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ABSTRACT Organic electrochemical transistors (OECTs),
functioning as transduction amplifiers, demonstrate con-
siderable potential for integration into biosensors and wear-
able technologies. However, conventional OECT's demonstrate
limited stability in conformal sensing on biointerfaces, pri-
marily due to their poor ductility and liquid-electrolyte-gated
operation mechanisms. A double-network-based stretchable
gel electrolyte is presented, simultaneously integrating ex-
ceptional mechanical compliance and high ionic conductivity.
OECT arrays, gated through photopatterned gel electrolytes,
demonstrate high uniformity in electrical performance. Be-
sides, the solid-state devices show remarkable electrical sta-
bility when subjected to 50% strain, thus facilitating
continuous electrocardiogram monitoring under mechanical
deformation. This validates its application potential in am-
bulatory healthcare systems requiring long-term biosensing.

Keywords: stretchable electronics, gel electrolytes, organic
electrochemical transistors, electrocardiogram recording

INTRODUCTION

Bioelectronic devices function as critical sensing components for
electrophysiological monitoring in clinical and ambulatory
healthcare settings [1-3]. Wearable devices with conformal and
stable biointerfaces effectively reduce motion artifacts through
mechanical stress distribution. This capability supports pro-
longed biosensing with enhanced signal-to-noise ratios (SNR)
[4-7]. Organic electrochemical transistors (OECTs) represent a
breakthrough in wearable biosensing, capitalizing on high
transconductance, low-voltage operation, and biocompatible
interfaces [8]. These attributes facilitate precise electro-
physiological monitoring on deformable biological substrates
[9,10]. OECT modulates the source-drain current (Ip) by elec-
trochemically doping/dedoping its semiconductor channel,
where the gate voltage (Vg)-controlled ion injection from the
electrolytes dynamically alters carrier density and conductivity

of conducting polymers. Both electrolyte composition and
channel material properties directly govern three critical para-
meters in OECT biosensors: transconductance, SNR, and
operational stability [11,12].

Wearable electronic devices must conform to skin surfaces
while enduring mechanical deformations such as bending,
twisting, and stretching with strains reaching approximately 30%
[13-15]. Therefore, the development of soft and stretchable
architectures of OECTs with stable electrochemical coupling
becomes crucial for applications in biosensing technologies and
bioelectronic systems [16-18]. In comparison with liquid elec-
trolyte-gated OECTS, solid-state OECT's based on gel electrolyte
demonstrate superior environmental stability, including resis-
tance to thermal degradation and humidity-induced perfor-
mance variation [19-21]. Importantly, Young’s modulus of gel
electrolyte spans from 1Pa to 300 MPa, encompassing char-
acteristic values of biological tissues including skin and muscle
(200-500 kPa), as well as neural tissues such as brain par-
enchyma and spinal cord (500 Pa-200 kPa) [22,23] . Therefore,
numerous studies have focused on the design of gel-based ionic
conductors as an electrolyte layer for solid-state OECT's [24-27].
Examples of synthesized gel electrolytes include gelatin, chitosan
(CS), agar, poly(ethylene glycol) (PEG), polyacrylamide
(PAAm), and poly(hydroxyethyl methacrylate) (PHEMA). These
gel electrolytes offer excellent controllability, mechanical prop-
erties, environmental stability and biocompatibility for reducing
interface resistance and enhancing compliance with biological
systems [28-32]. However, conventional fabrication of gel
electrolyte employs solution-based techniques like inkjet and
screen printing, exhibiting limited resolution for integrated
high-density soft/stretchable device arrays [33-35].

In this study, we present the fabrication of stretchable solid-
state OECTs utilizing a photopatternable gel electrolyte, con-
sisting of CS and polyhydroxyethyl acrylate (CS-PHEA). The
photo-crosslinkable structure design enables precise patterning
and in situ manufacturing capabilities for devices with complex
architectures. The engineered gel electrolyte also demonstrates
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remarkable mechanical compliance, featuring 640% fracture
strain and skin-matched Young’s modulus (114 kPa). When
integrated with polyrotaxane (PR)-plasticized conducting poly-
mers (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS)), the resulting solid-state OECT achieved a high
[‘uC*] value of 317.71 + 11.61 Fem™ V7's™!, with consistent
transconductance (~6.5mS) under 50% strain. They also
demonstrate exceptional cyclic stability during 60 min of con-
tinuous operation under stress, and exhibit high SNR (~30 dB)
during analog electrocardiogram (ECG) monitoring, establish-
ing an effective dynamic sensing platform for bioelectronic
interfaces.

