of p (  z )  and y (  z )  are given, one can obtain a set of explicit 

evolution equations or a soliton solution. For p (  z ) = 7 ( z ) = 1, the set of eqs. (9a)-(9d) be- 
comes the evolution equations of the parameters of the soliton of the standard nonlinear 

Schriidinger equation[lO' , i . e . equation ( 1 ) . 

Now let us take into consideration the a ( z ) term. If a ( z ) > 0, this term represents the 

gain; while if a ( z ) < 0,  it represents the loss. Take the following transformation: 

eq. (2)  is changed into 

Thus, if we replace Y (  z )  in eqs. (9a)-(9d) with y (  z)exp[2Jza ( z ' )dz ' ] ,  we obtain the evo- 
0 

lution equations of the parameters of the soliton of the nonlinear Schrodinger equation ( eq. 

( 11 ) ) :  

1 d a  b = ------ - 
2/3(z)a d z '  

A 2 a  = A 2 ( 0 ) a ( 0 )  = W(const . ) ,  

Finally, the analytical approximate soliton solution of eq. ( 2 )  can be arrived at by using equation 
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2 Results and discussion 

Obviously, the evolution equations of the parameters of the soliton of the nonlinear 

Schrodinger equation (eq. ( 2 ) )  can be reduced to a single second-order equation for the pulse 

width (eq. ( 1 2 a ) ) ;  since once a ( z )  is known, the other parameters are determined by eqs. 

(12b)-(12d). So we will mainly analyze the dynamical behavior of the soliton pulse width. We 

rewrite eq. (12a) as 

where 

2 y ( z ) e x p [ 2 j z o ( z ' ) d z f ] ~  o 

a 

Thus eq. ( 13 )  may be regarded as an equation of motion for a particle with the variable mass 

l / P ( z )  in the variable potential V .  In an ideal lossless fiber, the equilibrium position, a '  = P /  
( Y W ) ,  at the bottom of the potential well V corresponds to the exact soliton''']. From eq. 

(12b), we can see that the chirped solitons correspond to oscillations above the equilibrium posi- 

tion, a '  = p / (  yW) .  In a fiber with variable parameters, the dynamical behavior of the soliton 

can be obtained numerically from a Runge-Kutta integration of eq. ( 13 ) .  In some special cases, 

we can even obtain the approximate analytical soliton solution of eq. ( 2 ) .  Here we analyze two 

typical kinds of transmission systems with variable parameters. 

2 . 1  Transmission system with adiabatic amplification[g1 

Setting P(  z )  = Y (  z )  = 1, and introducing the normalized pulse width y = a ( z ) / a o ,  we ob- 

tain from eq. (13) ,  

where N = A. a. , in agreement with reference [9 ]  . 

2 . 2  Dispersion-decreasing fiber 

We assume an exponentially dispersion-decreasing fiber with the group-velocity dispersion 

p ( z )  = P(O)e-'", where 0 is the altering rate of the dispersion, and set ~ ( z )  =  constant), 
a ( z ) = 0 .  Take the following transformations: 

r = t / a o ,  5 = z/LD, q = J G D u ,  (15) 

where L D  = ut//3(0) is the dispersion distance of the fiber. Eq. ( 2 )  is transformed into the nor- 

malized equation: 

Comparing eq. ( 16) with eq. (11 ), we obtain the following equation for normalized pulse width y 

= a ( z ) / a o  from eq. (12a) : 
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The solution of eq. ( 17 ) is y = e -  the other parameters are obtained from eqs. ( 12b)- 
8L OLD 1 

( 12d), b = - J ( e e L ~ 5  - I ) ,  A = e~ f ,  y, = ---(eOL~c - 1 )  . Thus for an initial fundamental 2 28LD 

soliton, we obtain an explicit approximate analytical soliton solution of the nonlinear Schrodinger 

equation in the exponentially dispersion-decreasing fiber: 

The soliton solution u ( z ,  t ) can be obtained using eq. (15) .  It  is clearly shown from eq. (18) 
that the amplitude of the soliton in the dispersion-decreasing fiber increases exponentially with 

distance, and the pulse width decreases exponentially with distance. Thus the effect of the fiber 

loss on the propagation of the soliton can be compensated for by properly altering the dispersion of 

the fiber. When the fiber loss is excessively compensated for, the solitons in the dispersion-de- 
creasing fiber can be effectively compressed. These results are in agreement with the numerical 

simulations in references [ 12,131 . 

So far, several kinds of fibers with various variable dispersion profiles, such as dispersion- 
managed fiberr5], dispersion-adapted fiberL6] and dispersion-compensating fiberf7], have been pro- 

posed. Recently, a transform-limited pulse train has been successfully generated with a dispersion- 

decreasing, erbium-doped fiber amplifier[141. The obtained result in this paper is expected to be 

useful in these transmission systems. 
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