EXPERIMENTAL SECTION

Material

The synthesis of PR was conducted according to previously
reported literature [36,37]. Chitosan (low molecular weight), 2-
hydroxyethyl acrylate (HEA), glycerol, sodium chloride (NaCl),
acetic acid and 2,6-bis(4-azidobenzylidene)cyclohexanone (wet-
ted with approximately 30% water, containing 25 g on a dry
weight basis) were purchased from HEOWNS. PEDOT:PSS
(Clevios PH1000) was purchased from Heraeus. Sulfuric acid,
photoinitiator 1173 were purchased from Sigma-Aldrich.
Capstone™ FS-30 was purchased from Chemours. Polystyrene-
block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS,
H1062) was purchased from Aladdin. AZ5214, along with their
developers (AZ 300MIF), were provided by Shanxi Sidi Infor-
mation Co., Ltd.

Gel electrolyte preparation

Chitosan (1 wt%) solution was prepared by dissolving chitosan
powder (My 50-190 kDa, >75% deacetylation) in deionized
water containing 6 wt% acetic acid under continuous magnetic
stirring for 6 h until complete dissolution. Chitosan ion mem-
brane was heated at 70 °C by drop casting. For the chitosan-
glycerol ionic membrane, chitosan aqueous solution was mixed
with glycerol (6 wt%) and homogenized by magnetic stirring to
obtain the chitosan-glycerol aqueous solution, and then the film
was heated after drop casting. The preparation of gel electrolyte
is as follows: chitosan aqueous solution was mixed with HEA
and photoinitiator 1173 (the content was 1 wt% of HEA content)
at a certain mass ratio, and the mixture was subjected to ultra-
sonic treatment for 10 min to obtain a mixed uniform solution.
The solution was deposited onto target substrates via spin-
coating or drop-casting, followed by exposure at 365 nm LED
source (110 mW cm ) for 120 s to form crosslinked gel. The gel
was subsequently immersed in an aqueous solution containing 6
wt% glycerol and 0.1 M NaCl for 1 h at 25 °C to construct a CS-
PHEA double-network gel electrolyte.

Device fabrication

The pre-cleaned glass substrate was covered with a metal shadow
mask, and 5 nm of Cr and 50 nm of Au were thermally evapo-
rated as source-drain and side gate electrodes. To prepare the
semiconductor channel, PEDOT:PSS solution mixed with PR (5
wt%) and CapstoneTM FS-30 (0.5 wt%) was spin-casted onto
ultraviolet ozone (UVO)-treated substrates, followed by UV
exposure for 5 min and annealing at 130 °C on a hot plate for
10 min. The conducting polymer was then treated with con-
centrated sulfuric acid (>95%, Duksan Pure Chemicals). A
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positive photoresist (AZ5214) was used to define the channel
pattern. The gel electrolytes were formed by spin-casting the
configured solution, followed by photopatterning with a shadow
mask. For stretchable OECTs, SEBS substrates were prepared by
drop-casting of the 3 wt% azide/SEBS (200 mg mL™") solution,
with photo-crosslinking by exposure to 284 nm UV light. The
substrate was pre-stretched and the stress was released after the
deposition of electrodes and semiconductor channel. The pho-
topatterned gel electrolytes were then constructed to yield
stretchable devices.

Characterizations and measurement

The electrical characterization of OECT was performed using a
semiconductor analyzer (Keysight 4200A-SCS). The drain and
gate electrodes were connected to the SMU module of the
semiconductor analyzer, which can simultaneously apply voltage
signals and measure the current signal at the same time. The
source electrodes were connected to the ground. During transfer
curves, the drain voltage Vp was set to —0.5V and the gate
voltage Vi was swept from 1 to —1 V with voltage steps of 0.01 V
at a sweep rate of 20 mV s~ During output curves, V, was
swept from 0 to —0.6 V in increments of 0.01 V at a sweep rate
of 50 mV s™'. This process was repeated for V spanning from
0.2 to —0.6 V with increments of 0.2 V. For measuring stretch-
able OECT under strain, devices were maintained under a strain
by using a small tensile stage. The applied strain percentage is
defined as the length change AL upon strain with respect to the
original length L of the unstretched films: (AL/L) x 100%. The
film thicknesses were measured by using a profilometer (Bruker,
Dektak X). The UV-vis absorption spectra were measured with a
SHZMADZU UV-3600 Plus spectrophotometer. The transmit-
tance was measured in a dual-beam mode to correct the variance
in the lamp flux, and a blank quartz plate was used as a 100%
transmittance reference sample. Optical microscopy images were
captured using a LEICA DM2700M. The electrochemical
properties of the samples were measured using an electro-
chemical workstation (CHI660E, CH Instruments, Inc.). In
electrochemical impedance spectroscopy (EIS) tests, the impe-
dance frequency range was 10kHz to 0.1 Hz. Mechanical
properties were studied by an MTS Criterion Model 42, with a

strain rate of 0.05 mm s~

ECG measurements

A lead-II ECG signal channel was generated using the SKX-
2000C+ simulator, with an amplitude of 2 mV and a frequency
of 60 bpm. The simulator, along with a bias voltage (Vj;,s), was
connected in series between the gate and the source of the
OECT. The ECG signal was acquired from the I, of the OECT.
The SNR was calculated as the ratio of the peak-to-peak current
amplitude of the ECG signal to that of the noise region.

RESULTS AND DISCUSSION

As a natural cationic polyelectrolyte, chitosan exhibits excep-
tional biocompatibility, chemical stability, and solution proces-
sability, rendering it extensively utilized in biomedical
engineering, environmental remediation, and food technology
applications [38]. Chitosan-based ion-conductive membranes
have emerged as promising candidates for solid-state electrolytes
in OECTs, particularly in bioelectronic applications [39]. How-
ever, the inherent mechanical limitations of pure chitosan ionic
membranes with low water content exhibiting low fracture
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elongation (~11%) and elevated Young’s modulus (33 MPa) as
quantified in Fig. S1, significantly constrain their applicability in
flexible stretchable device fabrication. Therefore, we developed a
low-modulus gel electrolyte through a physically cross-linked
double-network strategy (Fig. 1a, Fig. S2). This structural con-
figuration comprises a linear polymer framework (PHEA)
interpenetrated with chitosan polymers. The hydroxyl-rich
structure of PHEA establishes multivalent hydrogen bonds with
chitosan, achieving collaborative optimization of mechanical
performance (Fig. S3) and ionic conductivity [40,41]. We sys-
tematically investigated the impact of PHEA content on
mechanical performance, revealing an inverse correlation
between PHEA concentration and ductility. As shown in Fig. 1b,
¢, when the mass ratio of CS to PHEA was reduced from 1:10 to
1:40, the elongation at break dropped from 640% to 292%,
accompanied by a 2.06 folds enhancement in Young’s modulus
(from 114 to 235 kPa). These trends demonstrate that excessive
PHEA incorporation induces denser polymer networks, result-
ing in mechanically toughened electrolytes with compromised
deformability. As shown in Fig. 1d, the ionic conductivity of the
gel decreased from 2.58x107* to 7.7x107° S cm ™" with increasing
PHEA content, a phenomenon due to the introduction of more
insulating PHEA domains. The optimal CS:PHEA ratio was
identified as 1:10 (w/w), balancing mechanical compliance
(e=640%) and ionic conductivity (2.58x107* S cm ™). As shown
in Fig. le, the epidermal impedance of the gel electrolyte-skin
interface was determined as ~5kQ at 1 kHz. Such a low impe-
dance is conducive to noise suppression and improvement of the
SNR in the application of wearable devices [42,43]. As shown in
Fig. 1f, CS-PHEA gel electrolytes exhibited patterns with feature
sizes of less than 1 mm through a rapid photopolymerization
process. In the hydrated state, the thickness of the gel electrolyte
is approximately 300-400 um. The developed photo-patterning

technique enables rapid and straightforward fabrication of gel
electrolytes, offering precise in situ manufacturing capabilities
for devices with complex architectures and specialized config-
urations. This advancement facilitates seamless integration of
components while maintaining structural integrity, thereby
supporting high-density integration and scalable production
processes. The CS-PHEA gel electrolyte achieves ~95% trans-
mittance across 400-800 nm (Fig. 1g), making it suitable for
transparent epidermal electronics and optoelectronic sensors
[44,45].

The schematic diagram of solid-state OECT based on CS-
PHEA gel electrolyte is shown in Fig. 2a. Gate voltage modulates
ion migration dynamics in the electrolyte, facilitating electro-
chemical doping via reversible ion intercalation/deintercalation
in the semiconductor channel. The conducting polymer PEDOT:
PSS is extensively employed in OECTs due to its high intrinsic
conductivity and solution processability. We used a polymer
plasticizer, i.e., PR, to improve the ductility of PEDOT:PSS (Fig.
S4), with subsequent sulfuric acid treatment for enhanced elec-
trical conductivity [36]. As demonstrated in Fig. 2b, the solid-
state OECT achieves a high transconductance of 13.2 mS. Fig. 2¢
shows the output characteristics of CS-PHEA gel electrolyte
gated solid-state OECT. These devices exhibit typical pinch-off
behavior while the drain current (I) decreases with an increased
gate voltage (V) from —0.2 to 0.8 V, which is attributed to
dedoping in the PEDOT:PSS channel. To quantitatively evaluate
the device performance, we systematically collected their
saturation regime transfer curves with varying channel dimen-
sions (Fig. 2d). The product of charge carrier mobility and
volumetric charge storage capacity ([4C’]) was adopted as the
figure of merit for device characterization. The solid-state OECT
demonstrates a high [uC"] value of 317.71+11.61 Fem™ V™' s™",
Benefiting from the photo-patentability of gel electrolyte with
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Figure 1 Synthesis and characterization of CS-PHEA gel electrolytes. (a) Schematic illustration of a physically cross-linked double-network CS-PHEA gel
electrolyte structure. (b) Tensile stress-strain curves for CS-PHEA with different compositions (10-40 wt% PHEA). (c) Young’s modulus analysis of
composition-optimized CS-PHEA gel electrolytes. (d) Ionic conductivity of gel electrolytes with varied PHEA contents. (e) Impedance of gel electrolytes-skin
interface. (f) Image of photopatterned CS-PHEA gel electrolytes. (g) Transmittance of the CS-PHEA gel electrolyte. Inset: photograph of a gel electrolyte film.
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Figure 2 Electrical characterization and array fabrication of CS-PHEA gel electrolyte gated solid-state OECT. (a) Schematic illustration of the CS-PHEA gel
electrolyte gated OECT architecture. (b) Transfer and transconductance characteristics of the OECT (channel length (L)=50 um, width (W)=1800 um).
(c) Output characteristic curves demonstrating current-voltage relationships. (d) Transconductance as a function of channel dimensions and operating
parameters for CS-PHEA gel electrolyte gated OECT in the saturation region, used to extract the associated [#C’]. (¢) Photographic image of the fabricated CS-
PHEA gel electrolyte gated solid-state OECT array. (f) Statistical distribution of transconductance values across the OECT array.

precise in-situ preparation, a solid-state OECT array (10x10
configuration) employing a side gate architecture was easily
prepared [30]. Note that a PEDOT:PSS layer was deposited
between the Au side-gate electrodes and CS-PHEA gel electro-
lyte to minimize interfacial electrochemical impedance [46,47].
The average transconductance (G,,) of the 100 channels of the
OECT array is 7.89 mS (L=100 um, W=1800 pm). The narrow
G, distribution indicates the high uniformity in electrical per-
formance, thus demonstrating the great potential of CS-PHEA
electrolyte in the fabrication of large-scale solid-state OECT
circuits.

Robust mechanical compliance integrated with stable charge
transport dynamics is critical for maintaining signal fidelity in
next-generation wearable bioelectronics operating under
dynamic deformation [48,49]. Therefore, stretchable solid-state
OECTs were fabricated with cross-linked SEBS as elastic sub-
strates. As illustrated in Fig. 3a, the soft devices demonstrate a
seamless contact with skin, indicating a high level of tolerance to
mechanical deformation. To ensure stable signal recording
during stretching, stretchable devices employ a pre-stretching
strategy [50]. Metal electrodes are deposited on elastomer sub-
strate, with a pre-stretching range of 50% (Fig. 3b), and the
entire device is released after depositing the semiconductor film
[51]. The stretchable gel electrolytes can be prepared by in-situ
photopolymerization. The resulting devices exhibit stable
transconductance outputs at about 6.5mS (Fig. 3c, d). The
operational stability of the solid-state OECT was evaluated
through cyclic gate voltage (V) switching between 0 and 0.8 V
at a constant drain voltage (Vp = —0.5V). The results show
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negligible current degradation after 3600 ON/OFF cycles over
60 min (Fig. 3e), demonstrating the reliable and efficient ion
conduction of CS-PHEA electrolyte under strain.

The CS-PHEA gel electrolyte-gated solid-state OECT was
engineered for ECG signal acquisition. An ECG simulator was
employed to generate signals, ensuring consistent signal quality
unaffected by acquisition conditions, skin characteristics, or
body movement [52]. As shown in Fig. 4a, the simulator along
with a bias voltage (Vy;,s) was connected in series and between
the gate and the source of the OECT. Vp was set at —0.5V to
operate the solid-state OECT, and the ECG signal was recorded
as the Ip. As a control electrolyte, an ion-conducting membrane
consisting of chitosan with the glycerol plasticizer was used, as
reported in the literature [29]. As demonstrated in Fig. S5, the
CS-glycerol-based OECT achieves a high transconductance of
10.1 mS. At 50% tensile strain, the ECG signal acquisition of CS-
glycerol-based OECT showed significant attenuation (Fig. 4b).
According to the optical microscope images, severe microcrack
extension was observed for CS-glycerol layer (Fig. S6), while the
channel layer remained intact under strain (Fig. S7). This sug-
gests that the limited ductility of CS-glycerol electrolyte leads to
failure of the electrolyte-semiconductor interface [53]. In con-
trast, CS-PHEA-based OECT maintains a stable recording of
ECG analog signals under 50% strain and shows a high SNR
above 30 dB (Fig. 4c, d), demonstrating a promising potential for
operando measurement of epidermal electrophysiology signals.

CONCLUSIONS
In summary, we have successfully manufactured stretchable
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Figure 3  Stretchable solid-state OECT. (a) Photograph of stretchable solid-state OECT. (b) Illustrations of the intrinsically stretchable solid-state OECT.
(¢) Transfer plots of OECTSs under various strains (0% to 50%) applied parallel (¢//) to the channel length (L=200 um, W=1800 pum). (d) G,, of the intrinsically
stretchable OECT under various strains (0% to 50%). (e) Transient characteristics of stretchable solid-state OECT (under strain 0% and 50%) with alternating
gate potentials (V=0.8 and 0V, and Vp=—-0.5V) for 60 min.
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Figure 4 ECG acquisition with a CS-PHEA gel electrolyte-gated solid-state OECT. (a) Schematic diagram of the setup for recording simulator-generated
ECG waveforms and spectra using CS-PHEA gel electrolyte-gated solid-state OECT. (b) Solid-state OECT based on CS ion membrane is used to record ECG
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conducted based on five consecutive peak data). (d) Recording simulator-generated ECG waveforms and spectra using a stretchable CS-PHEA gel electrolyte-
gated solid-state OECT under different strains (0% to 50%).
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solid-state OECT by developing a soft (Young’s modulus of
114 kPa) and stretchable (elongation break at 640%) CS-PHEA
gel electrolyte and integrating it with a stretchable PEDOT:PSS
layer while maintaining the mechanical and electrical properties
of both components. The OECT device has excellent amplifi-
cation performance ([yC*]:317.71 +11.61 Fem™ v7is™h), and
we successfully prepared high-uniformity arrays with the aver-
age transconductance of 7.89 mS. The good mechanical adap-
tation of the gel electrolyte facilities the achievement stable
electrophysiological signal acquisition under 50% strain with a
high-quality SNR output (~30 dB). This work provides a simple,
low-cost, and efficient material design for gel electrolytes, and
represents an important step in the fabrication of stretchable
solid-state OECTs. It promises long-term development for high-
resolution integrated biointerfaces based on organic electronics.
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